
Nonlocal Collaborative l0-Norm Prior for Image Denoising

Vladimir Katkovnik
Department of Signal Processing,

Tampere University of Technology, Finland
vladimir.katkovnik@tut.�

Abstract

Spatially adaptive nonparametric regression estimation is one of the most promising recent di-
rections in image processing. The Transforms and Spectral Techniques Research Group at the
Department of Signal Processing, Tampere University of Technology, has been active in this novel
�eld starting from about 2002. The results achieved with application to di¤erent image and video
processing problems are very positive and completely support optimism following from general
speculations concerning nonparametric modeling (e.g. [1]-[9]). Within this framework the Block
Matching and 3-D Filtering (BM3D) algorithm has been developed which is currently one of the
best performing denoising algorithms. In this paper a special prior is proposed allowing to reformu-
late mainly semi-heuristic nonlocal nonparametric techniques as global minimization of an energy
criterion. It is shown that the basic hard-thresholding part of the BM3D algorithm can be derived
as a minimizer of the proposed prior. The outstanding performance of BM3D is a strong argument
in favor of this prior as an e¢ cient multilayer redundant image model.

1 Introduction

Suppose we have independent random observation pairs fzi; xig given in the form

zi = yi + "i; (1)

where yi = y(xi) is a signal of interest, xi 2 R2 denotes a vector of �features�or explanatory variables
which determines the signal observation yi, and "i = "(xi) is an additive noise, "i � N(0; �2). The
denoising problem is to reconstruct y(x) from fzig.

A variety of denoising methods are derived by considering image processing as a variational problem
where the restored image is computed by minimization of an energy functional. Typically, such
functionals consist of the �delity term calculated as the Eucledian norm of the di¤erence between the
true image and the observed noisy image and the regularization penalty:

ŷ = argmin
y
jjy � zjj22=�2 + � � pen(y): (2)

If � = 0, the solution of (2) is trivial ŷ = z. This optimal estimate is equal to the noisy signal
and denoising is not produced. It demonstrates that the �ltering ability of the optimal solution is
completely de�ned by the penalty pen(y) called also an image prior.

For imaging, the variational formulation (2) has been introduced in terms ofMarkov Random Field
(MRF ) modeling with Bayesian estimation and Gibbs distribution as a prior [10]. The corresponding
prior probability density has an exponential form p(y) = exp(�U(y)=T )=Z, where U(y) is "potential
function" and T is "temperature", the latter term is inherited from statistical mechanics, where this
distribution has been introduced by J. Willard Gibbs in 1878. Then the maximum likelihood leads to



the penalty pen(y) = U(y). Depending on the problem at hand U(y) is de�ned in various ways and
U(y) calculated over "cliques", sets of pixels close to each other in some sense.

In imaging , the variational approach is very popular with the penalty functions introduced using
di¤erent arguments varying from strong statistical-mathematical to pure heuristical ones.

For illustration we mention some of the penalty functions in common use:

� Quadratic penalties
pen(y) = jjyjj22, pen(y) = jjLyjj22 (3)

have a form of the quadratic Eucledian norm of y or of a linear functional of y. These penalties
are popular in the standard Tikhonov�s regularizators [11];

� Total variation (ROF) [12], [13]
pen(y) =

Z
jj�yjj2dx, (4)

where �y is a vector-gradient of y. The success of this penalty stems from the fact that it allows
discontinuous solutions and hence preserves edges while �ltering out high-frequency oscillations
due to noise;

� Products of experts (PoE) and �eld of experts (FoE) [14], [15]

pen(yk) =
NX
i=1

�i log(1 +
1

2
(fTi yk)

2); (5)

pen(y) =
X
k

NX
i=1

�i log(1 +
1

2
(fTi yk)

2); (6)

where yk are vectorized image patches projected on fi, where fi are analysis �lters, �i and N
are parameters;

� Nonlocal means [16], [17],

pen(y) =

Z
g

 
jy (x)� y (v)j2

h2

!
w(jx� vj)dxdv; (7)

where w > 0 is a window, and g is a di¤erentiable function;

� Complexity penalty is formulated usually for spectrum representations of the image as � = T fyg,
where T stands for orthonormal or overcomplete transforms (e.g. [6], [18]). This penalty is
calculated as

pen(�) = jj�jjl0 , (8)

where the l0-norm gives a number of active spectrum elements di¤erent from zero. The l1-norm
is often used as a replacement for the l0-norm as giving a close solution and computationally
much more e¢ cient.

