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ABSTRACT

Collaborative filters perform denoising through transform-
domain shrinkage of a group of similar blocks extracted from an
image. Existing methods for collaborative filtering of stationary
correlated noise have all used simple approximations of the trans-
form noise power spectrum adopted from methods which do not
employ block grouping. We note the inaccuracies of these approx-
imations and introduce a method for the exact computation and
effective approximations of the noise power spectrum. Unlike ear-
lier methods, the calculated noise variances are exact even when
noise in one block is correlated with noise in any of the other blocks.
We discuss the adoption of the exact noise power spectrum within
shrinkage, in similarity testing (block matching), and in aggrega-
tion. Extensive experiments support the proposed method over
earlier crude approximations used by image denoising filters such as
BM3D, demonstrating dramatic improvement in many challenging
conditions.

Index Terms— Image denoising, correlated noise, collaborative
filtering, noise power spectrum, BM3D.

1. INTRODUCTION

Transform-based denoising algorithms perform noise removal in a
chosen domain where the signal to recover is sparse, i.e. it can be
represented with few coefficients significantly different from zero.
Transform-based algorithms can be combined with the principles of
nonlocal denoising (e.g., [1, 2]) to exploit the mutual similarity be-
tween blocks at different locations in the image. BM3D [3] is one of
the leading methods in this hybrid class known as collaborative fil-
ters. Mutually similar blocks are jointly processed by applying first
a 2-D transform T 2D to each block and then a 1-D transform T 1D

across the obtained T 2D-spectra. This results in a 3-D transform
T 3D that decorrelates both local and nonlocal image regularity. The
advantage of collaborative filtering lies in the enhanced sparsity in
this T 3D domain where shrinkage is performed. However, the effec-
tiveness of denoising hinges on a correctly set shrinkage threshold,
which in turn requires knowledge of the noise variance in this trans-
form domain.

To model the T 3D noise power spectrum, [3] and subsequent
works, such as the BM3D filter for correlated noise [4], have adopted
a simplified modelling borrowed from local filters like [5, 6], where
the PSD in T 3D domain is calculated by merely replicating the T 2D

PSDs. However, this model presumes T 1D is orthonormal and, most
importantly, that noise in one block is always independent from that
in any other block. The latter requirement often does not apply. As
noted in [3] for i.i.d. noise, noise correlation between blocks may
occur due to their overlap. Additionally, with stationary correlated
noise, noise may be correlated across different blocks even if they do
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not overlap, potentially creating large inaccuracies in the simplified
approximations.

We introduce a method for the exact computation of the noise
variance in collaborative transform domain as well as effective ap-
proximations for faster computation. The new variance calculation
is embedded into the BM3D algorithm, where it is used to improve
shrinkage accuracy and block matching, and for weighting in the ag-
gregation of the filtered blocks. This leads to dramatic improvement
of denoising results for a wide variety of correlated noise types.

2. PROPOSED METHOD

2.1. Problem formulation
Let us consider a noisy observation z : X → R of an unknown de-
terministic noise-free image y corrupted by additive stationary cor-
related noise η

z(x) = y(x) + η(x), x ∈ X, (1)

where x ∈ X ⊂ Z2 is the coordinate in the finite 2-D regular image
domain X , and

η = ν ~ g, ν (·) ∼ N(0, 1) , (2)

ν being zero-mean i.i.d. Gaussian noise with unit variance, and g
being a convolution kernel representing the spatial correlation of the
noise. Since var{ν} = 1, var{η} = ‖g‖22 . An equivalent way of
representing correlated noise is by its PSD Ψ:

Ψ = E
{
|F [η]|2

}
= var {F [η]} = |X | |F [g]|2 , (3)

F being the 2-D Fourier transform. When g is a scaled Dirac delta,
(1)-(2) reduces to the additive white Gaussian noise (AWGN) model.
The goal of denoising is to estimate y from z; we assume Ψ known.

2.2. Variance of the T 3D spectrum of a group of blocks
Collaborative filters operate on groups of similar blocks extracted
from the image. Let

{
zx1, . . . , zxM

}
be such a group of M 2-D

blocks extracted from z at coordinates1 x1, . . . , xM , respectively,
where each block is composed of N elements. Let T 2D be a 2-D
block transform, and denote by sxt

i
=

〈
zxt , b

2D
i

〉
a generic T 2D-

spectrum coefficient of zxt , where b2D
i is the i-th basis function of

T 2D. Further, we denote by
{
sx1,...,xM
i, j

, i=1, . . . , N, j=1, . . . , M
}

the T 3D spectrum of the group
{
zx1, . . . , zxM

}
, computed by apply-

ing a 1-dimensional transform T 1D of length M to
[
sx1
i
, . . . , sxM

i

]
,

i=1, . . . , N .
The core of this work is about the calculation and use of the

variances var
{
sx1,...,xM
i, j

}
of the T 3D spectrum sx1,...,xM

i, j
, which we

denote by vx1,...,xM
i, j

.

