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ABSTRACT
Spatially adaptive nonlocal patch-wise estimation is one
of the most promising recent directions in image process-
ing. Within this framework, a number of Block Match-
ing 3-D filtering (BM3D) algorithms have been developed
for different imaging problems [1], [2], [3]. In this pa-
per we present the analysis/synthesis frames for BM3D
image modeling and use them to develop novel recursive
deblurring algorithm based on the augmented Lagrangian
technique. In simulation experiments we demonstrate that
proposed algorithm essentially outperforms current state-
of-the-art methods.

1. INTRODUCTION

Spatially adaptive nonlocal patch-wise estimation is one
of the most promising recent directions in image process-
ing. Earlier, within this framework a number of Block
Matching 3-D filtering (BM3D) algorithms has been de-
veloped for different image restoration problems [1], [2],
[3]. Later, a variational formulation of BM3D has been
exploited to design recursive denoising and deblurring al-
gorithms [4], [5]. In this paper we present a frame in-
terpretation of the BM3D image modeling. We derive
analysis and synthesis operators in the algebraic form and
prove that they define respectively non-tight primary and
dual frames. The adaptive grouping used in BM3D re-
sults in the adaptivity of the constructed frames to the an-
alyzed image. Since originally [1] BM3D was presented
in a descriptive manner its frame interpretation provides
a fruitful base for further developments by installing a
link with existing frame based variational reconstruction
techniques. We use this link to develop a novel recursive
deblurring algorithm based on the augmented Lagrangian
technique with a sparsity penalty formulated in the frame
domain.

In simulation experiments we demonstrate that pro-
posed algorithm essentially outperforms current state-of-
the-art methods.

2. FRAME INTERPRETATION OF
BLOCK-MATCHING 3-D FILTERING

Let us briefly recall the algorithm of BM3D filter [1]. It
can be split into three steps.

1. Analysis. Similar image blocks are collected in
groups in order to obtain highly correlated data.

Blocks in each group are stacked together to form
a 3-D data array, which is decorrelated using an in-
vertible 3-D transform.

2. Processing. Obtained 3-D group spectra are filtered
by thresholding.

3. Synthesis.Filtered spectra are inverted providing
estimates for each block in the group. These block-
wise estimates are returned to their original posi-
tions and the final image estimate is calculated by
weighted averaging all of the obtained block-wise
estimates.

Our target is to give a strict frame interpretation of the
analysis and synthesis steps.

Let Y be a
p
N �

p
N square matrix representing

the image data andy be the corresponding column vector
built from the elements ofY arranged in lexicographic or-
der. To each

p
Nbl�

p
Nbl image block we assign a unique

index equal to the index of its upper left element (pixel) in
y. We denote the column vector of the elements ofj-th
block byyj and definePj as anNbl�N matrix of the in-
dicators[0; 1] showing which elements ofy belong to the
j-th block, so thatyj = Pjy. Let Jr = fjr;1; :::; jr;Nrg
be the set of indices of blocks in ther-th group, whereNr
is the number of blocks in the group. IfNgr is the total
number of the groups the setJ = fJr : r = 1:::Ngrg will
completely describe the performed grouping. We call a
groupingproper if each image pixel enters at least in one
group. In what follows we always assume that the group-
ing is proper.

The elements of the 3-D array corresponding to the
r-th group arranged in lexicographical order can be repre-
sented as 264 yjr;1

...
yjr;Nr

375 =
264 Pjr;1

...
Pjr;Nr

375 � y;
and the 3-D group spectrum!r as

!r = �ry; where�r = Tr �

264 Pjr;1
...

Pjr;Nr

375 ;
andTr is the 3-D decorrelating transform for ther-th
group. Now, we can express the analysis step linkingy



and the joint groupwise spectrum! =
h
!T1 ; : : : ;!

T
Ngr

iT
in a matrix form

! =

264 �1
...

�Ngr

375y = �y: (1)

Similarly, if gr are the positive weights used for aggrega-
tion of the group-wise estimates, the synthesis operation
can be expressed by matrix	

y = [g1	1; : : : ; gNgr
	Ngr

]! = 	!; (2)

where	r =
P

j2Jr W
�1PTjr;1T

�1
r and

W =
X
r

gr
X
j2Jr

PTj Pj (3)

is a diagonal weightening matrix used in BM3D for nor-
malization. The matrixPTj Pj is diagonal of[0; 1] ele-
ments showing the locations of the elements ofj-th block
in the vectory, and theN � N diagonal matrix-sumP

j2Ir P
T
j Pj counts the multiplicity of the elements of

y in ther-th group.
SinceJ is proper andgr > 0 for all r, we have strict

inequalityW > 0. Using it we can prove following prop-
erties of the matrices� and	:

�T �� =

NgrX
r=1

X
j2Jr

PTj Pj > 0; (4)

	 �	T =

NgrX
r=1

g2r
X
j2Jr

PTj PjW
�2 > 0; (5)

	 �� = IN�N ; (6)

	 =
�
�T ��

��1
�T : (7)

From (4)-(7) it follows that rows of the matrix� con-
stitute a primary frame and columns of	 define corre-
sponding dual frame. The frame boundaries are given by
inequality:

a � kyk2 �
X
n

���D�Tn ;yE���2 � b � kyk2 ; (8)

where�n are the rows of�, anda andb are respectively
the minimum and maximum values of the diagonal matrixPNgr

r=1

P
j2Jr P

T
j Pj . For a fixed groupingJ , the inequal-

ity (8) holds for anyy.
Since in BM3D groups are data adaptive, the con-

structed analysis and synthesis frames are data adaptive
as well. Hence, BM3D can be treated as a flexible image
modelling with the data adaptive frames.

3. VARIATIONAL IMAGE DEBLURRING

Let us represent the observation model in the vector form

z = Ay + �"; (9)

wherez, y 2 RN are respectively vectors of the noisy
and true images,A is anN �N blur matrix," 2 RN is a
standard i.i.d Gaussian noise and� is the noise level.

We consider the following variational formulation of
the image deblurring problem

ŷ = argmin
y

1

2�
kz�Ayk2 + � � k!kl0 (10)

subject to! = �y; (11)

where the quadratic term follows from the Gaussian hy-
pothesis on the noise distribution andl0-norm restricts the
complexity of the solution. The constraint (11) links the
spatialy and spectrum! domain variables used in the
residual and penalty terms in (10).

The advantage of using the BM3D analysis frame for
defining the penalty term in (10) follows from the fact
that this frame provides a highly sparse representation of
a given natural image.

It is common [6], [7] to divide inverse imaging prob-
lems in two categories:analysis and synthesisbased
on the signal estimation domain and the formulation of
penalty. The problem (10)-(11) corresponds to theanaly-
sis approach since estimated variable is the imagey and
the penalty in the criterion is obtained using theanalysis
operator! = �y. In the alternativesynthesisapproach,
solution is sought in transform domain while link between
the spectrum and the image is established through thesyn-
thesisoperator	. The variational formulation of the syn-
thesis approach is

!̂ = argmin
!

1

2�
kz�Ayk2 + � � k!kl0 (12)

subject toy = 	!. (13)

Despite their similarity presented two formulations define
different problems. For instance, in the case of overcom-
plete transform spectral and image domains have different
dimensionalities; hence solution of the synthesis problem
involves optimization in the space of much higher dimen-
sionality than that for the analysis. In fact, relation be-
tween the analysis and synthesis approaches is nontrivial
and complex. It has been shown in [7] that it is not pos-
sible to claim the advantage of one of these approaches
a-priori and that despite the popularity of the synthesis
methods both approaches are "... still worthy candidates
for inverse problem regularization. The question of which
will actually be better for a specific application and family
of signals remains open."

In this paper we exploit both approaches.

3.1. Augmented Lagrangian (AL)

The Augmented Lagrangian method, introduced indepen-
dently by Hestenes [8] and Powell [9] is one of the clas-
sical methods for minimization of functionals in pres-
ence of linear equality constraints. Recently several
similar methods have been developed. Sharing many
common ideas and features they appear under differ-
ent names such assplit Bregman iterations[6], iter-



ative shrinkage-thresholding algotithms[10], alternat-
ing direction method of multipliers[11], majorization-
minimization algorithms [12]. In this paper we pragmati-
cally follow the Augmented Lagrangian technique which
leads to simple derivation of the algorithm.

The Augmented Lagrangian (AL) criterion for the
analysis problem (10)-(11) takes the form

Lanal (y;!;�) =
1

2�
kz�Ayk2 + 1

2

k! ��yk2+

(14)

1



�T (! ��y) + � k!kl0 ;

where parameters� and 
 are positive. The saddle
point problem associated with the criterion (14) gives the
solution of the constrained optimization problem (10)-
(11). Finding the saddle point requires minimization of
Lanal (y;!;�) on variablesy and! and maximization
on the vector of the Lagrange multipliers�.

