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ABSTRACT
We present a novel technique for joint deblurring and demosaic-
ing of noisy Poissonian Bayer data (e.g., data acquired by a digital
CMOS or CCD imaging sensor). The technique incorporates the
regularized inverse and the Wiener inverse with adaptive Þltering
based on the concept of cross-color local polynomial approximation
(LPA) and intersection of conÞdence intervals (ICI). The directional
Þlters designed by LPA utilize simultaneously the green, red, and
blue color components. This is achieved by a linear combination
of complementary-supported smoothing and derivative kernels de-
signed for the Bayer data grid. The ICI rule is used for data-adaptive
selection of the length of the designed cross-color directional Þlter.
Simulation experiments demonstrate the efÞciency of the proposed
technique with respect to the conventional approach where decon-
volution and demosaicing are computed independently.

1. INTRODUCTION

In single-chip digital imaging systems the light passes through the
optical system of the camera and is focused at the digital sensor,
where it is acquired through a color Þlter array (CFA). However,
due to various optical distortions (e.g., out-of-focus blur, motion,
etc.), the image is blurred before the CFA sampling. Since all sig-
niÞcant sources of noise are within the sensor (each site works as
a photon-counter, thus the noise is predominantly signal-dependant
and Poissonian), it results in the acquisition of noisy downsampled
blurred data, with these three degradations (blur, noise, and sam-
pling) realized in this given order. Because the blurring comes be-
fore the downsampling, the deblurring of this data is particularly
ill-posed. Thus, the problem of restoring a full-color full-size im-
age from the acquired data becomes much more difÞcult than the
CFA interpolation where there is only noise and no blur.
The research around this more general and complex problem is

rather recent, and thus there exist only a very limited number of
works dedicated to its solution. The mathematical modelling and
solution based on a quadratic criterion is discussed in [1]. Essen-
tial progress in this approach has been demonstrated in [2] and [3],
where the problem is considered within the super-resolution imag-
ing framework (thus, allowing multiple images to be combined in
the interpolation).
In these works, the criterion functionals include the Þdelity terms

and penalties to enable both the smoothness of the color solutions
as well as some color correlation. In particular, the prior used in
[3] forces the red, green, and blue high-frequency components to be
mutually similar. The relative weights of the similarities between
different color components are modulated by weights and a recur-
sive procedure is developed for Þtting these weights to the observa-
tions.
Overall, the approach proposed in the recent papers [2] and [3]

gives universal formulation of the problem and recipes for the algo-
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rithm development. However, it suffers from limitations typical for
general formulation of imaging as a global optimization problem,
which needs to be solved by recursive algorithms.
Our contribution has a pragmatic goal and aims at avoiding these

limitations following the fact that for the separate deblurring and
CFA interpolation there exist already very efÞcient and powerful
nonrecursive algorithms. Exploiting these algorithms, we design
a novel technique for joint deblurring and demosaicing. In partic-
ular, the proposed technique is based on cross-color Þltering [4]
and on a two-stage regularized deconvolution [5], speciÞcally de-
signed for Poissonian data. This approach is of practical interest for
implementation in devices with limited power and computational
resources and shows results competitive with other more computa-
tionally expensive deblurring/interpolation methods.
The rest of the paper is organized as follows. In Section 2 we con-

sider a mathematical model used for the image acquisition process
and two general approaches to solve the related inverse problem.
In Section 3 we derive an approximate point-spread function (PSF)
for deconvolution of subsampled color components and introduce
relevant upsampling and downsampling operators. The proposed
joint deblurring and demosaicing algorithm is described in Section
4. The simulation results and analysis is given in Section 5.

2. OBSERVATIONMODEL FOR BLURRED NOISY
SAMPLED DATA

Let yRGB(x)= (yR(x), yG(x), yB(x)) be the true color image and
ỹRGB(x)= (ỹR(x), ỹG(x), ỹB(x)) be the blurred color image with
the same PSF v for all color components1 where

ỹc(x)= (v~ yc)(x), x ∈ X, c= R,G, B.
Here, the vector maps of blurred (ỹRGB) and true (yRGB) color
images are deÞned on the full-size N ×M grid X (N and M are
even).
The Bayer mask observations assume the sampling of the blurred

image ỹRGB(x) according to the structure of the Bayer color sen-
sors [6]. These sampled signals can be given in the form

zbayer(x)= B{ỹRGB}(x)+σ(x)n(x), (1)
where n is a white random zero-mean noise with variance equal to
one and B is the Bayer sampling operator. This operator is conven-
tionally deÞned as follows:

B{ỹRGB}(x)=
! ỹR(x), x ∈ XR ,
ỹG(x), x ∈ XG1 ∪ XG2 ,
ỹB(x), x ∈ XB ,

(2)

where XG1 , XG2 , XR , XB are the grids of two greens, red, and
blue color sensor arrays,
XG1 = {(x1,x2) :x1 = 1,3, . . . ,N−1, x2 = 1,3, . . . ,M−1},
XG2 = {(x1,x2) :x1 = 2,4, . . . ,N, x2 = 2,4, . . . ,M},
XR = {(x1,x2) :x1 = 1,3, . . . ,N−1, x2 = 2,4, . . . ,M},
XB = {(x1,x2) :x1 = 2,4, . . . ,N, x2 = 1,3, . . . ,M−1}.
1This restriction is not essential: the proposed algorithm can be used also

with different PSF for different color components.



The dependence of the noise on the signal is given by σ(x), which
is a deterministic function of the image intensity. In particular, we
consider Poissonian distributed noise with

χzbayer(x)∼P(χB{ỹRGB}(x)), x ∈ X, (3)
where χ > 0 is a noise scaling parameter and P denotes the Pois-
sonian distribution. This noise can be written explicitly in the ad-
ditive form (1) where the variance depends on the image intensity
as σ2(x)= var{zbayer(x)} = B{ỹRGB}(x)/χ . Our goal is to recon-
struct the true image yRGB from zbayer.
In order to discuss the idea of our approach and the structure

of the developed algorithm, we introduce generic deblurring and
interpolation operators D and I. We assume that the output of the
deblurring operator has the same domain as the input. Thus, we
can write both D(ỹR) = ŷR and D(ỹR,sub) = ŷR,sub, where the
subscript "sub" denotes the subsampling of a full-size color plane
on the respective small-size subgrid XG1 , XG2 , XR , or XB , i.e.
ỹR,sub : XR → R, ỹR,sub (x) = ỹR(x), x ∈ XR . Analogously, the
operator I interpolates the input data on its respective small-size
subgrid; for instance, the reconstruction of the full-size red signal
yR from the subsampled yR,sub can be written as I(yR,sub)= ŷR .
Formally, the two operators can be combined either as

I(D(ỹR,sub)) = ŷR or as D(I(ỹR,sub)) = ŷR . However, it is well
known that there is no chance to get a good quality for color recon-
struction using subsampled data of a single color only; the color cor-
relation is the key ingredient of all the successful demosaicing algo-
rithms. Furthermore, because of aliasing, it is not possible to model
the blur in ỹR,sub as a convolution operation of yR,sub against a
given PSF. Thus, the deblurring on a single subgrid is severely ill-
posed. To exploit the color correlation, a CFA interpolation operator
ICFAI is introduced, such that B{ICFAI(B{ỹRGB})} = B{ỹRGB}
and B{ICFAI(B{yRGB})} = B{yRGB}.
Using the introduced operators, the structure of the reconstruc-

tion algorithms can be explained in a simple and clear form:
• Deblurring-Interpolation algorithms
ICFAI

"D"ỹR,sub#+D"ỹG,sub#+D"ỹB,sub##="ŷR, ŷG , ŷB#, (4)
• Interpolation-Deblurring algorithms

ICFAI(ỹR,sub+ ỹG,sub+ ỹB,sub)= (ỹR, ỹG , ỹB) , (5)
D (ỹR)= ŷR, D (ỹG)= ŷG , D (ỹB)= ŷB .

In the summations (4)-(5) we tacitly assumed that the subsampled
data are zero-padded outside their respective subgrids of deÞnition.
In this paper we follow (4) because it is more computationally ef-
Þcient and (5) is a subject for a future work. The naive straight-
forward approach would be to apply Þrst a deconvolution D(·) de-
signed for Poissonian data (e.g., [7],[8]) and then use a CFA in-
terpolation ICFAI(·) assuming that the input is deblurred and noise
free. Instead, we combine the deconvolution and demosaicing into
a single procedure.