1.1 Overcomplete transform domain modeling

Let the signals from (1) be given in the matrix form as Y and Z and de�ned on the regular 2-D grid X.
Following [1] consider a windowing C = fXr, r = 1; : : : ; Nsg of X with Ns blocks (uniform windows)
Xr � X of size nr�nr such that [Nsr=1Xr = X. Mathematically speaking, this windowing is a covering



of X. Thus, each x 2 X belongs to at least one subset Xr. The noise-free data Y and the noisy data
Z windowed on Xr are arranged in nr � nr blocks denoted as Yr and Zr, respectively. Typically, the
blocks are overlapping and therefore some of the elements may belong to more than one block.

We use transforms (orthonormal series) of pixels in the blocks in conjunction with the concept of
the redundancy of natural signals. Mainly these are orthogonal polynomials, discrete Fourier, cosine
and wavelet transforms. The transform, denoted as T 2D

r , is applied for each window Xr independently
as

�r = T 2D
r (Yr) ;

�
= DrYrD

T
r

�
r = 1; : : : ; Ns; (9)

where �r is the spectrum of Yr. The equality enclosed in square brackets holds when the transform
T 2D
r is realized as a separable composition of 1-D transforms, each computed by matrix multiplication
against an nr � nr orthogonal matrix Dr. The inverse T 2D�1

r of T 2D
r de�nes the signal from the

spectrum as
Yr = T 2D�1

r (�r) ;
�
= DTr �rDr

�
r = 1; : : : ; Ns:

The noisy spectrum of the noisy signal is de�ned as

~�r = T 2D
r (Zr) ;

�
= DrZrD

T
r

�
r = 1; : : : ; Ns: (10)

The signal y is sparse if it can be well approximated by a small number of non-zero elements of the
spectrum �r. The number of non-zero elements of �r, denoted using the standard notation as jj�rjjl0 ,
is interpreted as the complexity of the model in the block.

If the blocks are overlapping the total number of the spectrum elements �r, r = 1; : : : ; Ns, is larger
(much larger) than the image size and we arrive to the overcomplete or redundant data approximation.
This redundancy is an important element of the e¢ ciency of this modeling overall.

The blockwise estimates are simpler for calculation than the estimates produced for the whole
image because the blocks are much smaller than the whole image. This is a computational motivation
for the blocking. Another even more important point is that the blocking imposes a localization of
the image on small pieces where simpler models may �t the observations.

The data windowing can be produced in many di¤erent ways. In deterministic non-adaptive
design, �xed-size square windows cover the image entirely. One example of this sort of windowing is
the sliding windowing where to each pixel in the image a window is assigned having this pixel as, say,
its upper-left corner (e.g., [9], Ch. 5).

1.2 Estimation

For the white Gaussian noise in the observation model (9)-(10), the penalized minus log-likelihood
maximization gives the estimates of �r as

�̂r = argmin
#

jjZr � T 2D�1
r (#)jj22=�2 + � pen(#), (11)

Ŷr = T 2D�1
r (�̂r),

where # is a matrix of the size of Zr, pen(#) = jj#jjl0 =
P
k;l 1(#(k; l) 6= 0), 1(#(k; l) 6= 0) = 1 if

#(k; l) 6= 0 and 1(#(k; l) = 0) = 0, and � > 0 is a parameter that controls the trade-o¤ between the
penalty and the �delity.