The presented AL criterion includes both the linear
and quadratic terms corresponding to the image modeling
equation! = �y. If we keep only the quadratic terms
the augmented Lagrangian becomes the penalty criterion.
As a rule it leads to computational difficulties because this
criterion can be highly ill-conditioned. If we keep only the
linear term the augmented Lagrangian becomes the stan-
dard Lagrangian. However, the saddle-point of the stan-
dard Lagrangian is unstable. It results in the problems of
numerical solutions. The stability of the saddle-point of
the augmented Lagrangian is one of the principal advan-
tage of this criterion.

A common approach for finding a saddle point
of (14) is to perform an alternating optimization of
Lanal (y;!;�) ony;! and� following the scheme:

Repeat fort = 0; 1; :::

yt+1 2 argmin
y
Lanal (y;!t;�t) ; (15)

!t+1 2 argmin
!
Lanal (yt+1;!;�t) ; (16)

�t+1 = �t + � � (!t+1 �� � yt+1) ; (17)

until convergence.
Where maximization on the Lagrangian multipliers�
(17) is produced as the step in the direction of the gradient
r�L.

This scheme applied to the analysis problem (10)-(11)
leads to the Algorithm 1. The operatorTha (�) used in
the algorithm performs hard thresholding according to the
formula:

Tha (v) = v � 1
�
jvj �

p
2a
�
; (18)

wherea is the thresholding level.

4. IMPLEMENTATION

The implementation of the algorithm derived in the previ-
ous section meets two serious problems. The first problem
concerns the inverse of the matrixATA+�


�
T�. While

Algorithm 1 Analysis AL Algorithm
Input: z;A;yinit
Usingyinit construct analysis� andsynthesis	 frames
Set:t = 0, y0 = yinit, !0 = �y0,�0 = 0;
Repeat

1. Minimization ony

yt+1 =

�
ATA+

�



�T�

��1
� (19)�

AT z+
�



�T � (!t +�t)

�
;

2. Minimization on!

Analysis : !t+1=2 = �yt+1 (20)

Thresholding : !t+1 = Th�

�
!t+1=2 ��t

�
;

3. Maximization on�

�t+1 = �t + � � (!t+1 �� � yt+1) (21)

4. t = t+ 1;

until convergence.

A is a block-wise Toeplitz matrix andFFT can be used

to invertATA, the matrixATA+
�




PNgr

r=1

P
j2Ir P

T
j Pj

is not a block-wise Toeplitz matrix and cannot be inverted
usingFFT . One possible option is to obtain an approxi-
mate solution by iteratively solving the linear system (19)
as it has been done in [5] for a similar problem. Neverthe-
less, we exploit another idea.

Let us replace the analysis-based criterion (14) with
the alternative synthesis version of the augmented La-
grangian

Lsyn(y;!; ~�) =
1

2�
kz�Ayk2 + 1

2

k	 � ! � yk2+

(22)

1



~�T (	 � ! � y) + � k!kl0 :

Minimization ofLsyn ony results in the solution

y =

�
ATA+

�



I

��1
� (23)�

AT z+
�




�
	 � ! + ~�

��
.

The inversion of the matrixATA+
�



IN�N required in

this formula can be implemented usingFFT . We note
that the Lagrange multipliers~� in (22) and� in (14) are
different, which is obvious since they have different di-
mensions:~� is of the size of imagey, while � is of the
size of the spectrum!. We install a link between these
Lagrange multipliers using the equation~� = 	�.



We multiply the equation (21) from the left side by the
synthesis matrix	. Due to (6) we obtain

~�t+1 = ~�t + � � (	!t+1 � yt+1) : (24)

Using (23) and (24) instead of (19) and (21) respectively,
we arrive to the final Algorithm 2.

Algorithm 2 AL BM3D Deblurring (AL-BM3D-DEB)
Input: z;A;yinit
Usingyinit define groupingJ andweightsfgrg
Set: t = 0, y0 = yinit, !0 = �y0, ~�0 = 0;
Repeat

1. Minimization ony

yt+1=2 = F�1

8><>:
F� (h) � Ffzg+ �



Ffyt + ~�tg

jF (h)j2 + �



9>=>; ;
(25)

2. Minimization on!

yt+1 = BM3Dfilter

�
yt+1=2 � ~�t; J; fgrg; �

�
;

(26)

3. Maximization on~�

~�t+1 = ~�t + �
�
yt+1 � yt+1=2

�
; (27)

4. t = t+ 1;

until maximum number of iterations reached.

HereF (�) stands for the 2-D FFT,� denotes complex
conjugate andh is a shift invariant blurring kernel corre-
sponding to the operatorA. The notationBM3Dfilter is
used for the filter operator producing the following three
operations: analysis, thresholding according to formula
(18) and synthesis. In this algorithm minimization overy
is produced in the Fourier domain resulting in a fast algo-
rithm applicable for large size images.