3. PRELIMINARIES

3.1 Downsampling and upsampling operators for the Bayer
grid and for convolution kernels

Before we proceed, we deÞne some downsampling and upsampling
operators. Let P and Q be two generic data arrays:

P =

a b c d e ·
f g h i j
k l m n o
p q r s t
· ·

 , Q =
*
a b c ·
d e f
· ·

+
.

The Bayer downsampling operators are naturally deÞned as

↓G1{P} =
*
a c e ·
k m o
· ·

+
, ↓R {P} =

*
b d ·
l n
· ·

+
,

↓B {P} =
*
f h j ·
p r t
· ·

+
, ↓G2{P} =

*
g i ·
q s
· ·

+
.

Analogously, the Bayer upsampling operators are deÞned as

↑G1{Q} =

a 0 b 0 ·
0 0 0 0
c 0 d 0
0 0 0 0
· ·

 , ↑R {Q} =

0 a 0 b ·
0 0 0 0
0 c 0 d
0 0 0 0
· ·

 ,

↑B {Q} =

0 0 0 0 ·
a 0 b 0
0 0 0 0
c 0 d 0
· ·

, ↑G2{Q} =

0 0 0 0 ·
0 a 0 b
0 0 0 0
0 c 0 d
· ·

 .
Given two generic kernels

gbig =


·

a b c d e
f g h i j

· k l [m] n o ·
p q r s t
u v w x y

·

 , gsmall =


·
a b c

· d [e] f ·
g h i

·

 ,
where the brackets [ ] denote the origin of the kernel, we deÞne four
kernel downsampling operators

↓K0
,
gbig

-=


·
a c e

· k [m] o ·
u w y

·

, ↓K1
,
gbig

-=


·
b d

· [l] n ·
v x
·

 ,
↓K2

,
gbig

-=
 ·

· f [h] j ·
p r t

·

 , ↓K3
,
gbig

-=
 ·

· .
g
/
i ·

q s
·

 .
and four kernel upsampling operators ↑Ki , i = 0,1,2,3,

↑Ki {gsmall} =


·

a 0 b 0 c
0 0 0 0 0

· d 0 [e] {0} f ·
0 0 (0) 102 0
g 0 h 0 i

·

 ,
where the brackets [] , {}, (), and 12 indicate the origin of the upsam-
pled kernel ↑K0{gsmall}, ↑K1{gsmall}, ↑K2{gsmall}, and ↑K3{gsmall},
respectively. Note that the above four upsampling operators are dif-
ferent only for what concerns the location of the origin in the output
kernel. Also observe that the origin seems to be shifted to the direc-
tion opposite to the expected one. This is due to the change of sign
of the argument within the convolution operators.
3.2 Downscaled PSF for Bayer subcomponents
The Deblurring-Interpolation algorithms (4) require that a "down-
scaled version" vsub of the PSF v is used to deconvolve the down-
sampled color components. In general, because of aliasing, it is
not possible to model the blurring in the Bayer subcomponents as
a standard convolutional blur. Nevertheless, it is very practical and
desirable to use a convolutional approximation for the blur operator,
since it gives the opportunity to use very efÞcient deblurring proce-
dures. The accuracy of the convolutional approximation depends
on the downscaled PSF vsub used for in the convolution model.
An �optimal� PSF vsub is essentially image-dependant because of
aliasing. However, in practice, the downscaled vsub should be de-
termined from v only. This becomes possible provided that some
natural restrictions are imposed on y.
Let y be a band-limited image of size N ×M with only the N2 ×

M
2 (in practice

N
2 −1× M

2 −1, to keep the data real) non-zero low-
frequency harmonics (around the central DC term). In what follows
we will refer to coefÞcients that fall inside or outside this band as
low-frequency or high-frequency terms, respectively. We denote by
F and Fsub, respectively, the Fourier transforms for a domain of
size N ×M and of size N2 × M

2 .
Ignoring the presence of noise and omitting the normalizations of

the Fourier transform, in frequency domain we have that Z = YV,
where Z ,Y, and V are the F transforms of z, y, and v, respec-
tively. However, since Y is low-pass, the above equation de-
pends only on the low-frequency portion of the spectrum of V , i.e.
Z = YV = YVlp, where Vlp is a low-pass version of V that has all
high-frequency terms equal to zero.



