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The recent developments in image and video denoising have brought a new
generation of �ltering algorithms achieving unprecedented restoration qual-
ity. This quality mainly follows from exploiting various features of natural
images. The nonlocal self-similarity and sparsity of representations are key
elements of the novel �ltering algorithms, with the best performance achieved
by adaptively aggregating multiple redundant and sparse estimates. In a very
broad sense, the �lters are now able, given a perturbed image, to identify its
plausible representative in the space or manifold of possible solutions. Thus,
they are powerful tools not only for noise removal, but also for providing ac-
curate adaptive regularization to many ill-conditioned inverse imaging prob-
lems. In the case of image/video reconstruction from incomplete data, the
general structure of the proposed approach is very simple and is based on
iteratively re�ning the estimates alternating two procedures: image/video �l-
tering (denoising) and projection on the observation-constrained subspace. In
this chapter we give an overview of this versatile approach, with particular
emphasis on three challenging and important imaging applications: inversion
from sparse or limited-angle tomographic projections, image reconstruction
from low-frequency or undersampled data, image and video super-resolution.
This approach is especially appealing for the latter application, as the block-
matching procedure, performed both in space and time, makes the explicit
motion estimation unnecessary. The presented experimental results demon-
strate an overall performance on the level of the state of the art.

1.1 Introduction

A-priori assumptions on the image to be reconstructed are essential for any
inverse imaging algorithm. In the standard variational approaches, these as-
sumptions are usually given as penalty terms which serve as regularization in
an energy criterion to be minimized.
A main limitation of these approaches is that the minimization usually

involves the evaluation of the gradient of the penalty functional and its con-
vexity. Therefore, if on the one hand the nonstationarity of natural images
calls for locally adaptive non-convex penalties, on the other hand, to obtain
a feasible algorithm, the energy criterion and, thus, the penalty need to be
simple.
This limitation becomes evident particularly for image denoising, for which

the recent years have witnessed the development of a number of spatially
adaptive algorithms that dramatically outperform the established methods
based on variational constraints (see, e.g., [20],[26]).
Our approach to inverse imaging essentially di¤ers from these variational

formulations and appeals to nonparametric regression techniques. We propose
to replace the implicit regularization coming from the penalty by explicit
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�ltering, exploiting spatially adaptive �lters sensitive to image features and
details. If these �lters are properly designed, we have reasonable hopes to
achieve better results by �ltering than through the formal approach based
on the formulation of imaging as a variational problem with imposed global
constraints.
The presented framework is general and is applicable to a wide class of

inverse problems for which the available data can be interpreted as a smaller
portion of some transform spectrum of the signal of interest. This observa-
tion model has gained recently enormous popularity under the paradigm of
compressive sensing [1].
We demonstrate application of our approach to the inversion from sparse

or limited-angle tomographic projections, image upsampling, and image/video
super-resolution. Depending on the particular way of sampling the spectral
components and the assumptions about complexity of the image, the recur-
sive procedures can be improved by incorporating random search or staged
reconstruction.
The chapter is organized as follows. In the next section we give formal

de�nitions of the observation model and of the reconstruction algorithm for a
rather general case. These are then reinterpreted in the context of compressive
sensing in Section 1.3, where we also present inverse tomography and basic
image upsampling experiments. Section 1.4 is devoted to image and video
super-resolution. Concluding remarks are given in the last section.

1.2 Iterative �ltering as regularization

Let us consider a general ill-posed inverse problem in the form

y = H (x) (1.1)

where x is the true image to be reconstructed and y is its observation through a
linear operator H : X ! Y , X and Y being Euclidean spaces with dimensions
dimY < dimX. We start from the naive pseudoinverse

x̂(0) = argmin
x:H(x)=y

kxk2

of (1.1), which is usually very far from the solution one would like to obtain,
particularly when dimY is much smaller than dimX. Nevertheless, due to the
linearity of H, any other solution of (1.1) should di¤er from x̂(0) only by its
component on the null space ofH, ker (H). To obtain an updated estimate x̂(1),
we �rst re�ne x̂(0) with a �lter �, project �

�
x̂(0)

�
on ker (H) and then add x̂(0).

The reason of the last two operations is that the re�ned estimate, while being
closer to the desired solution may not satisfy (1.1) anymore. This procedure
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can be repeated iteratively leading to the following recursive scheme:(
x̂(0) = argmin

x:H(x)=y
kxk2 ;

x̂(k)=x̂(0) + Pker(H)
�
�
�
x̂(k�1)

��
;

(1.2)

where Pker(H) is the projection operator on the null space ker (H) and the
superscripts denote the corresponding iteration.

1.2.1 Spectral decomposition of the operator

There are several ways how the projection Pker(H) can be realized. A practical
approach, which we follow throughout the chapter, relies on the following
spectral decomposition of the operator H [8].
Let T : X ! � be an orthonormal transform with basis elements ftigdimX

i=1

such that ker (H) = span ftigi2
C , 
 being a subset of indices (subband) and

C its complementary. Given such a transform T , the projection of x 2 X;
Pker(H) (x) ; can be easily obtained as the zeroing out of the T -spectrum of x
on 
 followed by application of T �1. Moreover, we can choose T so that it
performs an eigendecomposition, i.e. so that H can be rewritten as

H (�) = T �10 (S (T (�))) ; (1.3)

where S : � ! �
 is a diagonal operator, which scales each spectrum co-
e¢ cient by its corresponding non-zero eigenvalue, and T0 : Y ! �
 is an
orthonormal transform. Here �
 is the space obtained by restricting the ele-
ments of � on 
. Thus, the operator S is simply restricting the T -spectra on

 and scaling the retained coe¢ cients, with ker (S) = T (ker (H)). Unless the
eigenvalues are all distinct, the basis elements ftigi2
 of the transform T that
satis�es the above requirements are not uniquely determined. Of course, as the
ftigi2
 are varied, also the transform T0 must vary accordingly, because T0 is
essentially determined by them. In matrix form, the spectral decomposition
(1.3) can be obtained through the singular value decomposition (SVD) of H.