The spectrum penalty is used for characterizing the model complexity and appears naturally in
the Bayesian interpretation of this modeling, provided that the spectrum # is random with a prior
density p(#) _ e��pen(#). The estimator (11) can be presented in the following equivalent form

�̂r = argmin
#

jj~�r � #jj22=�2 + � pen(#); (12)



where the noisy spectrum is calculated as (10).
Because the penalty is additive for the items of # the problem in (10) can be solved independently

for each element of the �̂r as a scalar optimization problem:

�̂r(k; l) = argmin
x2R1

�
~�r(k; l)� x)

�2
=�2 + �1(jxj > 0): (13)

This solution has a form of the hard-thresholding

�̂r(k; l) = �(~�r(k; l); ��) , ~�r(k; l) � 1
�
j~�r(k; l)j > �

p
�
�
, (14)

i.e. �̂r(k; l) = 0 if j~�r(k; l)j � �
p
� and �̂r(k; l) = ~�r(k; l) if j~�r(k; l)j > �

p
�.

The corresponding estimates for the pixels of the block are Ŷr = T 2D�1
r (�̂r).

1.3 Aggregation of windowed estimates

At the points where the windows overlap, multiple estimates appear. Then, the �nal estimate for each
x is calculated as the sample mean or the weighted mean of these multiple estimates [1]:

ŷ(x) =

P
r �rŷr(x)P
r �r�Xr (x)

, x 2 X; (15)

where ŷr is obtained by returning the window-wise (multipoint) estimates Ŷr to the respective place
Xr (and extending it as zero outside Xr), �r are the weights used for these estimates, and �Xr is the
indicator function (characteristic function) of the set Xr.

Although in many works equal weights �r = 1 8r are traditionally used it is a well established fact
that the e¢ ciency of the aggregated estimates (15) sensibly depends on the choice of the weights.

In particular, using weights �r inversely proportional to the variances of the corresponding esti-
mates ŷr is found to be a very e¤ective choice, leading to the dramatic improvement of the accuracy
of estimation (e.g. [3], [8]). In [19] this sort of e¤ects are studied for di¤erent weights for aggregat-
ing blockwise estimates from sliding window DCT and demonstrated essential improvements of the
algorithms.

In [18], Elad and Aharon derive an optimal estimator for the windowed data (9)-(10) as a minimizer
of the global energy criterion:

E = 1

�2
jjZ � Y jj22 +

X
r

�
jjYr � T 2D�1

r (#r) jj22 + � pen(#r)
�
.

The algorithm proposed in [18] uses the alternative minimization on Y and #r and de�nes the spectrum
estimates at the �rst step as

~�r = argmin
#r
jjZr � T 2D�1

r (#r) jj22 + � pen(#r).

Given ~�r the signal estimate of Y is calculated as

Ŷ = argmin
Y

1

�2
jjZ � Y jj22 +

X
r

jjYr � Ŷrjj22,

Ŷr = T 2D�1
r

�
~�r

�
.



Repeating this procedure we arrive to the recursive algorithm

~�
(t)
r = argmin

#r
jjŶ (t)r � T 2D�1

r (#r) jj22 + � pen(#r), (16)

Ŷ (t)r = T 2D�1
r

�
~�
(t)
r

�
;

Ŷ (t+1) = argmin
Y

1

�2
jjZ � Y (t)jj22 +

X
r

jjYr � Ŷ (t)r jj22,

Ŷ (1)r = Zr, t = 1; : : : :

The third formula in (16) de�nes the aggregation of the windowed signal estimates ŷ(t)r (x) and can be
rewritten as their sample mean:

ŷ(t+1)(x) =
z(x)=�2 +

P
r ŷ

(t)
r (x)

1=�2 +
P
r �Xr (x)

; x 2 X. (17)

The optimal estimator minimizing a global energy criterion can be achieved as a limit of this recursive
procedure. However, as it is mentioned above, the sample mean (17) is not a good aggregation formula.
It means that the recursive energy minimization used for the windowed estimates results in a procedure
which can be essentially improved.

Indeed, the very good denoising results shown in [18] are obtained mainly due to combining the
recursive procedure (16) with a �dictionary update�stage (K-SVD algorithm [20]).

As overcomplete estimation with multiple estimates for each pixel demonstrates high-e¢ ciency,
the aggregation of these estimates becomes a hot topic because of two di¤erent reasons. The �rst one
is pragmatic, what is the best way to aggregate, and the second one is principal, why the aggregation
can be so e¢ cient.