Let now z =F−1 (YV ) and consider a generic Bayer downsam-
pled version of z, denoted as zsub. Similarly, we deÞne ysub as the
downsampled y. Both y and z are low-pass, therefore the down-
sampling can be reversed without loss of information as there is no
aliasing. Moreover, it is possible to formally deconvolve zsub and
obtain both ysub and y. More precisely we have that,

ysub =F−1sub
0Fsub (zsub)

Vsub

1
, (6)

where Vsub is the N2 × M
2 central portion the spectrum of Vlp.

The downscaled PSF is deÞned as F−1sub (Vsub). In case Vsub has
zeros, a pseudo- or regularized inverse can be used in place of the
naive inversion in (6).
Analogously, by zero-padding the high-frequencies in Fourier

domain (denoted by the operator 0pad), we obtain

y =F−1
0
0pad

0Fsub (zsub)
Vsub

11
.

The above equality assumes that either a modulation on the spec-
trum or (equivalently) a circular shift after inverse-transformation is
performed whenever the downsampling starts from an even sample
(e.g., [2 : 2 : N ]× [2 : 2 : N ]).
We remark that this PSF modeling (i.e., assuming that y is band-

limited) is approximate, since the image y has usually a full spec-
trum and thus aliasing would play a role. However, the proposed
simpliÞed modeling allows to establish a formally correct setting
for the problem, where a direct relation between the full-size PSF
and the downscaled PSF exists.
Because of aliasing, artifacts in general appear, at least to some

extent, when the color subcomponents zsub are deconvolved as in
(6). Nevertheless, we wish to emphasize that since the observations
are blurred, the aliasing is not as strong as in the case of CFA in-
terpolation of blur-free data. Moreover, the Þltering which is used
in our deblurring approach is spatially adaptive and can compensate
for potential undesirable artifacts, as shown in [4].

4. ALGORITHM

In this section we describe in detail the proposed algorithm. Its
block diagram is given in Figure 1.

4.1 Regularized inverse
The regularized inverse (RI) linear Þlter is applied separately to
each observed color subcomponent R,G1,G2, and B. It is ex-
pressed in the frequency domain as

Ŷ RIc =,RIsubZc, c= R,G1,G2,B, ,RIsub=
V ∗sub

|Vsub|2+ε2RI
, (7)

where Vsub is a downscaled PSF obtained from v as described in
Section 3.2, ε2RI is a regularization parameter, and Zc corresponds
to Fourier transform Fsub of the sampled observations zc, i.e.

Zc =Fsub {zc} , zc =↓c
,
zbayer

-
, c= R,G1,G2,B.

We denote the RI operator in the spatial domain as ϕRIsub =
F−1sub

,
,RIsub

-
. We emphasize that ϕRIsub has the size of a subsampled

signal, since it is deÞned using theF−1sub inverse transform. Four de-
convolved estimates, one for each color subcomponent of the Bayer
pattern, are obtained by the inverse Fourier transform of (7):

ŷRIc =F−1sub
2
Ŷ RIc
3
=F−1sub

"
,RIsubZc

#= ϕRIsub~ zc, c= R,G1,G2,B.
While in these estimates the blur is reduced, they are still rather
noisy because only a mild regularization is used in (7). In this sense,
we may consider these estimates as subsampled components of a
noisy blur-free image. These components are combined together in
a full-size image as

ŷRIbayer =↑R
,
ŷRIR
-+ ↑G14ŷRIG15+↑G24ŷRIG25+ ↑B,ŷRIB - .

Thus, an estimate of the blur-free and noise-free image y can
be obtained from ŷRIbayer exploiting techniques for interpolation of
noisy Bayer-data. However, because of the RI Þlter, the noise in
each of the components ŷRIc is colored. Therefore, in order to re-
move this noise accurately, one needs to take into account the im-
pulse response of the deblurring Þlter. In this sense, computing the
deblurring and the interpolation as two independent steps is unnat-
ural. Instead, these two operations need to be combined as a joint
Þltering procedure. Moreover, because of the possible aliasing in
ŷRIc , the interpolation procedure must be especially accurate in re-
moving artifacts.
For these purposes, we rely on a modiÞed version of the LPA-ICI

algorithm for interpolation of noisy Poissonian Bayer data [4]. It is
applied to the Bayer pattern. The developed modiÞcation allows
the algorithm to exploit the speciÞc statistics of the deblurred color
subcomponents and, in particular, the nonuniformity of the vari-
ance across the Fourier spectrum. Overall, the proposed procedure
can be interpreted as an interpolation algorithm based on directional
adaptive-scale cross-color kernels that embeds a deblurring RI Þlter.
The algorithm processes the Bayer data ŷRIbayer by convolutions

against varying-scale directional cross-color LPA kernels gh,θ [4],
with the corresponding estimates ŷRIh,θ computed as