1.2.2 Non-local transform domain �ltering

In our implementations of the recursion (1.2), as the spatially adaptive �lter
� we utilize the Block-Matching 3D �ltering (BM3D) denoising algorithm [10]
and its extension to video V-BM3D [9]. Our choice of the BM3D algorithms is
essentially determined by the fact that it is currently considered as one of the
best denoising �lters (see, e.g., [26],[20]) and that its remarkable performance
is achieved at a competitive computational cost.
The BM3D algorithm exploits paradigms of non-local similarity [2],[20]

in a blockwise fashion in order to obtain a highly sparse representation of
the data. It means that the images to be processed are windowed/segmented
into overlapping blocks and one looks for mutually similar blocks, which are
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FIGURE 1.1
Illustration of grouping within an arti�cial image where for each reference
block (with thick borders) there exist perfectly similar ones.

collected into groups, so that the data in these groups can be processed jointly.
In this way we arrive to a non-local estimator with varying adaptive support
where the data used in the estimation can be located quite far from each other.
This estimation can be treated as a sophisticated high-order generalization of
non-local means (NLM) [2],[4],[22],[23],[24].
To clarify the idea of grouping, let us consider an illustrative example of

blockwise nonlocal estimation of the image in Figure 1.1 from an observation
(not shown) corrupted by additive zero-mean independent noise. In particular,
let us focus on the already grouped blocks shown in the same �gure. These
blocks exhibit perfect mutual similarity, which makes the elementwise averag-
ing (i.e. averaging between pixels at the same relative positions) an optimal
estimator. In this way, we achieve an accuracy that cannot be obtained by
processing the separate blocks independently.
However, perfectly identical blocks are unlikely in natural images. If non-

identical fragments are allowed within the same group, averaging is no longer
optimal. Therefore, a �ltering strategy more e¤ective than averaging should
be employed.
Here we give a brief description of the general V-BM3D algorithm, whose

�owchart is presented in Figure 1.2. The BM3D algorithm can be then consid-
ered as equivalent to V-BM3D with the input sequence consisting of a single
image. Detailed descriptions of the (V-)BM3D algorithms can be found in the
corresponding references.

1. Block-wise estimates. Each image of an input sequence is processed in
sliding-block manner. For each block the �lter performs:

(a) Grouping by block-matching. Searching within all images in the se-



8 Book title goes here

FIGURE 1.2
Flowchart of the the V-BM3D algorithm.

quence, �nd blocks that are similar to the currently processed one,
and stack them together in a 3-D array (group).

(b) Collaborative �ltering. Apply a 3-D transform to the formed group,
attenuate the noise by hard-thresholding of the transform coe¢ -
cients, invert the 3-D transform to produce estimates of all grouped
blocks, and return the estimates of the blocks to their original place.

2. Aggregation. Compute the estimates of the output images by weighted
averaging all of the obtained block-wise estimates that are overlapping.

What makes this algorithm very di¤erent from other non-local estimators
is the use of a full-rank complete transform for modeling both the blocks and
their mutual similarity or di¤erence. Due to the similarity between the grouped
blocks, the transform can typically achieve a highly sparse representation of
the true signal so that the noise or small distortions can be well separated by
shrinkage. In this way, the collaborative hard-thresholding reveals even the
�nest details shared by grouped fragments and at the same time it preserves
the essential unique features of each individual fragment. Additionally, the
adaptive aggregation of multiple redundant and sparse estimates allows to
signi�cantly boost the performance and provide high level of robustness to
the algorithm.
Let us note that, for the purposes of this work, we do not perform the

additional collaborative Wiener �ltering stage which is otherwise present in
the original BM3D and V-BM3D denoising algorithms [10], [9].

In what follows, the (V-)BM3D �lter will be denoted as � (z; �), where z
is the degraded image/video to be �ltered and � � 0 is a parameter which
originally corresponds to the standard-deviation of the noise in z and that
here we mainly use to e¤ectively control the �lter strength: a larger � implies
a more aggressive �ltering, thus enforcing a higher degree of sparsity, while
a smaller � provides better preservation of weak details at the expense of a
milder noise suppression.
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1.3 Compressed sensing

During the last three years, compressed sensing (CS) has received growing at-
tention, mainly motivated by the positive theoretical and experimental results
shown in [5], [7], [15], [19], [31], [32], [33]. The basic settings of signal recon-
struction under conditions of CS are as follows. An unknown signal of interest
is observed (sensed) through a limited number linear functionals. These ob-
servations can be considered as an incomplete portion of the spectrum of the
signal with respect to a given linear transform T . Thus, conventional linear re-
construction/synthesis (e.g., inverse transform) cannot in general reconstruct
the signal. For example, when T is the Fourier transform, CS considers the
case where the available spectrum is much smaller than what is required ac-
cording to the Nyquist-Shannon sampling theory. It is generally assumed that
the signal can be represented sparsely with respect to a di¤erent relevant basis
(e.g., wavelets) or that, alternatively, it belongs to a speci�c class of functions
(e.g., piecewise constant functions). Of particular importance is the so-called
incoherence between the basis with respect to which the incomplete observa-
tions are given and the one with respect to which the signal is sparse [6]. In
the publications cited above, it is shown that under such assumptions, stable
reconstruction of the unknown signal is possible and that in some cases the
reconstruction can be exact. These techniques typically rely on convex opti-
mization with a penalty expressed by the `0 or `1 norm [34] which is exploited
to enable the assumed sparsity [14]. It results in parametric modeling of the
solution and in problems that are then solved by mathematical programming
algorithms.