2 Nonlocal transform domain modeling

2.1 Group-wise and global penalty

Following Section 1.1, we consider the signal Yj and observation Zj blocks corresponding to a given
windowing. The transforms are de�ned and calculated for these blocks. Furthermore, it is assumed
that there is a similarity between some of these blocks and the similar blocks are clustered in "groups".
As a measure of this similarity between the blocks r and j we use the Eucledian norm jjYj � Yrjj22 [2]:

wh(r; j) = 1(jjYr � Yj jj22 � h): (18)

These binary weights wh(r; j) take value 1 if the Eucledian distance is smaller or equal to h,
then the block j belongs to the group r. Otherwise if the Eucledian distance is larger than h then,
wh(r; j) = 0 and the block j is not included in the group r.

We introduce the penalty �rst locally for the group and further globally for the whole image. The
penalty for the rth group is de�ned as

penr(f#r;jgj) = (19)

=

0@X
j

wh(r; j)jj�j � #r;j jj22

1A+ �rjjf#r;jgj jjl0 .



Here f#r;jgj is a set of the models for all jth blocks included in the rth group, and f�jgj is a
set of the spectrums of the true signal blocks in this group. This group-wise penalty model has been
proposed and developed in [1].

In this paper we go further and introduce the global penalty as the weighted mean of the group-wise
local penalties (19):

PEN(f#r;jgr;j) =
X
r

grpenr(f#r;jgj) = (20)

X
r

gr

0@X
j

wh(r; j)jj�j � #r;j jj22 + �rjjf#r;jgj jjl0

1A ,
with the group-weights gr calculated as

gr =
1=jjf#r;jgj jjl0P
r 1=jjf#r;jgj jjl0

. (21)

The group-wise penalty characterizes the quality of the rth group, where the accuracy of the spec-
trum approximations as well as the complexity of these approximations are taken into consideration.

In the global penalty the group-wise ones are weighed with the weights inversely proportional to the
complexity of the group-wise models. This rule perfectly corresponds to the idea of the sparse image
modeling when a low complexity model is the main goal. According to this idea the low complexity
groups are preferable and taken in (20) with larger weights.

For the white Gaussian noise the image denoising using the global penalty (20) is formalized as
the following optimization problem:

Ŷ = arg min
Y;f#r;jgr;j

J; (22)

J = jjZ � Y jj22=�2 + � � PEN(f#r;jgr;j),

where � de�nes a balance between the �delity jjZ � Y jj22=�2 and the penalty PEN(f#r;jgr;j).

2.2 Collaborative block-wise and global penalty

It is demonstrated in [2] that a much higher sparsity of the signal representation can be achieved using
a 3D group-wise transform instead of 2D block-wise transforms (with spectrums #r;j) as it is in (22).
This sparsity in the 3D transform space improves the e¢ ciency of �ltering and implemented in [2] as
collaborative �ltering.

We are going to use these 3D collaborative transforms for the introduced global penalty.
Let �Yr = f�r;jgj2K�

r
be a collection of the 2D block-wise spectrums treated as 3-D array, where j

is the index used for the third dimension. We will denote the elements of the 3D array �Yr as �
Y
r;j(k; l),

where the indices (k; l) concern 2D array of the jth block in the rth group. Apply a 1D orthonormal
transform T 1D with respect to j. In this way we arrive to a group-wise 3D spectrum of the signal Y
in the rth group as


Yr = T 1D (�Yr ): (23)

Following [1], [2] we replace the 2D spectrum-estimates f#r;jgj2Kh
r
with the corresponding 3D

spectrum 
 = T 1D (f#jgj2K�
r
) obtained by applying the 1D transform T 1D on the collection of 2D

spectra f#jgj2K�
r
. Then, the l0-norm jjf#r;jg

j2Khr
jjl0 in (20) is replaced with the equivalent norm in

this 3D spectrum space de�ned as jj
jj0 =
P
k;l;j2K�

r
1(
j(k; l) 6= 0).