ŷRIh,θ = ŷRIbayer~ gh,θ , (8)

with the parameters θ and h indicating the direction and length of
the kernel gh,θ . Denoised and interpolated estimates for the differ-
ent colors are found at different spatial positions within the cross-
color estimate ŷRIh,θ .
In general and without loss of generality, the kernel gh,θ can

be decomposed into four kernels gK0h,θ , g
K1
h,θ , g

K2
h,θ , g

K3
h,θ such that

gh,θ =
63
i=0 g

Ki
h,θ , and

gK jh,θ (x) 5= 0 6⇒ gKih,θ (x)= 0, ∀x, ∀i 5= j,
gK0h,θ (x) = gh,θ (x), ∀x ∈ {0+ (2n,2m) , n,m ∈ Z} ,
gK1h,θ (x) = gh,θ (x), ∀x = {0+ (2n,2m+1) , n,m ∈ Z} ,
gK2h,θ (x) = gh,θ (x), ∀x = {0+ (2n+1,2m) , n,m ∈ Z} ,
gK3h,θ (x) = gh,θ (x), ∀x = {0+ (2n+1,2m+1) , n,m ∈ Z} ,
where 0 stands for the coordinates of the origin of the kernel. The
kernels gKih,θ can be deÞned also as g

Ki
h,θ =↑Ki

,↓Ki ,gh,θ--.
For example, to obtain denoised estimates for the G1 subcom-

ponent at G1 locations on a directional horizontal or vertical 1D
�linewise� window, the cross-color kernel gh,θ is composed from
two kernels, one for function estimation and another for derivative
estimation: gK0h,θ = g(0)h,θ , gK1h,θ = αg(1)h,θ , and the superscripts (0) or
(1) denote the order of estimated derivative [4]. The parameter α is
a weight of the derivative estimates. These two kernels, when used
within the convolution are, respectively, non-zero on the G1 pixels
and non-zero on the R pixels. To obtain interpolated estimates for
the R component at G1 locations, the cross-color kernel gh,θ is in-
stead composed as gK0h,θ = αg(1)h,θ , gK1h,θ = g(0)h,θ , i.e., by a derivative
estimation kernel which (in the convolution) is non-zero on the G1
pixels and a function estimation kernel which (in the convolution) is
non zero on the R pixels. Naturally, the same convolutions produce
also denoised R estimates at R and interpolated G at R.

4.2 Variance computation
For the proper deblurring and interpolation it is crucial to calculate
correctly the variances of the LPA cross-color estimates. These vari-
ances are used by the ICI to enable spatial adaptivity with respect
to the signal and the noise.
Let us observe that the simple formula (convolution of the

squared kernel against the variances of the Bayer samples) used



Figure 1: Scheme for joint LPA-ICI based deblurring and CFAI.
LPAc denotes cross-color LPA.

for the basic interpolation algorithm [4] for blur-free Bayer data
is really inadequate for this deblurring case, as it totally ignores the
correlating (coloring) effect of the regularized inverse operator (7).
First, let us perform some manipulations on the convolution (8),

aiming at separating the original blurred-Bayer observations (where
the noise is independent) from the RI and LPA estimates, where the
noise is correlated. To accomplish this, we exploit the downsam-
pling and upsampling operators deÞned in Section 3.1.
Without loss of generality, let us consider the estimation at G1

positions. Analogous formulas apply to other components. For
these points, the estimate formula (8) can be rewritten as follows:

↓G1
4
ŷRIh,θ

5
=
73

i=0 zci ~
2
ϕRIsub~ ↓Ki

4
gKih,θ

53
, (9)

where c0 = G1, c1 = R, c2 = B, c3 = G2.
The estimate (9) is calculated by a sum of four independent

terms, each of which is obtained as a convolution of data with in-
dependent noise against a special kernel. Thus, the variances of the
estimates (9) are calculated as

↓G1
4
σ2ŷh,θ

5
=
73

i=0↓ci
4
σ2
5
~
2
ϕRIsub~ ↓Ki

4
gKih,θ

532
.