Based on the ideas discussed in the introduction, an alternative and novel
approach to CS reconstruction can by developed by replacing the paramet-
ric modeling with a nonparametric one implemented by the use of spatially
adaptive denoising �ltering. The algorithm proposed in [17] extends the iter-
ative scheme (1.2) by incorporating stochastic approximation to obtain stable
recovery of the images. At every iteration, the current estimate is excited by
injection of random noise in the unobserved portion of the spectrum. The
denoising �lter attenuates the noise and reveals new features and details out
of the incomplete and degraded observations. Roughly speaking, we seek for
the solution (reconstructed signal) by stochastic approximations whose search
direction is driven by the denoising �lter. It should be remarked that here we
are concerned only in the operative way the solution is found, while we exploit
essentially the same fundamental ideas of sparsity and basis incoherence un-
dertaken by many other authors. As a matter of fact, the observation domains
considered in what follows are much incoherent with respect to the adaptive
data-driven 3-D transform domain in which BM3D e¤ectively forces the data
to be sparse.
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1.3.1 Observation model and notation

Let T : X ! � be an orthonormal transform operating from the image
domain X to the transform domain �. The unknown image x 2 X can be
sensed through the linear operator H : X ! Y = �
, where 
 is a subset of
the T -spectral components we are able to sense and �
 is the corresponding
space of the T -spectra restricted on 
. The space �
 can be identi�ed with
the subspace of � constituted by all spectra that are identically zero outside
of 
. To clarify these concepts and simplify the coming notation, we introduce
two operators:

� the restriction operator j
 that, from a given T - spectrum, extracts its
smaller portion de�ned on 
;

� the zero-padding operator U
 that expands the part of T - spectrum de-
�ned on 
 to the full T -spectrum by introducing zeros in the complement
of 
, 
C .

Likewise, we can de�ne j
C and U
C .
Using these operators, the sensing operator can be explicitly written as

H (�) = T (�)j
. Referring to (1.3), we have S = j
 and T0 is the identity.
Now, if x 2 X is the unknown image intensity and � = T fxg 2 � is its

spectrum, the CS problem is to reconstruct � (or equivalently x) from the
measurements y;

y = �j
 = T (x)j
 . (1.4)

It means that given the known part of the spectrum de�ned on 
 we have to
reconstruct the missing part de�ned on 
C .

1.3.2 Iterative algorithm with stochastic approximation

Following (1.2), we obtain the initial estimate as x̂(0) = argmin
x: H(x)=y

kxk2 =

T �1 (U
 (y)). When the observed data is highly undersampled, the initial es-
timate x̂(0) may contain too little information to enable reconstruction by the
simple scheme (1.2). An improved scheme can be obtained by incorporating
stochasticity into (1.2) resulting in(

x̂(0) = argmin
x:H(x)=y

kxk2 = T �1 (U
 (y)) ;

x̂(k) = x̂(0) + Pker(H)

h
(1� k) x̂

(k�1) + k

�
�
�
x̂(k�1); �k

�
+ �k

�i
; k � 1:

(1.5)

Here, �k is some pseudo-random white noise which is injected into the system
in order provide the stochastic excitation. Equivalently, we can rewrite (1.5)
with respect to spectral variables as(

�̂
(0)

= argmin
�: �j
=y

k�k2 = U
 (y) ;

�̂
(k)
=�̂

(0)
+ Pker( j
)

h
(1� k) �̂

(k�1)
+ k

�
T
�
�
�
T �1

�
�̂
(k�1)�

; �k

��
+ �k

�i
; k � 1;

(1.6)
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FIGURE 1.3
Flowchart of the recursive system (1.6).

where Pker( j
) (�) = U
C ( (�)j
C ) is the corresponding projection operator in
transform domain which basically zeroes out all spectral coe¢ cients de�ned
on 
.
The �owchart of the system (1.6) is shown in Figure 1.3. The system is

initialized by setting �̂
(0)
= U
 (y). Then, each iteration (k � 1) comprises of

the following steps:

� Image-domain estimate �ltering. The spectrum estimate is inverted and
obtained image is �ltered with the �lter �. In this way, the coe¢ cients
from the unobserved part of the image spectrum are recreated from the
given �j
 = y. In our implementation of the algorithm the BM3D is
used as the �lter �.

� Noise addition (excitation). Pseudo-random noise �k is introduced in the
unobserved portion of the spectrum and works as a random generator
of the missing spectral components. During the subsequent iterations,
these components are attenuated or enhanced by the action of the �lter
�, depending to what extent they agree with the image features enabled
by the observed spectrum �j
 = y.

� The updated estimate �̂
(k)
is obtained as the sum of the convex combina-

tion between the previous estimate �̂
(k�1)

and the noise-excited predic-
tion of the spectrum obtained after �ltering, projected on the subspace

de�ned by the unknown part of the spectra, and �̂
(0)
. The factor k, in

the convex combination, controls the rate of evolution (step size) of the
algorithm.

1.3.2.1 Comments to the algorithm

Stochastic approximation. The iterative algorithm (1.6) can be treated as
the Robbins-Monro stochastic approximation procedure (see, e.g., [25]). If the
step-size parameter k satis�es the standard conditions

k > 0,
X

k =1,
X

2k <1 (1.7)
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and some assumptions on the operator T
�
�
�
T �1 (�)

��
hold, as k ! 1 the

estimates �̂
(k)
from the recursive system (1.6) converge in mean squared sense

to a solution �̂ of the equation

E
n
Pker( j
)

h
��̂ + T

�
�
�
T �1

�
�̂
�
; �k

��
+ �k

io
= 0;

i.e.
Pker( j
)

h
�̂ � T

�
�
�
T �1

�
�̂
���i

= 0

or equivalently

�̂ = U
 (y) + Pker( j
)
h
T
�
�
�
T �1

�
�̂
���i

: (1.8)

If there is no smoothing in the �lter �, the equation (1.8) becomes the identity.
Thus, any �̂ that satis�es observation (1.4) satis�es also to the equation (1.8),
there is no image reconstruction and the algorithm does not work. Therefore,
in order for the solution �̂ to be non-trivial, the adaptive smoothing in (1.8)
should be strong enough.
Excitation noise. The additive noise �k used in the procedure (1.6) does

not in�uence the equation (1.8). There are two arguments in favor of excitation
of the algorithm by the random noise. First of all it improves the performance
of the algorithm. It accelerates the transition process of the recursive proce-
dure bringing it fast in the area of solution where the random walks steadies.
The amplitude of these random walks decreases together with k. It is well
known (e.g., [21]) that the random search applied in optimization problems
results in random walks well concentrated in areas of global extremum. Thus,
the random search imposed by random excitation of the search trajectory can
be useful for separation of local and global extrema. In a similar way, if the
equation (1.8) has more than one solution, the randomness can help to �nd
a �strong� solution with better quality of imaging or lower values of some
hypothetical criterion function where the gradient (or quasi-gradient) can be

de�ned as the vector corresponding to Pker( j
)
�
�̂ � T

�
�
�
T �1

�
�̂
����

. Fur-

ther, by changing the variance of the additive noise �k one can control the
rate of evolution of the algorithm. Thus, in practice, the assumptions (1.7)
can be relaxed and a �xed k can be used provided that var f�kg !

k!1
0.

