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In breast cancer screening, the radiation dose must be kept to the min-
imum necessary to achieve the desired diagnostic objective, thus mini-
mizing risks associated with cancer induction. However, decreasing the
radiation dose also degrades the image quality. In this work we restore
digital breast tomosynthesis (DBT) projections acquired at low radiation
doses with the goal of achieving a quality comparable to that obtained
from current standard full-dose imaging protocols. A multiframe de-
noising algorithm was applied to low-dose projections, which are filtered
jointly. Furthermore, a weighted average was used to inject a varying
portion of the noisy signal back into the denoised one, in order to attain
a signal-to-noise ratio comparable to that of standard full-dose projec-
tions. The entire restoration framework leverages a signal-dependent
noise model with quantum gain which varies both upon the projection
angle and on the pixel position. A clinical DBT system and a 3D anthro-
pomorphic breast phantom were used to validate the proposed method,
both on DBT projections and slices from the 3D reconstructed volume.
The framework is shown to attain the standard full-dose image quality
from data acquired at 50% lower radiation dose, whereas progressive loss
of relevant details compromises the image quality if the dosage is further
decreased.

Keywords: denoising, digital breast tomosynthesis, dose reduction, vari-
ance stabilization

1 Introduction
Digital breast tomosynthesis (DBT) is becoming a major clinical tool for breast cancer screen-
ing. In a DBT exam, discrete 2D projections are acquired within a limited angle arc around
the breast. The 2D projections are then processed to reconstruct slices of a 3D volume of
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the breast, reducing limitations related to tissue overlap, commonly found in conventional 2D
mammography.

In DBT, as in other x-ray imaging modalities, the radiation dose must be kept at the
minimum necessary to achieve the desired diagnostic objective [1], thus minimizing the risks
associated with cancer induction [2, 3]. However, decreasing the radiation dose also degrades the
image quality, which can affect the radiologists’ performance when giving a diagnosis [4, 5, 6].
Thus, the trade-off between radiation dose and image quality must be carefully balanced.

A number of works have shown the potential of denoising at improving image quality in
medical imaging, e.g., for computed tomography (CT) [7, 8] and magnetic resonance (MRI)
[9, 10, 11]. However, there are very few works exploring denoising for DBT. In [12], the authors
proposed the application of a patch-based denoising algorithm to raw DBT projections. Another
work investigated the application of denoising to the slices of reconstructed DBT volumes
[13]. In recent work [14], our group has described a noise model for DBT projections that
accounts for specific characteristics such as spatially-varying quantum gain, signal-dependent
noise, electronic noise and pixel offset. Further, we have adopted this detailed noise model
to propose an efficient denoising pipeline for DBT raw projections [15]. However, two main
aspects limits the clinical usability of DBT images denoised by the abovementioned methods.
First, the denoising introduces bias, typically in the form of smearing of singularities, which
can be especially problematic for medical images. Second, denoised images lack the granular
texture-like appearance typical of clinical images, and therefore are perceived as odd by the
trained radiologists.

In this context, we here present a quantitative assessment of the above issues and we pro-
pose the combination of noisy and denoised low-dose DBT projections to recover the noise
properties and visual appearance of a standard full-dose DBT image. Furthermore, the image
combination decreases the bias introduced by the denoising process. The image combination
is performed through a weighted average with weighting coefficients calculated based on the
target noise characteristics. Other contributions of this work include the careful pre-processing
of the quantum gain map, the use of a multiframe denoising algorithm, the description of a
metric that evaluates bias and residual noise separately and the extensive validation performed
not only on the projections, but also on the reconstructed slices.

2 Observation model
Let z : X×Θ → R+ be an ensemble of DBT projections, where X ⊂Z2 is the 2D set of pixel
spatial coordinates spanning each projection and Θ ⊂ (−π, π] is a discrete set of projection
angles. We model the observed pixels z(x, θ), x∈X, θ ∈Θ, by the affine-variance model [14]
which is based on the Poisson-Gaussian statistics of the system [16, 17] and links the expectation
and variance of z as

E {z(x, θ) |y(x, θ)} = y(x, θ) + τ , (1)
var {z(x, θ) |y(x, θ)} = λ(x, θ) y(x, θ) + σ2

E . (2)

where y > 0 is a (unknown) noise-free signal proportional to the energy of the x-rays reaching
the detector, τ > 0 is a constant signal offset, λ : X×Θ → R+ is the linear coefficient of
the noise variance function, which can be attributed to the quantum efficiency and gain in
the image formation, and σ2

E > 0 is a constant component, representing the variance of the
signal-independent electronic noise. Both τ and σ2

E are constant and common to each pixel,
whereas λ varies depending on the spatial coordinate x and angle θ. Hence, each pixel z(x, θ)
may follow a different signal-dependent noise model.

Now, let us consider DBT projections zγ acquired using a lower current-time product,
and therefore resulting in lower radiation dose, where 0 < γ < 1 denotes the dose-reduction
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Figure 1: Flowchart of the proposed restoration pipeline. The input zγ is an ensemble of low-
dose DBT projections, whereas ẑ is an approximation of the standard full-dose DBT projections;
ẑ is fed into a DBT reconstruction software to obtain 3D-volume slices. The numbers in
parentheses indicate the corresponding subsections with details.

factor. Because the dose reduction is achieved exclusively by reducing the current-time product,
reducing the dose by a factor γ is equivalent to scaling the noise-free signal y by the same
factor [18]. Hence, the expectation and variance of zγ are

E {zγ(x, θ) |y(x, θ)} = γy(x, θ) + τ , (3)
var {zγ(x, θ) |y(x, θ)} = γλ(x, θ) y(x, θ) + σ2

E . (4)

Note that the signal-to-noise ratio (SNR) of zγ is smaller than the SNR of z. The SNR can
be computed as the ratio between the squared expectation and variance of (zγ(x, θ)− τ) /γ,
which equals γy

λ+σ2
Eγ

−1y−1 and which goes to zero with γy. This is a property common to various
radiation-based imaging systems.