1As coordinate of a block we intend the coordinate of the pixel in the
top-left corner.



2.2.1. Preliminaries

The noise variance in T 2D can be calculated from the PSD and the
transform basis functions:

var
{
sxt
i

}
= var

{(
ν~g ~

←→
b 2D
i

)
(xt )

}
= var {ν}




g~←→b 2D
i




2
2
,

where the ←→ decoration denotes the reflection about the origin of
Z2. We note that this variance does not depend on the coordinate xt
of the block; hence we can adopt the simple notation vi = var

{
sxt
i

}
,

and since var {ν} = 1,

vi =



 g~←→b 2D

i




2
2
=





|X |−2 Ψ ���F [
←→
b 2D
i

] ���2




1

, (4)

where the last equality follows from Parseval’s isometry and (3).
The T 3D-spectrum coefficients are calculated through the direct

tensor product of T 2D and T 1D, as

sx1,...,xM
i, j

=
〈[

zx1 ; · · · ; zxM
]
, b2D

i ⊗b1D
j

〉
=

=
〈[

sx1
i
, · · · , sxM

i

]
, b1D

j

〉
=

M∑
t=1

b1D
j (t)s

xt
i
, (5)

where b1D
j (t) is the t-th element of the j-th basis function b1D

j of

T 1D, and [· ; · · · ; ·] denotes the stacking along the 3rd dimension.

2.2.2. Conventional methods for approximating vx1,...,xM
i, j

The exact calculation of the variance of the T 3D-spectrum coeffi-
cients sx1,...,xM

i, j
may not be immediate from (5):

vx1,...,xM
i, j

=var
{
sx1,...,xM
i, j

}
= var

{ M∑
t=1

b1D
j (t)s

xt
i

}
=

=

M∑
t=1

(
b1D
j (t)

)2
var

{
sxt
i

}
+

∑
k,t

b1D
j (k) b

1D
j (t) cov

{
sxt
i
, sxk

i

}
(6)

≈ vi

M∑
t=1

(
b1D
j (t)

)2
, (7)

where the term cov{sxt
i
, sxk

i
} represents the covariance between

same T 2D spectrum coefficients for different blocks. The approx-
imation (7) becomes an equality if the noise of the stacked blocks
is independent; in other words, noise may be correlated within each
block but not across distinct blocks. If T 1D is additionally orthonor-
mal, then

∑M
t=1

(
b1D
j (t)

)2
= 1 and vx1,...,xM

i, j
= vi , that is, the T 3D

spectrum variances will be identical to those of the T 2D spectra.
This approximation is used in BM3D [3] and its derivative works

[4, 7, 8, 9], which all use an orthonormal T 1D. However, the re-
quirement of independence between blocks is not always fulfilled:
it obviously fails if the blocks are overlapping, but when noise is
correlated it may fail even if they do not overlap as correlation may
exceed the block boundaries. The failure of this requirement results
in potentially significant errors in the calculation of the variances.

2.2.3. Exact calculation of vx1,...,xM
i, j

Observe that sxt
i

can equivalently be written as2

sxt
i
=

〈
z , b2D

i ~δxt

〉
, (8)

2The first element of b2D
i is used as its origin in convolution.
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Fig. 1. A noisy image and a group of 8 blocks (reference block
in red), and the corresponding b̃1D

j for j = 1, 2, 3, as well as the
respective b1D

j where T 1D is the Haar transform. Gray in the b̃1D
j

images indicates the zero level.

where δxt is a Dirac delta at the coordinate xt . Therefore

sx1,...,xM
i, j

=

M∑
t=1

b1D
j (t)

〈
z , b2D

i ~δxt

〉
= (9)

=

M∑
t=1

〈
z , b2D

i ~
(
b1D
j (t) δxt

)〉
. (10)

The sum in (10) can be finally seen as the convolution

sx1,...,xM
i, j

=
(
←→z ~b2D

i ~ b̃1D
j

)
(0) , (11)

where b̃1D
j =

∑M
t=1 b1D

j (t) δxt is an array of the same size of z that
is zero everywhere except at the coordinates xt where it assumes
the corresponding values b1D

j (t) (see Figure 1). Even though (11) is
arithmetically identical to (5), it physically embeds the spatial loca-
tions x1, . . . , xM that (5) had lost through the stacking. Hence,

vx1,...,xM
i, j

=var
{
sx1,...,xM
i, j

}
= var

{(
←→z ~b2D

i ~ b̃1D
j

)
(0)

}
=

= var
{(
ν~←→g ~b2D

i ~ b̃1D
j

)
(0)

}
=

=




←→g ~b2D
i ~ b̃1D

j




2
2
= (12)

=





|X |−2 Ψ ���F [
b2D
i

] ���2 ���F [
b̃1D
j

] ���2




1

. (13)

Note how (12) incorporates a convolution against b̃1D
j which is in-

stead completely missing from (4); this extra operation varies with
the relative displacement of the blocks, and thus makes (12)-(13) dif-
fer between groups, as opposed to (4)-(7) which are the same for all
groups.