This 3D spectrum representation is used as a joint collaborative model of the signal clustered in
the rth group. For this group the group-wise penalty (19) takes the form

penr(
) = jj
Yr � 
jj22 + �rjj
jjl0 . (24)

Recall again, that here 
 is the 3D array of the spectrum approximations (estimates) we are
looking for, and 
Yr (with index Y ) is the spectrum of the blocks of the true signal values Yj collected
into the rth group according to the rule fYjgj2K�

r
.

Then the global penalty (20) takes the form

PEN(f
rgr) =
X
r

gr � penr(
) = (25)X
r

gr
�
jj
Yr � 
rjj22 + �rjj
rjjl0

�
,

gr =
1=jj
rjjl0P
r 1=jj
rjjl0

,

where the spectrum 
r is an estimate for the spectrums 
Yr in the rth group, and �rjj
rjjl0 is the
l0-norm penalty for this estimate.

2.3 Nonlocal energy minimization (NEM)

Using the spectrum representation for the signals and passage to the 3D spectrum as well as the
l0-norm global penalty (25) de�ned for this 3D space the estimation problem (22) is reformulated as
follows

Ŷ = arg min
Y;f
rgr

J; (26)

J = jjZ � Y jj22=�2 + � � PEN(f
rgr).

This estimator is an essential development of the well known nonlocal means algorithms [21], [22],
the algorithms with the block-matching [23] as well as the basic concepts imbedded in the nonlocal
collaborative �ltering [2], [1].

Let us consider the alternative minimization of J on f
rgr and Y assuming that the weights gr
are �xed.

If Y is given minimization on f
rgr concerns the penalty term PEN(f
rgr) only, and it is reduced
to scalar calculations independent for each element of 
r, because minf
rgr J =) min
 penr(
) and
further


̂r(k; l) = arg min
x2R1

�

Yr (k; l)� x)2 + �r � 1(x 6= 0)

�
:

According to (14) this solution is the hard-thresholding of 
Yr (k; l) calculated as


̂r(k; l) = �(

Y
r (k; l);

p
�r). (27)

When 
̂r(k; l) are found the signal estimates are calculated as

�̂r = f�̂r;jgj2K�
r
= T 1D�1

�

̂r

�
, (28)

Ŷr;j = T 2D�1
�
�̂r;j

�
.



The consecutive T 1D�1 and T 2D�1 inverse transforms return �rst the estimates �̂r = f�̂r;jgj2K�
r

of T 2D -spectra of the blocks in the group, and hence the multipoint estimates Ŷr;j of these blocks.
Because these estimates can be di¤erent in di¤erent groups, we use the double indexes for the signal
estimates Ŷr;j , where j stays for the index of the block and r for the group where these estimates are
obtained.

Consider minimization in (26) on Y provided f
rgr are given as
n

̂r

o
r
. The spectrums 
Yr depend

on Y and this dependence should be taken into considerations in minimization on Y . It is convenient
to give this solution for the penalty in the form (20) where the spectrums in the quadratic norms are
replaced by the corresponding signals

PEN(f#r;jgr;j) = (29)

=
X
r

gr

0@X
j

wh(r; j)jjYj � Ŷr;j jj22 + �rjjf#r;jgj jjl0

1A .
Let us use for the signals given by the matrices Y , Z, Yj , Ŷr;j the lexicographical vector represen-

tations and use for this vectors the corresponding bold letters Y, Z, Yj , Ŷr;j . The vectors Yj are the
parts (projections) of the vectors Y and they can be de�ned through projection matrices Pj of the
corresponding sizes, Yj = PjY. Note that Pj is a binary matrix with items (0,1).

Using this vector-matrix notation and the penalty in the form (29) the criterion J in (22) can be
represented as

J = jjZ�Yjj22=�2 + � �
X
r

gr

0@X
j

wh(r; j)jjPjY � Ŷr;j jj22 + �rjjf#r;jgj jjl0

1A . (30)

Di¤erentiation on Y gives after some manipulations the estimate of Y in the form:

Ŷ = ��1

0@Z=�2+� �X
r

gr
X
j

wh(r; j)P
T
j Ŷr;j

1A ; (31)

� = I=�2+� �
X
r

gr
X
j

wh(r; j)P
T
j Pj .