In this work we restrict the modeling of the image-formation process of the projections to
the above equations, without attempting to express y as, e.g., the Radon transform of the 3D
volume to be reconstructed. Accordingly, we treat the DBT reconstruction process as a black
box and therefore we do not present an observation model for the reconstructed slices of the
3D volume. As a matter of fact (as we detail in Section 4.3), we utilize a commercial DBT
reconstruction software whose algorithm is confidential and not available to us.

3 Problem formulation
The primary goal of this work is to obtain an approximation ẑ of the standard full-dose pro-
jections z by processing the low-dose projections zγ. Specifically, we desire that, in terms of
expectation and variance, ẑ matches the model (1)-(2). As a secondary goal we also want that
the slices of the 3D volume reconstructed from the processed projections ẑ are consistent with
those reconstructed from the full-dose z. The achievement of these goals is the premise for
considering the proposed approach as a potential pre-processing stage in DBT so to obtain
comparable image quality from lower-dose acquisition.

4 Methods
Figure 1 shows the proposed pipeline used to produce an approximation of the 3D-volume
slices of the standard full-dose DBT. We first use the lower dose acquisition zγ to compute
the approximation ẑ, which is eventually fed into a DBT reconstruction software to obtain the
estimated 3D-volume slices. In this section we introduce and describe its main steps.
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4.1 Noise removal

Since most of the filters available off-the-shelf are designed and optimized for the additive
white Gaussian noise (AWGN) model, we adopt a variance-stabilization framework in order to
enable the use of those available filters and thus make our pipeline more versatile. The typical
variance-stabilization framework consists of three main steps: the noisy signal is first processed
by applying a variance stabilizing transformation (VST) which produces a signal that can be
treated as corrupted by AWGN; then, any filter for AWGN can be used to effectively attenuate
the noise; finally, an inverse VST is applied to return the signal to its original range. The
advantage of this framework is that it is independent of the particular choice of AWGN filter,
so that any practitioner can easily adopt it in their system with their filter of choice. The
VST framework is thus widely adopted and is shown to provide state-of-the-art restoration
performance in various applications [19, 20, 21, 22, 23, 24, 25].

We detail next the adopted VST framework, which is appropriate for the observation model
(3)-(4).

4.1.1 Variance stabilizing transformation (VST)

We stabilize the noise variance (4) of the set zγ of low-dose projections using the generalized
Anscombe VST [26]:

z̄γ(x, θ) =

2
√
T [zγ(x, θ)] + 3/8 T [zγ(x, θ)] ≥ −3/8

0 T [zγ(x, θ)] < −3/8 ,
(5)

where T [zγ(x, θ)] = λ−1(x, θ) zγ(x, θ) + λ−2(x, θ)σ2
E − λ−1(x, θ) τ . Under a Poisson-Gaussian

modeling of zγ(x, θ), it can be shown that z̄γ(x, θ) is asymptotically Gaussian for large y(x, θ)
and that in particular [26, 20]

E {z̄γ(x, θ) |y(x, θ)} = 2
√
T [E {zγ(x, θ) |y(x, θ)}] + 1/8 +O(y−1(x, θ)) , (6)

var {z̄γ(x, θ) |y(x, θ)} = 1 +O
(
y−2(x, θ)

)
. (7)

In practice, based on (7), the noise corrupting z̄γ(x, θ) is treated as standard Gaussian N (0, 1)
in the denoising. However, comparing (6) with (5), we note a discrepancy of 1/4 +O(y−1(x, θ)),
which corresponds to bias introduced when taking expectations inside and outside of the non-
linear square root function. This bias is ignored when assuming zero-mean noise in z̄γ(x, θ),
and will thus be addressed and compensated after denoising in Section 4.1.3.

4.1.2 AWGN denoising: RF3D

Projections of an object (in this case a breast) at adjacent angles feature various similarities
which can be exploited for denoising. Noting that the similarity between adjacent projections is
comparable to the similarity between consecutive frames of a video, we consider the set of noisy
projections as a de-facto video, and we use a video-denoising algorithm, namely RF3D [27], to
denoise the ensemble of noisy projections z̄γ.

In this context, the first step of RF3D consists of subdividing z̄γ into a multitude of partially
overlapping spatio-angular subvolumes: for each square block within a projection, the algorithm
finds the most similar blocks in adjacent projections, which are thus stacked along the angular
dimension to build a subvolume. Each such subvolume is characterized by spatial intra-block
regularity inherited by the local content of each projection, and by angular inter-block regularity
due to the similarity between stacked blocks. Each subvolume is then decorrelated by a 3D
transform and filtered by shrinkage of the transform spectrum. This step suppresses noise
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because the spectrum is sparse by virtue of the two forms of regularity within the subvolume:
most of the spectrum coefficients have low magnitude and contain mostly noise, whereas the
signal of interest is captured by few large-magnitude coefficients. The shrinkage threshold is
proportional to the noise standard deviation in z̄γ, which is unitary as a result of the VST
(5). Next, the filtered spectrum is inverse transformed, providing an estimate of the clean
subvolume. Because of the overlap between subvolumes, we have multiple estimates for each
pixel in the set of projections; therefore RF3D concludes with an aggregation step where these
multiple estimates are averaged together using adaptive weights proportional to the sparsity of
the respective subvolume spectra. In this way, RF3D produces an approximation dγ = Φ [z̄γ]
of the expectation E{z̄γ|y}.