It is convenient to compute the convolution against the variance in
the frequency domain, because both terms have support size N2×M2 :
↓G1

4
σ 2ŷh,θ

5
= (10)

=
37
i=0

F−1sub
0
Fsub

2
↓ci
4
σ2
53
Fsub

02
ϕRIsub~ ↓Ki

4
gKih,θ

53211
.

In particular, if we use �linewise� 1D directional kernels [4], only
two instead of four kernels are needed and, as an example, for the
estimation at the G1 components, (9) is reduced to

↓G1
4
ŷRIh,θ

5
=

= zG1~
2
ϕRIsub~ ↓K0

4
g(0)h,θ

53
+zR~

2
ϕRIsub~ ↓K1

4
αg(1)h,θ

53
.

The variances of these estimates are calculated as

↓G1
4
σ 2ŷh,θ

5
= ↓G1

4
σ 2
5
~
2
ϕRIsub~ ↓K0

4
g(0)h,θ

532+
+↓R

4
σ2
5
~
2
ϕRIsub~ ↓K1

4
αg(1)h,θ

532
.

Similar to equation (10),

↓G1
4
σ 2ŷh,θ

5
=

=F−1sub
0
Fsub

2
↓G1

4
σ2
53
Fsub

02
ϕRIsub~ ↓K0

4
g(0)h,θ

53211+
+F−1sub

0
Fsub

2
↓R
4
σ2
53
Fsub

02
ϕRIsub~ ↓K1

4
αg(1)h,θ

53211
,

since all the terms have large supports of size N2 × M
2 and it is more

efÞcient to perform these operations in the frequency domain.
Exploiting the obtained directional estimates ŷRIh,θ (x) and their

variances σ2ŷh,θ , the CFAI is applied as it is proposed in [4]. The

L+L(i) Tr+L(i) LPAc

14
Red
Green
Blue

30.19
30.68
30.45

30.40
30.91
30.68

30.24
30.83
30.46

19
Red
Green
Blue

29.77
29.77
29.83

29.98
29.95
29.99

29.87
29.87
29.82

23
Red
Green
Blue

35.96
36.26
36.09

36.70
36.97
36.73

36.06
36.43
36.06

Average PSNR
over 24 test images

Red
Green
Blue

31.45
31.67
31.47

31.73
31.92
31.70

31.58
31.82
31.54

Table 1: PSNR comparison. L+L(i): independent LPA-ICI deblur-
ring [7] of 4 subsampled blurred color components + LPA-ICI CFAI
[9]. Tr+L(i): independent transform-based deblurring [8] of 4 sam-
pled blurred color components + LPA-ICI CFAI [9]. LPAc: pro-
posed technique.

obtained result is a deblurred and interpolated full-size RGB image
ŷRIRGB . This estimate is used as a pilot estimate for Wiener Þltering.

4.3 Regularized Wiener inverse
The regularized Wiener inverse is applied as follows:

Ŷ RWIc = V ∗sub
88ZRIc 88288VsubZRIc 882+σ2ε2RWI Zc, c= R,G1,G2,B,

where ZRIc = Fsub{zRIc }, ZRIc corresponds to Fourier transform of
the sampled estimated colors zRIc =↓c

4
zRIbayer

5
, zRIbayer =B

,
ŷRIRGB

-
and ε2RI is a regularization parameter. Then, the LPA-ICI CFAI [4]
is applied to Bayer-patterned data

ŷRWIbayer=↑R
,
ŷRWIR

-+↑G14ŷRWIG1

5
+↑G2

4
ŷRWIG2

5
+↑B

,
ŷRWIB

-
,

where ŷRWIc = F−1sub
2
Ŷ RWIc

3
. The variance of the directional inter-

polation and denoising estimates ŷRWIh,θ is calculated, without loss of
generality for x ∈ XG1 , as
var
4
ŷRWIh,θ (x)

5
=
2
σ2~

2
↑G1

4
ϕRWIG1,sub~ ↓G1

4
g(0)h,θ

55
+

+ ↑R
4
ϕRWIR,sub~ ↓R

4
g(1)h,θ

55321
(x)= σ2ŷh,θ (x) ,

where ϕRWIG1,sub = F−1sub

 V ∗sub
888ZRIG1 8882888VsubZRIG1 8882+σ 2ε2RWI

 , is a transform
operator for the G1 subcomponent, and similarly ϕRWIR,sub =

F−1sub
=

V ∗sub
88ZRIR 88288VsubZRIR 882+σ 2ε2RWI

>
is a transform operator for the R sub-

component. The obtained result is a deblurred and interpolated full-
size RGB image ŷRWIRGB . This is our Þnal estimate.