Though it is difficult to justify the formal replacement
of (19) and (21), the experimental results presented in
the next section show the efficiency of the proposed al-
gorithm.

Parameter selection. We found experimentally that
for each PSF there are only two parameters need to be
adjusted: regularization parameter� and thresholding� .
Since selection of the parameter� also depend on the
noise level, the actual value provided to algorithm is mul-
tiplied by�2; �act = ��

2. All other parameters have been
fixed and had following values: block size - 4, maximum
number of iterations - 40,� = 0:6; 
 = 1. The 3-D trans-
form was implemented as a separable composition of 2-D
Discrete Sine and 1-D Haar transforms. The parameters
� and� were optimized to provide best results over the
set of four images, namely Cameraman (256x256), Lena
(512x512), House (256x256), Barbara (512x512).

Complexity and execution time. Asymptotic complex-
ity of each iteration of the algorithm can be estimated as
O (N log (N)) + O (N), where the first summand repre-
sents the complexity of FFT implementation of regular-
ized inverse (25) and second is the complexity of BM3D
thresholding (26). Nevertheless for image sizes we deal
in practice the complexity of the BM3D thresholding is
an order of magnitude higher than complexity of FFT.
Detail discussion on the complexity of BM3D can be
found in [1], here we just mention that in proposed algo-
rithm block-matching is performed only once which pro-
vides about 40 percent speedup compared to the standard
BM3D hard thresholding step.

The main script of the deblurring algorithm 2
were implemented in Matlab with block-matching and
BM3Dfilter routines being written in C++. In this setup,
processing of 256x256 image on a 2.6Ghz dual core CPU
machine with a single running core takes less than 40 sec-
onds.

5. EXPERIMENTS

In the presented experiment four images namely:Cam-
eraman, Lena, Houseand Barbara were blurred using
9 � 9 uniform PSF, and the zero-mean white Gaussian
noise was added to the blurred images. The noise levels
for each image were selected such that all degraded im-
ages had same Blurred-Signal-to-Noise-RatioBSNR =
40 dB. The following parameter values have been used:
� = 7, � = 9:2. The initial estimateyinit was obtained
as an output of the DEB-BM3D algorithm [3].

In the Table 1 we present improvement in PSNR
(ISNR) of the reconstructed images over the degraded
ones. For comparison we provide corresponding ISNR
values obtained with the state-of-the-art methods DEB-
BM3D [3] and DEB-NEM [5]. We can see that proposed
algorithm essentially outperforms DEB-BM3D and per-
forms on the level or better compared to DEB-NEM. We
should mention that the proposed algorithm is also faster
than DEB-NEM, where matrix inversion is performed
through the iterative solution of the linear system.

The visual improvement can be examined from the
Fig. 1 and 2 where the reconstructions by DEB-BM3D
and the proposed algorithm are shown. We can see that
the proposed algorithm is able to suppresses the ringing
artifacts induced by DEB-BM3D (the sky area and the tri-
pod elements of theCameraman, eyes ofLena) and pro-
vide sharper image edges. This later effect is achieved in
particular due to the smaller block size used in our method
compared to DEB-BM3D.

6. CONCLUSION

The contribution of this paper is twofold. First, we con-
struct frames corresponding to the analysis and synthesis
operations in BM3D, enabling use of the powerful BM3D
modeling in frame-based variational image reconstruc-
tion. Second, we exploit these frames in the augmented
Lagrangian technique to develop a new deblurring algo-
rithm. In simulation experiments we demonstrate that this



Figure 1. Deblurring experiment with theCameramanimage. From left to right and from top to bottom are presented
zoomed fragments of the following images: blurred noisy, original, reconstructed by DEB-BM3D [3] and by proposed
method.

Figure 2. Deblurring experiment with theLena image. From left to right and from top to bottom are presented zoomed
fragments of the following images: blurred noisy, original, reconstructed by DEB-BM3D [3] and by proposed method.



Degraded(z) DEB-BM3D DEB-NEM Proposed
� PSNR ISNR

Cameraman,(256� 256) 0.56 20.77 8.34 9.90 10.29
Lena,(512� 512) 0.44 25.84 7.97 8.81 8.96
House,(256� 256) 0.41 24.11 10.85 12.93 13.07
Barbara,(512� 512) 0.49 22.49 5.86 6.10 6.06

Table 1. PSNR values for the input degraded images and ISNR values for the images reconstructed with DEB-BM3D [3],
DEB-NEM [5] and the proposed algorithm (in dB).

algorithm achieves state-of-the-art performance.
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