We refer the reader to [27] for further details and note that an implementation of this
algorithm is publicly available.

4.1.3 Inverse VST

The denoised dγ = Φ [z̄γ] is returned to its original intensity range by the exact unbiased inverse
of the generalized Anscombe transform [20], producing a set of filtered projections dγ which
approximates E{zγ|y}:

dγ(x, θ) = λ(x, θ)

(
1

4
d2
γ(x, θ) +

1

4

√
3

2
d−1
γ (x, θ)− 11

8
d−2
γ (x, θ) +

+
5

8

√
3

2
d−3
γ (x, θ)− 1

8
− σ2

E

λ2(x, θ)

)
+ τ.

(8)

Specifically, this form of inversion compensates the bias discussed in Section 4.1.1, so that if
dγ = E{z̄γ|y} then dγ = E{zγ|y}. Note that this form of inversion is publicly available for
download at [20].

4.2 Noisy-denoised weighted average

As specified in Section 3, the aim of this work is to obtain a set of projections ẑ such that

E {ẑ(x, θ) |y(x, θ)} = E {z(x, θ) |y(x, θ)} = y(x, θ) + τ, (9)
var {ẑ(x, θ) |y(x, θ)} = var {z(x, θ) |y(x, θ)} = λ(x, θ) y(x, θ) + σ2

E. (10)

To this end, we adopt a weighted average of the form

ẑ(x, θ) = wγ(x, θ) (zγ(x, θ)− τ) + w̄γ(x, θ) (dγ(x, θ)− τ) + τ, (11)

where wγ and w̄γ are weights that dependent both on the pixel position x and on the projection
angle θ. Assuming that the denoising is ideally successful, i.e. dγ(x, θ) = E{zγ(x, θ) |y(x, θ)},
it trivially follows from (3) that setting

w̄γ(x, θ) = γ−1 − wγ(x, θ) (12)

yields (9). This substitution also results in var {ẑ(x, θ) |y(x, θ)} = w2
γ(x, θ) var {zγ(x, θ) |y(x, θ)}

for any choice of wγ(x, θ). Hence, to obtain (10), it suffices to set

wγ(x, θ) =

√
var{z(x, θ) |y(x, θ)}
var{zγ(x, θ) |y(x, θ)}

=

√
λy(x, θ) + σ2

E

γλ(x, θ) y(x, θ) + σ2
E

. (13)

Note that the noise-free signal y is not available. Thus, in practice, we replace it in (13) by the
estimate ŷ(x, θ) = (dγ(x, θ)− τ) /γ.
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4.3 DBT reconstruction

Projections were reconstructed into DBT slices using the commercially available reconstruction
software Briona Standard v4.0 (Real Time Tomography, Villanova, PA). A general overview of
this software is given in [28].

5 Materials & Experimental setup
The validation of the proposed method is performed by comparing the restored low-dose acqui-
sitions to the standard full-dose acquisitions, both before and after the reconstruction process.

5.1 Materials

The clinical acquisitions used for this work were acquired by a Selenia Dimensions (Hologic,
Bedford, MA) DBT system at the Hospital of the University of Pennsylvania. The system is
equipped with an amorphous selenium (a-Se) detector that performs direct conversion of x-rays,
therefore reporting minimally correlated noise [14]. The detector has a pixel pitch of 70 µm,
with 2×2 binning, thus resulting in a 140 µm pixel pitch in the projections. The acquisition
geometry consists of 15 projections, obtained at approximately uniform steps within a 15◦ arc
around the breast, i.e. Θ = {θ1 =−7.5◦, . . . , θ15 =7.5◦}.

To allow repeated exposures of the same object, a 3D anthropomorphic physical breast phan-
tom was used as the imaging object. The phantom was prototyped by CIRS, Inc. (Reston,
VA), under the license from the University of Pennsylvania [29, 30]. It consists of six slabs, each
containing simulated anatomical structures manufactured using materials that mimic the phys-
ical properties of the human breast tissue. The phantom simulates a 450 ml breast, compressed
to 5 cm, with 17% volumetric breast density (excluding the skin).

In addition to the healthy breast anatomy, individual pieces of calcium oxalate (99%, Alfa
Aesar, Ward Hill, MA) with different diameters were placed between slabs of the phantom to
simulate microcalcifications. These microcalcifications were positioned in clusters, which are a
common indicative of cancer development. Figure 2 shows an image of the phantom slabs. The
red arrows indicate the location of the microcalcification clusters.

To estimate the parameters τ , λ(x, θ), and σE, calibration images were acquired using a
4-cm thick polymethyl methacrylate (PMMA) uniform calibration phantom. This phantom is
commonly used for uniformity tests by the medical physicists, and was available at the Hospital
of the University of Pennsylvania.

The image acquisition was divided into two parts, both conducted on the same day, therefore
avoiding any changes on the system calibration.