In conclusion of this section we wish to discuss the meaning of the global penalty in the form (25):

1. The penalty (25) is a dictionary (transform, basis) dependent one de�ned �rst of all by the
approximation accuracy of the true image spectrums 
Yr by the basis spectrums 
r. This
accuracy is complemented by the cost of this approximation calculated through the l0-norms of
the used bases. The penalty (25) is di¤erent from (3), (4), (7), which are dictionary independent,
and similar to (5), (6) and (8), which are dictionary dependent;

2. The global penalty (25) is unusual in a number of aspects. One of the most important is that
this penalty function is multilayer. The blocks in the reference rth group are selected as the
ones close (similar) to the reference rth block and taken from di¤erent part of the image. These
blocks form a 3D multilayer group used for group-wise processing. Each block can be selected
for various reference blocks and in this way it can serve as layers in many di¤erent blocks. The
sets of the multilayer constructions can be tracked in the formula (25) explicitly. The multilayer
constructions can be quite complex and signal/observation adaptive.



3. Another type of multilayer constructions appear when we go from the spectrum to signal esti-
mates. The windows are ovelapping and for each image pixel there are multiple window-wise
estimates. These constructions cannot be tracked in (25) because they depend on image location
of the windows collected in the groups. This grouping is explicitly revealed by the projection
matrices Pj in (30). The weights gr de�ned by the complexity of the group-wise models gives
the aggregation weights fusing the multiple estimates in the �nal estimates for each pixel as it
clear from (31).

4. The proposed penalties, group-wise and global, are inspired by the similar constructions devel-
oped in the BM3D algorithm for the group-wise multi-model collaborative �ltering [2], [1]. Using
the global penalty and variation formulation of estimation with the criterion in the form (30) we
obtain a novel recursive algorithm sharing with BM3D the distinctive features of this algorithm:
grouping of windows, 3D collaborative �ltering and fusing of the group-wise estimates into the
�nal one.

2.4 Implementation on the NEM algorithm

The NEM minimization is implemented as a recursive algorithm composed from the following steps:
1: Initialization: Ŷ (1) = Z and g(1)r = 1;
2: For every t = 1; 2; :::

� Calculate the windowed signals Ŷ (t)r , the weights

w
(t)
h (r; j) = 1(jjŶ

(t)
r � Ŷ (t)j jj22 � h) (32)

and the windowed spectrums ~�
(t)
r;j = T

2D
r

�
Ŷ
(t)
j

�
, j 2 K�

r , for all groups r;

� Calculate the group-wise "noisy" spectrums ~
Ŷ (t)r , the updated windowed spectrum estimates

�̂
(t)

r;j and the corresponding updated windowed signal estimates Ŷ
(t)
r;j using thresholding (27) and

the inverse transforms (28);

� Calculate the complexity jjf�̂(t)r;jgj jjl0 of the group models and the weights

g(t)r =
1=jjf�̂(t)r;jgj jjl0P
r 1=jjf�̂

(t)

r;jgj jjl0
;

� Update the signal estimate Ŷ(t+1) using (31)

Ŷ(t+1) = ��1

0@Z=�2+� �X
r

g(t)r
X
j

w
(t)
h (r; j)P

T
j Ŷ

(t)
r;j

1A ; (33)

� = I=�2+� �
X
r

g(t)r
X
j

w
(t)
h (r; j)P

T
j Pj ;

� Continue until convergence.

The recursive procedure (33) of the NEM algorithm looks similar to the recursive algorithm (17)
which is also derived by a global minimization of the energy function. We wish to note some distinctive
features making a principal di¤erence between these algorithms:



� The estimate Ŷ(t+1) in (33) is a weighted mean of the partial block-wise estimates Ŷr;j with the
weights de�ned by the complexity of the group-wise models while in (17) the sample mean of the
block-wise estimates is used with the weights de�ned by the number of the windows overlapping
for the particular pixel;

� In the algorithm (33) we have varying adaptive number of the windowed estimates for each pixel.
This e¤ect follows from the multiple-window modeling in the collaborative �ltering. In (17) a
�xed number of the window-estimate de�ned by the geometry of the image windowing is used;

� The algorithm (33) is nonlocal with the adaptive similar windows selection while the estimator
(17) is local.