Filter parameters. The parameter �k is used in place of the standard-
deviation of the noise of BM3D �lter. This parameter controls the strength
of collaborative hard-thresholding and thus a¤ects the level of smoothing in-
troduced by the �lter. In order to prevent smearing of the small details the
sequence f�kgk=0;1;::: should be decreasing with the progress of the iterations,
and normally it is selected to be �2k = var f�kg. The last fact makes (1.6)
to formally di¤er from the classical Robbins-Monro procedure, where the op-
erator � is assumed to be �xed (thus without a second argument �) with
the overall aggressiveness of the recursion controlled instead by the step size
parameter k.
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Stopping rule. The algorithm can be stopped when the estimates �̂
(k)

approach numerical convergence or after a speci�ed number of iterations.

Image estimates. An image estimate x̂(k) can be obtained at kth it-

eration as T�1
�
�̂
(k)
�
, although in practice T�1

�
�̂
(k)
� Pker( j
)

�
�k�1

��
are

better estimates because of the absence of excitation noise. All these estimates
converge to x̂ = T�1

�
�̂
�
as k !1.

1.3.3 Experiments

The e¤ectiveness of the proposed algorithm can be illustrated on two impor-
tant inverse problems from computerized tomography: Radon inversion from
sparse projections and limited-angle tomography. The former problem has
been used as a benchmark for testing CS reconstruction algorithms (e.g., [5]).
In particular, the results show that the presented algorithm allows to achieve
exact reconstruction of synthetic phantom data even from a very limited num-
ber of projections. An example of image reconstruction from low-frequency
data is also given. This particular example will serve as a bridge to the super-
resolution problems considered in the next section.

The following experiments are carried out using a simpli�ed form of the
iterative scheme (1.6), where k � 1 and �k is independent Gaussian noise
with exponentially decreasing variance var f�kg = ��k�� . For the �lter �,
we use the block-matching and 3-D �ltering algorithm (BM3D) [10], setting
�2k = var f�kg. The separable 3-D Haar wavelet decomposition is adopted as
the transform utilized internally by the BM3D algorithm.

We begin with illustrative inverse problems of compressed sensing for com-
puterized tomography. As in [5], we simulate the Radon projections by �ap-
proximately�radial lines in the rectangular FFT domain. Note that the initial

image estimate x̂(0) = argmin
x:H(x)=y

kxk2 = T �1
 
argmin
�: �j
=y

k�k2

!
coincides with the

conventional back-projection estimate.

FIGURE 1.4
Available portion 
 of the FFT spectrum for the three experiments: 22 radial
lines, 11 radial lines, 90 degrees limited-angle with 61 radial lines.
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FIGURE 1.5
Clockwise from top-left: back-projection estimates for 22 radial lines, 11 radial
lines, 61 radial lines with limited-angle (90 degrees), and original phantom
(unknown and shown here only as a reference). For all three experiments,
the estimates obtained after convergence of the algorithm coincide with the
original image.

1.3.3.1 Radon inversion from sparse projections

First, we reproduce exactly the same experimental setup from [5], where 22
radial lines are sampled from the FFT spectrum of the Shepp-Logan phantom
(size 256�256 pixels), as shown in Figure 1.4(left). Further, we reduce the
number of available Radon projections from 22 to 11 (see Figure 1.4(center)).
The initial back-projection estimates are shown in Figure 1.5. As the recursive
algorithm progresses, the reconstruction error improves steadily until numeri-
cal convergence, as it can be seen from the plots in Figure 1.6. For both cases
the reconstruction is exact, in the sense that the �nal reconstruction error
(PSNR '270dB) is comparable with the numerical precision of this particular
implementation of the algorithm (double precision �oating-point). We remark
however that in practice such a high accuracy is never needed: already at a
PSNR of about 60dB the image estimates can hardly be distinguished from
the original.
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FIGURE 1.6
Progression of the PSNR (dB) of the reconstructed image estimate x̂(k) with
respect to the iteration count k for the three experiments: 22 and 11 sparse
projections (�22�and �11�) and limited-angle (�LA�).

1.3.3.2 Limited-angle tomography

In the two previous experiments, the available Radon projections were uni-
formly distributed with respect to the projection angle. A more di¢ cult case
arises when the angles under which the projections are taken are limited. Sim-
ilarly to [27], we consider an overall aperture for the projections of 90 degrees.
This restriction is essential, since all frequency information is completely miss-
ing along half of the orientations, which makes the reconstruction of, e.g., edges
across these orientation extremely hard. We complicate the problem further,
by taking only a smaller subset of 61 projections (a total of 256 properly-
oriented projections would be required to cover a 90 degrees aperture). These
sparse, limited-angle projections are illustrated in Figure 1.4(right). Although
the convergence is here much slower than in the previous two experiments,
the algorithm eventually achieves exact reconstruction.
In the above three experiments, as soon as the estimate reaches a quality

of about 70dB, the recursion enters a phase of improvement at a constant
rate (linear in terms of PSNR since var f�kg decreases exponentially) which
appears to be limited only by the used arithmetic precision.