During the first part of the acquisition, images were acquired using the 3D anthropomorphic
physical breast phantom. The phantom was positioned close to the posterior edge of the breast
support; the compression plate was lowered to touch the material; at the central projection
angle (θ8 = 0◦), the phantom slabs were parallel to the detector and perpendicular to the x-ray
beam axis.

The automatic exposure control (AEC) was used for defining the standard full-dose ra-
diographic parameters for this phantom: the machine estimates the optimal peak kilovoltage
(kVp) and current-time product (mAs) using information such as breast thickness and estimated
density. The obtained parameters were 31 kVp and 60 mAs.

The system was then used in manual mode for all the remaining acquisitions.
To obtain 100% (standard full dose), 50% (γ = 0.5), 25% (γ = 0.25), 15% (γ = 0.15), and

5% (γ=0.05) of the standard full dose while maintaining the peak kilovoltage fixed at 31 kVp,
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Figure 2: Picture of the 3D anthropomorphic breast phantom used throughout the experiments.
The red arrows indicate the position of the microcalcification clusters; the cyan square indicates
the location of the region of interest shown in Figure 6.

we set the current-time product to 60 mAs, 30 mAs, 15 mAs, 9 mAs, and 3 mAs, respectively.
Ten realizations were acquired at each current-time product.

A separate set of ten full-dose (60 mAs) acquisitions of the phantom were averaged together
to produce virtually noise-free projections, which we treat as ground-truth projections for the
objective validation. These ground-truth projections were also used to reconstruct the ground-
truth slices.

During the second part of the acquisition, calibration images were acquired using the uniform
PMMA block. Ten realizations were acquired at each of the kVp and mAs combinations adopted
for the anthropomorphic phantom.

5.2 Metrics

Equations (1) and (3) show that projections acquired at different dose levels have different
mean values. Thus, to allow the comparison against the ground-truth (obtained from standard
full-dose acquisitions), all the processed projections are first mapped to the intensity range of
the ground-truth. This is done by fitting affine functions which map pixel values from each
of the low-dose projections to the corresponding pixel values in the corresponding ground-
truth projection, as adopted in [31]. The same technique was applied to the reconstructed
slices. This was done to allow direct comparison between images obtained from acquisitions at
different dose levels and to make the error metrics robust with respect to systematic differences
in pixel intensities.

The main metric used for validation is the mean normalized squared error (MNSE), which
we compute as follows: first, for every pixel, we compute the normalized quadratic error as the
squared difference from the ground-truth divided by the local contrast, defined as the variance
of the ground-truth over a window of size 64×64 pixels; second, the MNSE is obtained as
the average of the pixelwise normalized quadratic errors on the breast over the entire set of
projections or slices. We adopted a normalized version of the MSE due to the high-dynamic
range of the images. The normalization guarantees that regions with significantly higher or
lower contrast are equally accounted by the metric. Furthermore, we decompose the MNSE
into variance and squared bias portions. The rationale of separately analyzing variance and

7



Figure 3: Central ground-truth projection, corresponding binary mask, and central projec-
tion superposed by the binary mask. The nipple region has been magnified for better visual
assessment.

bias within our pipeline is that the variance is informative about the similarity between the
noise in restored and standard full-dose images, whereas the bias assesses the impact of the
pipeline to the underlying signal and is indicative of systematic distortions such as smearing of
details.

These metrics are calculated exclusively on the pixels inside the breast, ignoring the back-
ground. The inner region was selected by binary masks, generated by comparing the intensity
of the ground-truth pixels to a threshold, followed by a morphological erosion operator; Figure
3 shows an example of these masks. The threshold has been chosen manually from the image
intensity histogram, where background and foreground are well separated from each other.

We also measure the in-plane resolvability of singularities using the full width at half maxi-
mum (FWHM) of a microcalcification, as in [32]. The line profile of a selected microcalcification
is taken from each of the ten realizations of the reconstructed in-plane slice. Next, the average
profile is fitted using the sum of a Gaussian function, which represents the microcalcification,
and a linear function, which represents the local background. The FWHM is then computed as

FWHM = 2rσ
√

2 ln 2 , (14)

where σ is the standard deviation of the fitted Gaussian and r is the pixel size of the detector.
Higher values of FWHM from a same structure indicate loss of resolution.

5.3 Projection alignment

Since each projection is slightly shifted vertically with respect to its adjacent projections (due
to the acquisition geometry), before denoising we first align vertically each projection zγ (·, θ),
θ∈Θ, to the first one zγ (·, θ1). This improves the denoising performance of RF3D because it
increases the chances of successful block matching within a smaller search region and under
stronger noise. We compute each vertical shift by finding the maximum of the vertical cross-
correlation between two projections. After denoising, the projections are shifted back to their
original position.

5.4 Parameter estimation

The noise parameters have been estimated as described in [14]. In particular, the signal offset
τ has been computed as described by the National Health Service Breast Screening Program
(NHSBSP) in [33]. The signal-independent noise variance σ2

E has been estimated using flat re-
gions taken from each calibration set: since the noise variance (2) is affine, σ2

E is the intercept of
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λ (·, θ1) λ (·, θ8) λ (·, θ15)

Figure 4: Coefficient maps λ (·, θ) of the linear component of the signal-dependent noise, visu-
alized for the first (θ1), middle (θ8), and last (θ15) angles in the set of projections.

the line fitting the mean-variance scatterplot computed from those flat regions. The coefficient
λ(x, θ) for the linear signal-dependent part of the noise has been instead estimated as

λ(x, θ) = S

[
σ̂2(x, θ)− σ2

E

µ̂(x, θ)− τ

]
, (15)

where µ̂(x, θ) and σ̂2(x, θ) are, respectively, estimates of the local signal mean and noise vari-
ances computed on a 32×32 sliding window over the calibration sets and S is a quadratic
polynomial smoother applied for regularization. In Figure 4 we show the 1st, 7th, and 15th
angular plane of λ estimated from the full-dose acquisition.