5. EXPERIMENTS

For the experiments we used the standard Kodak set of 24 color test
images of size 768×512 with the intensities normalized in the range
[0,1]. The blurred observations are generated using a separable PSF
v=[1,4,6,4,1]T[1,4,6,4,1]/256 and the Poissonian noise model (3)
with χ=17600. The use of ICI requires the knowledge of σ in (1);
similar to [4], we estimate σ from zbayer as σ̂ =

?
zbayer/χ .

Since the research on deblurring of noisy Bayer data is very re-
cent, it is not possible to carry out extensive and fair comparisons
with other techniques and implementations. In particular, in [1]
no experiments are shown, [2] presents experiments exclusively



L+L(i) Tr+L(i) LPAc
14 1.8133 1.6474 1.7301
19 1.6540 1.4541 1.5034
23 1.1948 0.9338 1.0673

Average S-CIELAB
over 24 test images 1.5130 1.3357 1.3933

Table 2: Comparison in terms of S-CIELAB. L+L(i): independent
LPA-ICI deblurring [7] of 4 subsampled blurred color components
+ LPA-ICI CFAI [9]. Tr+L(i): independent transform-based deblur-
ring [8] of 4 sampled blurred color components + LPA-ICI CFAI
[9]. LPAc: proposed technique.

for the multiframe case, and [3] considers noise in the theoreti-
cal modeling, but not in the experimental part, where only noise-
free signals are deblurred. Therefore, we resort to comparing the
proposed joint procedure, denoted as "LPAc", versus the state-of-
the-art deblurring and interpolation performed as two independent
steps, where the interpolation assumes that the deblurred data is
noise free. SpeciÞcally, for this comparison we consider the inde-
pendent combination of the LPA-ICI deblurring [7] and LPA-ICI
CFAI [9], denoted as "L+L(i)", and the independent combination of
the adaptive transform-based deblurring for Poissonian data [8] and
LPA-ICI based CFAI [9], denoted as "Tr+L(i)".
The results in terms of PSNR and S-CIELAB values2 are shown

in Tables 1 and 2 for three images from the test set. The average
obtained values over all 24 images in the Kodak set are also given.
The best results are highlighted with bold face. The average time for
processing a 768×512 image with "L+L(i)", "Tr+L(i)", and "LPAc"
are 7.43, 25.41, and 4.63 minutes, respectively3. From the two ta-
bles it can be seen that, despite a much lower computational com-
plexity, the proposed technique is effective and yields results that
are competitive to the other methods in the comparison. It is worth
noting that even though the results of "LPAc" are slightly inferior
to those of "Tr+L(i)" (on average about 0.15 dB difference), the ad-
vantage in terms complexity are signiÞcant (the proposed algorithm
is more than Þve times faster). We note also that both the deblurring
[8] and the interpolation [9] are some of the best to our knowledge.
An illustration of the performance of the proposed joint

deblurring-interpolation algorithm is given in Figure 2, where we
show a fragment of the noise-free full-size RGB blurred image, of
the noisy Bayer-downsampled observations, and of the image re-
stored from these observations using the "LPAc".

6. CONCLUSIONS

The problem of reconstruction of a full-size, full-color, sharp image
from the blurred Poissonian noisy Bayer data, simulating image ac-
quisition and reconstruction for single-chip (CCD or CMOS) digital
cameras, was considered in this paper. A novel technique for joint
deblurring and demosaicing was proposed. The technique is based
on the signal-adaptive cross-color Þltering [4] and on a two-stage
regularized deconvolution [5], speciÞcally designed for Poissonian
data. Its efÞciency and applicability was shown by numerical and
visual quality evaluations comparing to non joint deblurring and
demosaicing.
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