2.5 Links between NEM and BM3D algorithms

The BM3D algorithm [2] is composed from two successive stages: the hard-thresholding (basic) and
the Wiener (post-processing) �ltering. These two stages being similar in structure are di¤erent by the
used �ltering: the hard-thresholding for the basic stage and the Fourier domain Wiener �ltering for
the second stage. The both �ltering are the collaborative ones produced for 3D spectral variables.

The BM3D algorithm as well as its further developments (e.g. [24], [25]) currently demonstrates
the state-of-the-art visual and numerical performance [26].

A few works has been done to formalize the image modeling implemented in the BM3D algorithm,
in particular, in order to connect this type of the algorithms with the frameworks of the more traditional
image processing approaches and techniques.

The concept of the group-wise multiple-models and group-wise penalty are proposed in [1], where
the 3D transform domain estimates are found by minimization of the criteria formulated as the group-
wise penalties (19) and (24), where the true signal spectrums �j and 
Yr are replaced by the noisy
ones ~�j and 
Zr :

penr(f#r;jgj) =

0@X
j

wh(r; j)jj~�j � #r;j jj22

1A+ �rjjf#r;jgj jjl0 ; (34)

penr(
) = jj
Zr � 
jj22 + �rjj
jjl0 . (35)

Minimization of this penr(
) gives two �rst steps of the basic thresholding BM3D�s: grouping and
collaborative �ltering. However, the third step aggregation is appeared in [1] as a separate comple-
mentary procedure of BM3D.

The mix-distribution modeling in [27] is proposed with intention to obtain the all three steps of the
basic thresholding BM3D. The thresholded group-wise estimates are derived as the l0-norm penalized
conditional means (regressions) while for the aggregation an auxiliary optimization problem should be
formulated giving the estimate in the desired form of the weighted mean with the weights inverse to
the variances of the group-wise estimates.

The introduced global penalty (in the forms (20) and (25)) is di¤erent from the models considered
in [1] and [27]. Being used in the variational formulation it gives the all three steps of the basic
thresholding BM3D algorithm in all-in-one package.

To be precise with this statement we show that the basic thresholding BM3D algorithm can be
derived as a minimizer of the global penalty :

� Grouping. The windowed data Zj are collected in the groups K�
r according to the rule (18) used

in (20). With h = �2� (� > 0 is a parameter) it gives the grouping rule implemented in the
basic BM3D algorithm;



� 3-D collaborative �ltering. Let the true spectrums 
Yr in the global penalty (25) be replaced by
the noisy 
Zr , and this global penalty be minimized on all 
r provided that gr are �xed:n


̂r

o
r
= min
f
rgr

PEN(f
rgr); (36)

PEN(f
rgr) =
X
r

gr
�
jj
Zr � 
rjj22 + �rjj
rjjl0

�
. (37)

Then, the estimates 
̂r are the hard-thresholded 
Zr calculated according to the formula (27).

If �r are selected as the corresponding thresholds in [24] then 
̂r from (36) are the group-wise
spectrum estimates of the BM3D algorithm.

The corresponding collaborative windowed spectrum �̂r;j and signal estimates Ŷr;j are calculated
according to (28).

� Aggregation. Let us use the global penalty in the form (20). Minimization of this penalty on Y
using the vectorized representation of the signal in the penalty (see (30)) gives the estimate of
the signal in the form

Ŷ = ��1
X
r

gr
X
j

wh(r; j)P
T
j Ŷr;j ; (38)

� =
X
r

gr
X
j

wh(r; j)P
T
j Pj , gr =

1

�2jjf�̂r;jgj jjl0
;

which is identical to used in BM3D for aggregation of the estimates obtained by the hard-
thresholding.

Thus, it is shown that the basic thresholding BM3D algorithm can be derived by the alternative
minimization of the global penalty using two di¤erent forms of this criterion given in the spectrum
(25) and signal (29) domains.