5.5 Implementation

The pipeline was validated using our MATLAB single-threaded CPU-based implementation.
The total processing time was 17.3 (±0.3) minutes per DBT set (15 projections) on a 2.8-GHz
Intel Xeon E3-1505M CPU. Note that most of the computational time arises from the RF3D
denoising, as other processing steps are trivial in terms of computational cost.

6 Results
Figure 5 shows a magnified region of interest (ROI) with 256×256 pixels, for visual evaluation of
the central projection at different noise levels. Note that the selected ROI contains a cluster of
microcalcifications located on the right side, and that these microcalcifications are the hardest
region of the dataset to recover. We study the behaviour of the proposed method on this ROI
in order to consider the worst case scenario.

Figure 5(a) and Figure 5(e) show the ROIs taken from the input low-dose images at 30 mAs
and 9 mAs, respectively. As expected, they are noisier than the standard full-dose acquisition
in Figure 5(d). Figure 5(b) and Figure 5(f) show the ROIs taken from the denoised images.
Note that Figure 5(b) and Figure 5(f) are denoised and do not contain any of the noise seen in
the standard full-dose acquisition in Figure 5(d). Figure 5(c) and Figure 5(g) are the resulting
approximations of the standard full-dose acquisition in Figure 5(d). A comparison between
Figure 5(c) and Figure 5(d) shows that the combined image at 30 mAs (50% of the standard
full dose) achieves visually similar results to the standard full-dose image. Meanwhile, the
comparison between Figure 5(g) and Figure 5(d) (9 mAs, 15% of the standard full dose) shows
that some details were lost during the restoration process, which indicates the limitations of
the proposed method.
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(a) 30 mAs Noisy (b) 30 mAs Denoised (c) 30 mAs Combined (d) 60 mAs

(e) 9 mAs Noisy (f) 9 mAs Denoised (g) 9 mAs Combined (h) Ground-truth

Figure 5: Magnified region of interest taken from the central projection (before reconstruction).
For completeness, we also show the ROI from the ground-truth projection, although it plays
no role for the visual validation: the goal is to approximate the 60 mAs full-dose image with
the combined low-dose images.

Reconstructed DBT slices, parallel to the breast support, are obtained by feeding each noisy
or processed set of projections to the reconstruction software. Note that no denoising or image
combination is applied after reconstruction. Figure 6 shows a ROI with the same microcalcifica-
tions shown in Figure 5, but now taken from reconstructed slices. This 256×256 ROI is located
in the phantom as illustrated in Figure 2. Figure 6(a) and Figure 6(e) show the ROI taken
from the slices reconstructed from the noisy projections at 30 mAs and 9 mAs, respectively.
Noteworthy, Figure 6(e) features lower contrast with respect to Figure 6(a). We hypothesize
that these differences come from a change of behavior on the reconstruction software, due to
the high levels of noise. The denoised and combined images shown in Figure 6(f) and Fig-
ure 6(g), respectively, yield improved contrast comparable to the contrast seen on the standard
full-dose image shown in Figure 6(d). The comparison between Figure 6(c) and Figure 6(d)
provide visual evidence that the pipeline was able to recover the quality of a standard full-dose
image with minimal loss of sharpness, even when analyzed on the reconstructed domain. Some
differences in image sharpness can be seen by analyzing the top calcification of the cluster,
which has a sharper aspect in Figure 6(d) compared to Figure 6(c). On the other hand, if the
pipeline is used to recover images acquired at extremely low dose there can be significant loss
of sharpness of the calcifications, as in the case of Figure 6(g).

Cross-sections of the top calcification seen in Figure 6 is shown in Figure 7. The profiles
show that the denoising of the projections degrades the contrast of the microcalcification within
the DBT slice. However, the contrast is partly recovered after the weighted averaging. In
particular, the DBT slices reconstructed from combined projections at 50% (30 mAs) yielded
a profile similar to that from standard full dose.

Table 1 shows the MNSE as well as the decomposition into bias and variance, calculated
both on the projections and reconstructed slices. Note that the combination of denoised and
noisy images at half-dose (30 mAs) yielded images with similar bias and noise variance as the
standard full-dose image. At lower dose levels (15 mAs, 9 mAs, 3 mAs), the approximations
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(a) 30 mAs Noisy (b) 30 mAs Denoised (c) 30 mAs Combined (d) 60 mAs

(e) 9 mAs Noisy (f) 9 mAs Denoised (g) 9 mAs Combined (h) Ground-truth

Figure 6: Magnified region of interest taken from the in-plane slice (after reconstruction). For
completeness, we also show the ROI from the reconstructed ground-truth slice, although it
plays no role for the visual validation: the goal is to approximate the 60 mAs full-dose image
with the combined low-dose images.

become coarse and the differences between expected and measured errors become more different.
Note that, as desired, the MNSE reports the same value as the sum between the bias squared

and the variance. Furthermore, the overall errors increase as the radiation dose decrease.
Individual analysis at each dose level show that the bias squared increases with the denoising
process, while the variance decreases and achieve values close to zero. The combination between
noisy and denoised images yield images with lower bias and higher variance compared to the
denoised images. The goal of this work is to obtain combined images with errors of bias and
variance comparable to the standard full-dose image, both on the projections and reconstructed
slices.