1.3.3.3 Reconstruction from low-frequency data

The proposed recursive procedure can be applied also to more conventional
image-processing problems. As a prelude to the image/video super-resolution
and upsampling algorithms, which are the subject of the next section, we
present here a basic experiment which can be seen as a prototype of image
upsampling. In particular, we consider the reconstruction of a non-synthetic
test image, namely Cameraman (256�256 pixels), from the low-frequency por-
tion of its Fourier spectrum, with the set 
 being a 128�128 square centered
at the DC, as illustrated in Figure 1.7. In Figure 1.8 we show the initial esti-
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FIGURE 1.7
Available portion 
 of the FFT spectrum of the Cameraman image shown in
Figure 1.8(left).

FIGURE 1.8
Cameraman: initial estimate x̂(0) (zero-padding) (PSNR=27.32dB), and re-
constructed estimate x̂(62) after 62 iterations (PSNR=29.10dB).

mate x̂(0) (by zero-padding in FFT domain, thus minimum `2-norm) and the
reconstructed image obtained after few iterations of the algorithm. Despite
the reconstruction is not exact, the salient details of the image are properly
restored and there are no signi�cant artifacts (e.g., ringing) thanks to the
adaptivity embedded in the BM3D �lter.

1.4 Super-resolution

Image upsampling or zooming, can be de�ned as the process of resampling
a single low-resolution (LR) image on a high-resolution (HR) grid. Di¤erent
resampling methods can be used to obtain zoomed images with speci�c desired
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properties, such as edge preservation, degree of smoothness, etc. In particular,
we concluded the previous section with an example demonstrating how one
can achieve image upsampling by means of iterative BM3D �ltering. As a
matter of fact, because of the Nyquist-Shannon theorem, the inverse Fourier
transform of the central low-frequency portion of the spectrum, can be treated
as the LR image obtained upon decimation of the low-passed HR image.
However, �ne details missing or distorted in the low-resolution image can-

not be reconstructed in the upsampled one. This is particularly evident when
the downsampling ratio between the HR and LR images is high (in the above
example this ratio was only 2). Roughly speaking, there is no su¢ cient in-
formation in the low-resolution image to do this. The situation changes when
a number of LR images portraying slightly di¤erent views of the same scene
are available. The reconstruction algorithm now can try to improve the spa-
tial resolution by incorporating into the �nal HR result the additional new
details revealed in each LR image. The process of combining a sequence of
undersampled and degraded low-resolution images in order to produce a sin-
gle high-resolution image is commonly referred to as super-resolution (SR)
image reconstruction, or, simply, image super-resolution.
The standard formulation of the image SR problem assumes that the LR

images are obtained through the observations given by the model

xlowr = D (B (Fr (xhi))) ; r = 1; : : : ; R; (1.9)

where xlowr are LR images, Fr, B, D are the linear operators representing
respectively warp, blur and decimaton, and xhi is a high-resolution image
of the scene subject to reconstruction. Blur and decimation operators are
considered to be known.
Besides the di¢ culty involved in estimating the warping parameters, a

principal drawback of the SR formulation (1.9) is that it assumes that all LR
images xlowr can be mapped and upsampled to a unique HR image xhi.
The observation model (1.9) can be then extended to the more general

form
xlowr = D (B (xhir)) ; r = 1; : : : ; R; (1.10)

where the warp operators on a single HR image are replaced by a sequence
of HR images. This allows to consider arbitrary types of deformation between
the frames, such as relative motion between di¤erent objects in the scene,
and occlusions. The reconstruction of the HR sequence fxhirgRr=1 from the
LR sequence fxlowrgRr=1 is termed video super-resolution.
The classical SR approach is loosely based on the following three steps: 1)

registration of the LR images to a HR coordinate grid, 2) warping of the LR
images onto that grid by interpolation, and 3) fusion of the warped images
into the �nal HR image. An additional deblurring step is sometimes considered
to compensate the blur. Several algorithms based on such classical approach
exist and detailed reviews can be found, e.g., in [18].
For successful reconstruction it is crucial to perform accurate registra-

tion between the features represented across di¤erent frames. Most of the
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existing SR methods rely either on a parametric global motion estimation,
or on a computationally intensive optical �ow calculation. However, an ex-
plicit registration of the LR frames is often not feasible: on the one hand, if
the registration map has few degrees of freedom, it is too rigid to model the
geometrical distortions caused by the lens system; on the other hand, when
many degrees of freedoms are available (e.g., a dense optical �ow), reliable
estimates of the registration parameters cannot be obtained. In either case,
registration artifacts are likely to appear in the fusion, requiring heavy regu-
larization (smoothing) for their concealment [18]. The situation becomes even
more di¢ cult when non-global motion is present in images, something that is
typical of video SR. Modern SR methods depart from the classical approach
and we specially mention the video SR reconstruction algorithms [16], [29],
[28], [30] based on the nonlocal means (NLM) �ltering paradigm [2]. In these
algorithms, instead of trying to obtain an explicit registration as a one-to-
one pixel mapping between frames, a one-to-many mapping is utilized, where
multiple pixels can be assigned to a given one, with weights typically de�ned
by the similarity of the patches/blocks surrounding the pixels. The HR image
is estimated through a weighted average of these multiple pixels (or of their
surrounding patches) with their corresponding weights. The increased redun-
dancy of the NLM, which can exploit also multiple patches from a same frame,
contributes signi�cantly to the overall good performance of the methods [29].
Here, based on our previous works [12],[13] we present a uni�ed algorithm

for the upsampling and image/video SR based on iterative (V)-BM3D �ltering.
As discussed in Section 1.2.2, the (V)-BM3D algorithm shares with the NLM
the idea of exploiting nonlocal similarity between blocks. However, thanks
to its transform-domain modeling, the BM3D turns out to be a much more
e¤ective �lter than the NLM, thus leading to outstanding SR results.
The remainder of this section is organized as follows. First, we show how

the SR problem can be interpreted in terms of the spectral decomposition
(1.3). Then we present an adaptation of the algorithm (1.5) to video SR
reconstruction, with image upsampling treated as a particular case. Finally,
we report experimental results demonstrating the e¤ectiveness and superior
performance of the proposed approach.