Table 1: PSNR values (in dB) obtained by NEM and basic thresholding BM3D.

� n Image Cameraman Lena Barbara

256� 256 512� 512 512� 512
5 38. 20 (38.12) 38.70 (38.57) 38.29 (38.40)
10 34.00 (33.80) 35.69 (35.56) 34.93 (34.88)
25 29.30 (29.01) 31.89 (31.37) 30.31 (30.17)
35 27.70 (27.32) 30.34 (29.57) 28.58 (28.25)

3 Simulation experiments

We have produced a number of experiments in order to test the performance of the recursive NEM
algorithm.



Figure 1: Fragment of the cameraman test-image, � = 25: true image (left); novel algorithm, PSNR =
29:30 dB (middle); basic thresholding BM3D algorithm PSNR = 29:01 dB (right).

It is shown that provided a proper selection of the main parameters of the NEM algorithm such
as � in (33) and �r in (30) this algorithm is able to give results which are better than obtained by
BM3D. The comparison versus the BM3D is done for the basic thresholding part of this algorithm
omitting the Wiener �ltering used as the second stage in BM3D. In this case we enable a more or
less fair comparison where both the BM3D and NEM algorithms use identical �ltering instruments
including the collaborative �ltering and aggregation.

The numerical results are shown in Table 1. PSNR values are given for 10 iterations of the NEM
algorithm. The PSNR values obtained by the basic BM3D algorithm are shown in brackets. The
NEM algorithm mainly demonstrates the accuracy which is not worse and even better in particular
for higher level of the noise. We found that these preliminary simulation results are promising and
show that further improvement can be achieved by modifying the NEM algorithm and tuning its
parameters.

A visual performance of the algorithms is demonstrated in Fig.1 and Fig.2. The fragments of
the cameraman test-image in Fig.1 show the advantage of the NEM algorithm giving a better �ltered
background. Visually the estimates by BM3D and NEM for the lena test-image are more less equivalent
with a better value of PSNR for the later algorithm. This visual similarity is also important as it
shows that the NEW recursive procedure does not produce any artifacts sometimes typical for recursive
algorithms.

Figure 2: The lena test-image, � = 25: true image (left); novel algorithm, PSNR = 31:89 dB (middle);
basic thresholding BM3D algorithm PSNR = 31:37 dB (right).



4 Conclusion and further work

� The main results of this paper are the proposed global nonlocal penalty in the energy criterion
(25) and the recursive algorithm (33). The great performance of BM3D is a strong argument in
favor of the proposed global penalty. While the basic thresholding part of BM3D can be derived
as a minimizer of the global penalty, the performance of the recursive algorithm (33) and the
improvement which could be achieved by this algorithm are the problems which require a further
study.

The presented simulation results are initial steps in this direction. A serious work should be done,
in particular concerning the parameter�s tuning in order to obtain the algorithm competitive
with the complete BM3D including both the thresholding and Wiener stages. It deserves to be
mentioned that the BM3D algorithm and all its development are equipped with the very well
optimized parameters.

� The proposed global penalty is quite universal and can be incorporated in various data processing
problems. One of the interesting applications concerns the inverse problems.

Let us make clear this proposal. Assume that the observation model has a form

Z = AY + ",

where Z and Y are the vectorized observed noisy and true images as it is in (30) and A is a
matrix blur operator.

Then, from minimization of

J = jjZ�AYjj22=�2 + � �
X
r

gr

0@X
j

wh(r; j)jjPjY � Ŷr;j jj22 + �rjjf#r;jgj jjl0

1A (39)

we arrive instead of (33) to the recursive algorithm

Ŷ(t+1) = ��1

0@ATZ=�2+� �X
r

g(t)r
X
j

w
(t)
h (r; j)P

T
j Ŷ

(t)
r;j

1A ; (40)

� = ATA=�2+� �
X
r

g(t)r
X
j

w
(t)
h (r; j)P

T
j Pj .

A remarkable and promising feature of this algorithm is that the regularization of the matrix ATA
is produced by the data-depending matrix

P
r g

(t)
r
P
j w

(t)
h (r; j)P

T
j Pj .
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