The resolvability of singularities was analyzed using the FWHM of a microcalcification,
as shown in Table 2. At 50% (30 mAs) dose, slices reconstructed from any of the three sets
of projections feature FWHM values comparable to that achieved at the standard full dose
(60 mAs). This indicates that the microcalcification was preserved during the entire pipeline.
At further lower doses, the FWHM values progressively exhibit a significant deviation from the
standard full dose (60 mAs). It is interesting to observe that the denoising per se does not
degrade the FWHM while making the fitting more precise.

7 Discussion
Analysis of the noisy data prior to the restoration process shows that acquisitions at lower
radiation levels indeed yielded images with lower quality. The differences can be visually ap-
preciated in Figure 5 and Figure 6. The results presented in Table 1 and Table 2 also support
this assertion. A simple analysis of the noise variance on the projections, presented in Table 1,
shows that the errors due to noise approximately double when the radiation dose is decreased
to half, which highlights that Poisson noise is a dominant degradation.
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Figure 7: Cross-sections of the top calcification shown in Figure 6. The shaded areas show the
min-max envelope over the ten realizations. The cross-sections were centered at the maximum
of the microcalcification within the ground-truth in-plane slice; displacement is reported in
pixels.

Table 2: Full width at half maximum (FWHM) calculated at the top calcification shown in
Figure 6, at the in-plane slice.

Full width at half maximum (FWHM) (mm ± std)
mAs Noisy Denoised Combined Standard Full Dose (60 mAs)
30 0.51 ± 0.07 0.55 ± 0.02 0.52 ± 0.06

0.54 ± 0.0415 0.59 ± 0.07 0.60 ± 0.05 0.59 ± 0.05
9 0.66 ± 0.16 0.60 ± 0.05 0.59 ± 0.06
3 0.73 ± 0.26 0.59 ± 0.08 0.61 ± 0.13

Next, the analysis of data obtained after denoising shows that it was able to remove vir-
tually all noise. This is supported by visual analysis of the second column of ROIs shown in
Figure 5 and Figure 6. The variance errors presented in Table 1 also indicate that the denoising
was efficient at suppressing the noise, as the errors due to noise variance decrease drastically,
reaching values close to zero.

Another important aspect related to the denoising is the larger bias when compared to the
unfiltered data. The bias is mostly caused by the smoothing and smearing introduced by the
denoising process. As the dose is decreased, the denoising becomes more aggressive and the
bias increases, as observed throughout the experiments.

The combination between noisy and denoised projections resulted in images with noise
statistics very similar to a standard full-dose acquisition. The similarity can be visually appre-
ciated in Figure 5 and Figure 6. The FWHM for the combined images at 50% (30 mAs) of the
dose reaches values close to that of the standard full-dose acquisition, indicating that the micro-
calcification was preserved during the restoration process. However, at doses lower than 50%,
the restoration pipeline did not yield FWHM values comparable to that obtained at standard
full dose. The objective measurements reported in Table 1 also supports that it is possible to
approximate a standard full-dose DBT by denoising and processing a half-dose measurement.
The experiments on lower-dose acquisitions show the limitations of the proposed processing
pipeline. Combined projections at 25%, 15% and 5% dose yielded considerably higher signal
and noise errors than expected for a standard full-dose acquisition. This can be seen from
the differences in MNSE, bias, variance, and FWHM. At those dose ranges, even though the
denoising manages to recover part of the signal, important features are not resolved, making
the images unsuitable for clinical use.
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8 Conclusions and future work
Based on a comprehensive characterization of the noise statistics of DBT projections, in this
work we proposed a processing pipeline meant to approximate a standard full-dose (60 mAs)
DBT starting from a lower-dose acquisition. The pipeline includes a multiframe denoising step
for suppressing the noise in the noisy lower-dose projections, and a weighted averaging step
where the noisy and denoised projections are combined to generate an image with the target
expectation and noise variance. The combined signal is then fed into a reconstruction algorithm,
here used as a black box, that generates slices of the reconstructed DBT.

We applied the proposed restoration pipeline to DBT projections acquired at 4 different
reduced dose levels (50%, 25%, 15%, and 5%), aiming at approximating a standard full-dose
measurement. Two different metrics have been used to objectively assess the fidelity of these
approximations. All experiments have been performed using real data acquired from a clinical
DBT system. While we are able to generate a good approximation of the standard full-dose
images from the 50% dose set, it is clear that approximations from acquisitions at doses 25%
or lower bear no clinical value due to the loss of details in the reconstructed slices.

While we do not claim that the dose for clinical DBT examinations could be reduced to 50%
without affecting the detection and characterization of lesions (this would require a separate
study), in this work the results show that no significant differences can be measured between
standard full-dose and restored acquisitions at 50% dose.

Although the system used in our experiments features a detector with minimal pixel crosstalk,
this issue may be more prominent with other systems. Thus, it is worth emphasizing that the
proposed pipeline is based on pixelwise observation models, a pixelwise VST, and pixelwise
weighted averaging, which are directly compatible with data subject to crosstalk [34, 14]. The
pipeline’s modular design (see Figure 1) allows to replace the AWGN denoising with filters for
stationary non-white noise; notably, RF3D itself can cope with noise models more general than
AWGN, including spatially (cross-talk) and temporally (fixed-pattern) correlated noise [27].