1.4.1 Spectral decomposition for the super-resolution prob-
lem

The observation model (1.10) for the video SR problem is a particular case of
the general observation model (1.1) where X is the space of high-resolution
images, Y that of the low-resolution frames, and

H (�) = D (B (�)) . (1.11)

Let us show how the blur and decimation operator relate to the general spec-
tral decomposition presented in Section 1.2.1.
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The blur in (1.10) can be written as the integral

B (xhir) (s) =
Z
xhir (�) b (s; � � s) d�;

where b is a spatially varying point-spread function (PSF). Further, it can be
represented as the inner products

B (xhir) (s) = hxhir; bsi , (1.12)

where bs (�) = b (s; � � s). Now, the action of the decimation operator D
in (1.10) can be seen as a retaining only a subset of inner products (1.12)
corresponding to the given sampling points s.
Let us assume that the corresponding retained bs constitute a basis

ftigdimY
i=1 for a linear subspace ~X � X of dimension equal to the number

of pixels of any of the LR frames xlowr. For the sake of simplicity, we as-
sume this basis to be orthonormal up to a scaling constant �. Hence, ~X is the
orthogonal complement of ker (H) in X.
The core of our modeling is to complete the basis ftigdimY

i=1 with an ortho-
normal basis ftigdimX

i=dimY+1 of ker (H), thus obtaining a basis ftig
dimX
i=1 for X.

This constitutes an orthonormal transform T : X ! � whose basis elements
separate ker (H) from its orthogonal complement. By such a construction, the
subset of basis indices i = 1; : : : ;dimY correspond to the set 
, �
 = Y .
Hence, T0 is identity and S operates the division by � and restriction on 
.
An evident example of this construction is when B is the blurring with a

uniform kernel of size n � n and D =#n is a decimation with rate n (along
the rows as well as along the columns): the PSFs bs, i.e. the basis elements
ftigdimY

i=1 , are thus non-overlapping (hence orthogonal) shifted copies of the
same uniform kernel. This basis can be naturally seen as the subbasis of the
n�n block-DCT composed by extracting the DC-basis elements of all blocks.
In this sense, we can complete ftigdimY

i=1 with the basis ftigdimX
i=dimY+1 composed

by the AC-basis elements of all blocks.
However, we are not bound to use the transform T constructed from the

PSFs in the above direct way. As observed at the end of Section 1.2.1, the
uniqueness of the basis elements ftigi2
 depends on the non-zero eigenvalues
being distinct, while here all non-zero eigenvalues equal ��1. In this case, any
orthonormal transform that provides the same orthogonal separation between
ker (H) and its complementary can be used in the decomposition. Indeed, in
the example in Section 1.3.3.3 we have used the FFT as the transform T while
the blur PSFs were sinc functions. Of course, if the used T di¤ers from that
constructed directly from the PSFs, also the transform T0 must di¤er from
the identity. Therefore, in all the following equations, T0 is always written
explicitly, and (1.11) takes thus the form

H (�) = T �10

�
��1 T (�)j


�
: (1.13)



20 Book title goes here

Before we proceed further, let us remark that the assumption on the or-
thonormality (up to scaling constant) of the basis ftigdimY

i=1 for ~X induced
by the blur and decimation operators is mainly for simplicity of exposition.
If ftigdimY

i=1 were not orthonormal, the construction would have been simi-
lar, di¤ering from (1.13) either by having a frame and its dual instead of the
orthonormal transform T , or, in accordance with the general spectral decom-
position (1.3), by substituting the factor ��1 by a general diagonal operator
( i.e. multiplying each transform coe¢ cient by its own scaling factor).

1.4.2 Observation model

Using the above representation of H (1.13), we reformulate the super-
resolution observation model (1.10) as follows.
Let us be given a sequence of R � 1 low-resolution images fxlowrgRr=1

of size nh0 � nv0, with each xlowr being obtained from the subband of the
corresponding T -spectra of original higher-resolution images fxhirgRr=1 of size
nh � nv as

yr = xlowr = T �10

�
��1 T (xhir)j


�
: (1.14)

The problem is to reconstruct fxhirgRr=1 from fxlowrgRr=1. Clearly, for a
�xed r, any good estimate x̂r of xhir must have its 
 subband equal to
�T0 (xlowr) = T (xhir)j
. Under this restriction, the estimates constitute an
a¢ ne subspace X̂r of codimension nh0n

v
0 in the n

hnv -dimensional linear space
X: X̂r = fx̂r 2 X : T (x̂r)j
 = �T0 (xlowr)g.
For R = 1, the observation model (1.14) corresponds to the image up-

sampling problem. Whenever R > 1, we are instead in the image or video
super-resolution setting.

1.4.3 Scaling family of transforms

The observation model (1.14) uses a pair of transforms T and T0 for relating
the same image at two di¤erent resolutions. We can extend this to an arbitrary
number of intermediate resolutions by means of the following scaling family
of transforms.
Let fTmgMm=0 be a family of orthonormal transforms of increasing sizes

nhm�nvm; nhm < nhm+1; nvm < nvm+1, such that for any pair m,m0 with m < m0,
up to a scaling factor �m;m0 , the whole Tm-spectrum can be considered as
a smaller portion of the Tm0 -spectrum. In particular, this means that the
supports 
m of the Tm-transform coe¢ cients form a nested sequence of subsets
(subbands) of 
M , i.e. 
0 � � � � � 
M . The most notable examples of such
fTmgMm=0 families are discrete cosine (DCT) or Fourier (DFT) transforms of
di¤erent sizes, discrete wavelet transforms (DWT) associated to one common
scaling function, as well as block DCT, DFT and DWT transforms. Figure
1.9 illustrates the nested sequence of supports for these families.
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(a)DFT (b)Block-DCT

(c)DWT,DCT

FIGURE 1.9
Nested support subsets: the subsets 
0 and 
1 are shown as the shaded sub-
areas of the support 
M = 
2 of coe¢ cients of the transform TM .

Depending on the speci�c transform family of choice, the sets 
m are com-
monly referred to as lower-resolution, low-frequency, or coarser-scale subbands
of the TM -spectrum.