Future works include the addition of an image sharpening stage combined with the denois-
ing. This could cope with the loss of high-frequency details which limited the performance of
the restoration pipeline at 25% or lower doses. Furthermore, subjective reading tests should
be performed with radiologists, to investigate the impact of the restoration pipeline on the
detection and characterization of lesions.

MATLAB implementations of the RF3D denoising algorithm, and of the forward and inverse
VSTs can be downloaded through the links provided by references [27] and [20], respectively.

Acknowledgements
This work was supported by the São Paulo Research Foundation (FAPESP grants 2013/18915-5
and 2016/25750-0), the Brazilian Foundation for the Coordination of Improvement of Higher
Education Personnel (CAPES grant 88881.030443/ 2013-01), the Burroughs Wellcome Fund
(IRSA 1016451), the Komen Foundation (grant IIRI326610), the National Institutes of Health
and National Cancer Institute (grant 1R01CA154444), the Academy of Finland (project 310779),
and the European Commission (FP7-PEOPLE-ITN-2013-607290).

The authors would like to thank Real Time Tomography for providing the reconstruction
software, and Kristen Lau and Bruno Barufaldi for their support during the acquisition of
images.

14



References
[1] International Atomic Energy Agency, “Appendix II: Medical exposure,” in International

Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of
Radiation Sources, 1996, pp. 45–56.

[2] A. B. de Gonzalez, C. D. Berg, K. Visvanathan, and M. Robson, “Estimated Risk of
Radiation-Induced Breast Cancer From Mammographic Screening for Young BRCA Mu-
tation Carriers,” Journal of the National Cancer Institute, vol. 101, no. 3, pp. 205–209,
2009.

[3] M. J. Yaffe and J. G. Mainprize, “Risk of Radiation-induced Breast Cancer from Mammo-
graphic Screening,” Radiology, vol. 258, no. 1, pp. 98–105, 2011.

[4] A. Haus and M. Yaffe, “Screen-film and digital mammography. Image quality and radiation
dose considerations,” Radiologic Clinics of North America, vol. 38, no. 4, pp. 871–898, July
2000.

[5] W. Huda, A. M. Sajewicz, K. M. Ogden, and D. R. Dance, “Experimental investigation
of the dose and image quality characteristics of a digital mammography imaging system,”
Medical Physics, vol. 30, no. 3, p. 442, 2003.

[6] R. S. Saunders, J. A. Baker, D. M. Delong, J. P. Johnson, and S. Ehsan, “Does image
quality matter? Impact of resolution and noise on mammographic task performance,”
Medical Physics, vol. 34, no. 10, pp. 3971–3981, 2007.

[7] M. K. Kalra, M. M. Maher, D. V. Sahani, M. A. Blake, P. F. Hahn, G. B. Avinash,
T. L. Toth, E. Halpern, and S. Saini, “Low-dose CT of the abdomen: evaluation of image
improvement with use of noise reduction filters—pilot study,” Radiology, vol. 228, no. 1,
pp. 251–256, 2003.

[8] A. Manduca, L. Yu, J. D. Trzasko, N. Khaylova, J. M. Kofler, C. M. McCollough, and
J. G. Fletcher, “Projection space denoising with bilateral filtering and CT noise modeling
for dose reduction in CT,” Medical Physics, vol. 36, no. 11, pp. 4911–4919, 2009.

[9] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, “Nonlinear anisotropic filtering of MRI
data,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 221–232, Jun 1992.

[10] M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal using fourth-order partial dif-
ferential equation with applications to medical magnetic resonance images in space and
time,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1579–1590, Dec 2003.

[11] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An optimized block-
wise nonlocal means denoising filter for 3-d magnetic resonance images,” IEEE Transac-
tions on Medical Imaging, vol. 27, no. 4, pp. 425–441, April 2008.

[12] G. Wu, J. G. Mainprize, and M. J. Yaffe, “Dose reduction for digital breast tomosyn-
thesis by patch-based denoising in reconstruction,” in International Workshop on Digital
Mammography. Springer, 2012, pp. 721–728.

[13] M. A. d. C. Vieira, P. R. Bakic, and A. D. A. Maidment, “Effect of denoising on the
quality of reconstructed images in digital breast tomosynthesis,” Proceedings SPIE Medical
Imaging, vol. 8668, p. 86680C, 2013.

15



[14] L. R. Borges, I. Guerrero, P. R. Bakic, A. Foi, A. D. A. Maidment, and M. A. C. Vieira,
“Method for simulating dose reduction in digital breast tomosynthesis,” IEEE Transactions
on Medical Imaging, vol. 36, no. 11, pp. 2331–2342, Nov 2017.

[15] L. R. Borges, P. R. Bakic, A. Foi, A. D. A. Maidment, and M. A. C. Vieira, “Pipeline for
effective denoising of digital mammography and digital breast tomosynthesis,” Proceedings
SPIE Medical Imaging, vol. 10132, p. 1013206, 2017.

[16] S. Young, P. Bakic, K. J. Myers, and S. Park, “Performance tradeoffs in a model breast
tomosynthesis system,” in Imaging and Applied Optics Congress. Optical Society of
America, 2010, p. DTuA3. [Online]. Available: http://www.osapublishing.org/abstract.
cfm?URI=DIPA-2010-DTuA3

[17] J. M. Boone, “X-ray production, interaction, and detection in diagnostic imaging,” in
Handbook of Medical Imaging: Physics and Psychophysics, R. Van Metter, J. Beutel, and
H. Kundel, Eds. SPIE, 2000, pp. 1–78.

[18] I. A. Cunningham, “Applied linear-system theory,” in Handbook of Medical Imaging:
Physics and Psychophysics, R. Van Metter, J. Beutel, and H. Kundel, Eds. SPIE, 2000,
pp. 79–159.

[19] M. Mäkitälo and A. Foi, “Optimal Inversion of the Anscombe Transformation in Low-
Count Poisson Image Denoising,” IEEE Transactions on Image Processing, vol. 20, no. 1,
pp. 99–109, Jan 2011.

[20] M. Mäkitalo and A. Foi, “Optimal inversion of the generalized Anscombe transformation
for Poisson-Gaussian noise,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp.
91–103, 2013. [Online]. Available: http://www.cs.tut.fi/~foi/invansc

[21] Z. Xu, U. Bagci, J. Seidel, D. Thomasson, J. Solomon, and D. J. Mollura, “Segmentation
based denoising of PET images: An iterative approach via regional means and affinity
propagation,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2014, pp. 698–705.

[22] T. Bölke, L. Krapf, R. Orzekowsky-Schroeder, T. Vossmeyer, J. Dimitrijevic, H. Weller,
A. Schüth, A. Klinger, G. Hüttmann, and A. Gebert, “Data-adaptive image-denoising for
detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon
microscopy,” Beilstein Journal of Nanotechnology, vol. 5, pp. 2016–2025, 2014.

[23] S. Yang and B.-U. Lee, “Poisson-Gaussian noise reduction using the hidden Markov model
in contourlet domain for fluorescence microscopy images,” PLOS ONE, vol. 10, no. 9, pp.
1–19, 2015.

[24] S. Harizanov, J. de Dios Pont, S. Ståhl, and D. Wenzel, “Noise removal and feature extrac-
tion of 2D CT radiographic images,” in Advanced Computing in Industrial Mathematics.
Springer, 2018, pp. 57–70.

[25] L. Azzari and A. Foi, “Variance Stabilization for Noisy+Estimate Combination in Iterative
Poisson Denoising,” IEEE Signal Processing Letters, vol. 23, no. 8, pp. 1086–1090, 2016.

[26] J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The
Multiscale Approach. Cambridge University Press, 1998, pp. 263–265, Appendix A1.
[Online]. Available: http://www.multiresolution.com/cupbook.pdf

16

http://www.osapublishing.org/abstract.cfm?URI=DIPA-2010-DTuA3
http://www.osapublishing.org/abstract.cfm?URI=DIPA-2010-DTuA3
http://www.cs.tut.fi/~foi/invansc
http://www.multiresolution.com/cupbook.pdf


[27] M. Maggioni, E. Sánchez-Monge, and A. Foi, “Joint Removal of Random and
Fixed-Pattern Noise Through Spatiotemporal Video Filtering,” IEEE Transactions on
Image Processing, vol. 23, no. 10, pp. 4282–4296, Oct 2014. [Online]. Available:
http://www.cs.tut.fi/~foi/GCF-BM3D

[28] J. Kuo, P. A. Ringer, S. G. Fallows, P. R. Bakic, A. D. Maidment, and S. Ng, “Dynamic
reconstruction and rendering of 3D tomosynthesis images,” in Proceedings of SPIE, vol.
7961, no. 796116-1, 2011, pp. 796 116–11.

[29] A.-K. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of
a physical 3D anthropomorphic breast phantom,” Medical Physics, vol. 38, no. 2, pp.
891–896, 2011.

[30] L. Cockmartin, P. R. Bakic, H. Bosmans, A. D. Maidment, H. Gall, M. Zerhouni, and N. W.
Marshall, “Power spectrum analysis of an anthropomorphic breast phantom compared
to patient data in 2D digital mammography and breast tomosynthesis,” in International
Workshop on Digital Mammography. Springer, 2014, pp. 423–429.

[31] G. Boracchi and A. Foi, “Uniform motion blur in Poissonian noise: Blur/noise tradeoff,”
IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 592–598, 2011.

[32] Y. Lu, H.-P. Chan, J. Wei, M. Goodsitt, P. L. Carson, L. Hadjiiski, A. Schmitz, J. W. Eber-
hard, and B. E. Claus, “Image quality of microcalcifications in digital breast tomosynthesis:
Effects of projection-view distributions,” Medical Physics, vol. 38, no. 10, pp. 5703–5712,
2011.

[33] N. Marshall, “Calculation of quantitative image quality parameters: Notes describing the
use of OBJ_IQ_reduced,” NHSBSP Equipment Report 0902, 2009.

[34] L. Azzari and A. Foi, “Variance stabilization in poisson image deblurring,” in IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017). IEEE, 2017, pp. 728–731.

17

http://www.cs.tut.fi/~foi/GCF-BM3D

	Introduction
	Observation model
	Problem formulation
	Methods
	Noise removal
	Variance stabilizing transformation (VST)
	AWGN denoising: RF3D
	Inverse VST

	Noisy-denoised weighted average
	DBT reconstruction

	Materials & Experimental setup
	Materials
	Metrics
	Projection alignment
	Parameter estimation
	Implementation

	Results
	Discussion
	Conclusions and future work