To use such scaling family for the observation model (1.14), we set nhM =
nh , nvM = nv , TM = T , 
0 = 
, �0;M = �, and for m < m0 we de�ne the
following three operators:

� the restriction operator j
m;m0 that, from a given Tm0 -spectrum, extracts
its smaller portion de�ned on 
m, which can be thus considered as the
Tm-spectrum of a smaller image;

� the zero-padding operator Um;m0 that expands a Tm-spectrum de�ned
on 
m to the Tm0 -spectrum de�ned on the superset 
m0 � 
m by in-
troducing zeros in the complementary 
m0 n 
m;

� the projection operator Pm;m0 that zeroes out all coe¢ cients of Tm0 -
spectrum de�ned on 
m. If m = 0 and m0 = M; the operator Pm;m0 =
P0;M coincides with the projection operator Pker(H) de�ned in Section
1.2.

Note that Um;m0 (A)j
m = A for any Tm-spectrum A, and B = Pm;m0 (B) +

Um;m0
�
Bj
m

�
for any Tm0 -spectrum B. Thus, Um;m0 can be regarded as �dual�

operator of j
m;m0 .
With this notation, the super-resolution observation model (1.14) becomes

yr = xlowr = T �10

�
��10;M TM (xhir)j
0;M

�
: (1.15)
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1.4.4 Multistage iterative reconstruction

In the iterative algorithm presented for the general CS reconstruction, at each
iteration the noise excitation and the adaptive �ltering are used to provide
estimates for the whole spectrum. The algorithm presented below is di¤erent,
in that it exploits the multiscale feature of the images and performs the scaling
from nh0�nv0 size to nhM �nvM gradually, using the transform family fTmgMm=0
across M stages, which are indicated using the subscript m = 1; : : : ;M .
The complete algorithm is de�ned by the iterative system

8>>><>>>:
x̂r;0 = xlowr

x̂r;m = x̂
(k�n a l (m))
r;m

x̂
(0)
r;m = T�1m

�
Um�1;m

�
�m�1;mTm�1 (x̂r;m�1)

��
x̂
(k)
r;m = T �1

m

�
U0;m

�
�0;mT0 (xlowr)

�
+ P0;m

�
Tm
�
�
�
r;
n
x̂
(k�1)
r;m

oR
r=1

; �k;m
����

:

(1.16)
At each stage, the images are being super-resolved from size nhm�1�nvm�1

to nhm�nvm. The sequence fxlowrg
R
r=1 serves as input for the �rst stage, and the

output of the current stage fx̂r;mgRr=1 becomes an input for the next one. At
each stage, the initial estimate x̂(0)r;m is obtained from x̂r;m�1 by zero-padding
its spectra following the third equation in (1.16). During the subsequent itera-
tions, the estimates are obtained according to the last equation in (1.16), where
the superscript k = 0; 1; 2; : : : corresponds to the iteration count inside each
stage, x̂(k)r;m is a sequence of estimates for x̂r;m, � is a spatially adaptive �lter
and �k;m is a parameter controlling the strength of this �lter. In other words,

at each iteration we jointly �lter the images
n
x̂
(k�1)
r;m

oR
r=1

obtained from the

previous iteration, perform a transform Tm for each r, substitute the nh0 � nv0
coe¢ cients de�ned on 
0 with �0;MT0 (xlowr), and take an inverse transform
T �1m to obtain x̂(k)r;m. The �owchart of the system (1.16) is presented in Fig-
ure 1.10. The iteration process stops at iteration k�nal (m) when the distance

between
n
x̂
(k)
r;m

o
and

n
x̂
(k�1)
r;m

o
in some metric becomes less than a certain

threshold �0, or if the maximum number of iterations kmax (m) is reached.
In order to prevent smearing of the small details, the sequence f�k;mgk=0;1;:::
should be decreasing with the progress of the iterations.
There are a number of reasons in favor of the multistage reconstruction.

Firstly, since at every stage the complexity of each iteration depends on the
size nhm � nvm of the image to reconstruct, we have that through multistage
reconstruction we are able to decrease the computational cost of recovering
the coarsest portions of the missing spectrum. Further, the recovery of the
�nest details becomes more stable, because when we arrive towards the �nal
stages, most of the spectrum has already been reconstructed, with good ap-
proximation, in the earlier stages. It turns out that, in this way, the bene�t of
the stochastic excitation (as in Section CS) is also reduced, in as much as we
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FIGURE 1.10
Multistage iterative reconstruction. The inner loop corresponds to an iteration
process inside a stage; the outer loop corresponds to a transition to the next
stage.

do not include this element in our implementation of the SR reconstruction
algorithm (1.12).

1.4.5 Experiments

We present results from three sets of experiments. First, using a synthetic
image sequence, we assess how well our SR algorithm can deal with highly
aliased data, provided that the set of LR images covers the whole HR sampling
grid. Second, we consider video SR reconstruction. Finally, we demonstrate
examples of image upsampling showing that successful reconstruction can be
obtained even in the case when the exact blurring model is unknown.
As seen in the previous section, the algorithm formulations for upsampling

and super-resolution coincide. In both cases, the algorithm performs a recon-
struction for each image of the input sequence, and the output sequence always
contains the same number of frames as the input one. Whether the algorithm
performs upsampling or SR reconstruction, depends on the number of frames
in which V-BM3D is allowed to search for similar blocks (so-called �temporal
search window�). When the search is restricted to the current frame only, the
algorithm independently upsamples each frame of the input sequence.

1.4.5.1 Implementation details

The �lter�s internal 3-D transform is implemented as a composition of a 2-D
discrete sine transform (DST) applied to each grouped block and of a 1-D Haar
wavelet transform applied along the third dimension of the group. The block
size is decreasing with the stages, while within each stage �k;m is decreasing
linearly with respect to k. In terms both of smoothing and scale, this consis-
tent with the �coarse-to-�ne�approach analyzed in [3]. The temporal search
window is set to be equal to the number of frames in the input sequence.
The block-matching in BM3D is implemented as a smallest l2-di¤erence

search. It has been found that strong aliasing in the LR images can notice-
ably impair the block matching. To overcome this problem, during the �rst
few iterations of the reconstruction algorithm, the block matching is com-
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puted over smoothed versions of the current image estimates. Furthermore,
the BM3D-based �-rooting described in [11] can be embedded inside V-BM3D
so to enhance the high-frequency components during the last iterations. These
simple adjustments e¤ectively improve the overall numerical and visual qual-
ity of reconstruction, leading to sensibly better results than those reported in
[13],[12].
In order to avoid the in�uence of border distortions and provide more

fair comparisons, in all experiments the PSNR values are calculated over the
central part of the images, omitting a border of 15-pixel width.

1.4.5.2 Super-resolution

In our super-resolution experiments, we used the same four sequences as in
[29] namely: Text, Foreman, Suzie and Miss America. Both LR and ground
truth HR sequences are available at the website of the �rst author of [29]
http://www.cs.technion.ac.il/~matanpr/NLM-SR/. All LR sequences were
obtained using the observation model where the HR images are �rst blurred
using a 3�3 uniform kernel, then decimated by factor 3 and contaminated with
additive Gaussian noise with standard-deviation equal to 2. Since our obser-
vation model does not assume the presence of noise, we pre�lter the noisy LR
input sequence with the standard V-BM3D �lter using default parameters [9].
A scaling family of transforms can be easily associated to the described

observation model, noticing that the LR images can be treated (up to a scaling
factor �0;M = 3) to be composed of DC coe¢ cients of some orthogonal 3�3
block transform. The transform family fTmgMm=0 has been chosen to consist
of three 2-D block transforms with 1�1, 2�2, and 3�3 block sizes, which
results in a progressive enlargement of 2 and 1.5 times, providing an overall
enlargement of 3 times. As a particular family of transforms satisfying the
above conditions, we choose the block DCT transforms.
Image super-resolution. For the image super-resolution experiment the Text
sequence is used. The 9-image LR sequence has been obtained from a single
ground-truth image (shown in Figure 1.11(left)) by displacing it before apply-
ing observation model described above. The displacements are chosen so that
the entire HR grid is covered by the union of the LR grids (i.e. dh; dv = 0; 1; 2,).
One of these nine LR images is shown in Figure 1.11(center), while a super-
resolved image obtained by the proposed algorithm is presented in the Figure
1.11. We can see that despite the strong aliasing in the LR images, the algo-
rithm succeeds in reconstructing a readable text.
Video super-resolution. We performed SR of the video sequences Foreman,
Suzie and Miss America mentioned above. For a comparison, we also present
results obtained by the method [29].
The mean (over all 30 frames) PSNR values for the reconstructed sequences

are summarized in Table 1.1. The numerical results obtained by our algorithm
are superior to those of [29]. A visual comparison is provided in Figures 1.12
- 1.14. We can observe that while both methods provide roughly the same
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FIGURE 1.11
Super-resolution result for the Text image. From left to right: original high-
resolution image (ground truth); pixel-replicated low-resolution image; image
super-resolved by the proposed algorithm.

amount of reconstructed image details, in terms of artifacts, the results of the
proposed method are much cleaner.

1.4.5.3 Image upsampling

Let us present also images upsampled of factors q = 4 or q = 8 from their
original resolution. It should be emphasized that in this case we do not know
which blurring and decimation operators have been used to obtain the given
images. Instead, we assume that the blurring kernel is the low-pass analysis
�lter of a wavelet transform. Hence, we seek a high-resolution image whose
wavelet approximation coe¢ cients in the LL subband of the log2 (q)-level
decomposition coincide (up to a scaling factor �0;M = q) to the pixel values
of the given low-resolution image.

Figure 1.15 shows three fragments of the Cameraman, Text, and Lighthouse
images at their original resolution. We upsample these fragments applying the
log2 (q)-stage algorithm with the Symlet-8 wavelet transform. The obtained
high-resolution images are shown in Figure 1.16. It is interesting to notice that
the results are quite reasonable, despite our �ctitious assumptions about the
blurring and decimation operators. The visual quality is particularly good,
due to the sharp edges and because of the virtual absence of ringing artefacts
typical of transform-domain upsampling.

Nearest
neighbor [29] Proposed

Foreman 29.0 32.9 35.0
Suzie 30.3 33.0 34.2
Miss America 32.0 34.7 37.0

TABLE 1.1
Mean (over all frames) PSNR (dB) values of the super-resolved video

sequences (see Sec. 1.4.5.2).
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1.5 Conclusions
In this chapter we discussed the application of spatially adaptive �lters as
regularization constraint in inverse imaging problems. Using BM3D as the
leading example of such �lters, we demonstrated that even simple iterative
schemes, when coupled with a good �lter, can be turned into powerful and
competitive reconstruction methods.
Overall, in the context of compressing sensing, our method introduces

a new and alternative view on the reconstruction strategy from undersam-
pled data. In super-resolution applications, the algorithm proposed in Sec-
tion 1.4 stands in line with the best super-resolution algorithms, possessing
registration-free reconstruction, and showing a state-of-the-art performance.
From a general perspective, the presented material expands the breadth

of �ltering in the modern image processing.
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FIGURE 1.12
Results for the 23rd frame from the Foreman sequence. From left to right
and from top to bottom: pixel-replicated low-resolution image; original image
(ground truth); super-resolved by the algorithm [29]; super-resolved by the
proposed algorithm and their respective zoomed fragments.
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FIGURE 1.13
Results for the 23rd frame from the Suzie sequence. From left to right and from
top to bottom: pixel-replicated low-resolution image; original image (ground
truth); super-resolved by the algorithm [29]; super-resolved by the proposed
algorithm and their respective zoomed fragments.
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FIGURE 1.14
Results for the 23rd frame from theMiss America sequence. From left to right
and from top to bottom: pixel-replicated low-resolution image; original image
(ground truth); super-resolved by the algorithm [29]; super-resolved by the
proposed algorithm and their respective zoomed fragments.
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FIGURE 1.15
Fragments of the Cameraman, Text, and Lighthouse images.

FIGURE 1.16
Upsampling of the three fragments shown in Figure 1.15. From top to bottom:
Cameraman (4 times), Text (4 times), Lighthouse (8 times).
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