Although discussed here in 2-D, the above procedure is appli-
cable to nonlocal collaborative transforms used by filters for arbi-
trary d-dimensional data, for instance by BM3D for filtering images
(d=2) and by BM4D for filtering volumetric data (d=3).

2.3. Application to BM3D

2.3.1. Block matching

In BM3D, forming groups prioritizes blocks which are the most sim-
ilar to the reference block. Since matching is based on comparing
noisy blocks, it is affected by correlation in the noise. It is thus use-
ful to consider the variances between two blocks compared in the
block matching phase.

The difference between two noisy blocks zxR and zx j can be



Fig. 2. Left to right: maps of
∑N
i=1 v

xR,x j

i,2
as a function of xR − xj

for white noise and the four noise types described in Table 1 with
var {η} = 1. Note how the center pixels are black as v

xR,x j

i,2
= 0,

i=1, . . . , N , when xR = xj .

written as

zxR − zx j



2
2
= 2

N∑
i=1

〈[
sxR
i
, sx j

i

]
, b1D

2

〉2
= 2

N∑
i=1

(
s
xR,x j

i,2

)2
, (14)

where b1D
2 = 1�√

2
[1,−1] and sxR

i
, sx j

i
are spectra produced by an

arbitrary orthonormal transform T 2D. We note that
(
s
xR,x j

i,2

)2 is a
non-central chi-squared random variable with one degree of freedom
and with mean and variance

E
{
(s
xR,x j

i,2
)2

}
= v

xR,x j

i,2
+ E2

{
s
xR,x j

i,2

}
, (15)

var
{
(s
xR,x j

i,2
)2

}
= 2(v

xR,x j

i,2
)2 + 4v

xR,x j

i,2
E2

{
s
xR,x j

i,2

}
, (16)

where v
xR,x j

i,2
can be calculated with (13) for the corresponding

T 2D and T 1D transforms. Noting that 2
∑N
i=1 E

2
{
s
xR,x j

i,2

}
=

E {

zxR − zx j

}

2
2
, we can express the expectation of (14) as

E
{

zxR − zx j



2
2

}
=



E {
zxR − zx j

}

2
2
+ 2

N∑
i=1

v
xR,x j

i,2
, (17)

which quantifies the positive bias in the block comparison and
shows that this bias depends exclusively on the noise through
v
xR,x j

i,2
, i, . . . , N , and can vary with the relative position between

blocks, i.e. with xR − xj , as illustrated in Figure 2. By subtracting
2
∑N
i=1 v

xR,x j

i,2
from



zxR − zx j



2
2
, we get an unbiased estimate of

E{

zxR− zx j

}

2
2
. Our experiments indicate that the denoising quality

is further improved by ranking potential matches according to

zxR − zx j



2
2
− 2γ

N∑
i=1

v
xR,x j

i,2
(18)

with γ = 4. Referring to Figure 2, block matching based on (18),
for any γ > 0, prioritizes blocks in white positions over the darker
ones if the differences



zxR − zx j



2
2

between the noisy blocks are
the same. We speculate that a γ > 1, beyond compensating the bias,
facilitates the inclusion in the group of noisy blocks which differ
from the reference block mainly due to a larger var

{ 

zxR − zx j



2
2

}
.

The term
∑N
i=1 v

xR,x j

i,2
can be precomputed since it depends only

on xR− xj , which is limited by the fixed size of the search neighbor-
hood where blocks are matched (e.g., 39×39 as seen in Figure 2).

2.3.2. Shrinkage
The core of BM3D is shrinkage performed on the T 3D spectrum
of the grouped noisy blocks. In particular, the standard implementa-
tion of BM3D includes two distinct denoising stages using first hard-
thresholding, then empirical Wiener filtering as the shrinkage func-
tion. Both stages crucially depend on the noise variances vx1,...,xM

i, j
,

Table 1. Base models for the four correlation kernels, where uh
and uv denote the horizontal and vertical coordinates, and Gς de-
notes a Gaussian with standard deviation ς centered at the origin.
For each experiment, the kernel g is defined as g = qn | |qn | |−22 σ,
where σ and n ∈ {1, 2, 3, 4} determine the desired noise variance
var {η}= | |g | |22=σ

2 and correlation model.

q1 16 − |uh | −15 ≤uh ≤ −15, uv =0
q2 cos

((
u2
h
+ u2

v

)1/2)
G10(uh, uv ) −50 ≤ uh, uv ≤ 50

q3 cos(uh + uv )G10(uh, uv ) −50 ≤ uh, uv ≤ 50
q4 G1.2(uh, uv ) −7 ≤ uh, uv ≤ 7

z (17.11dB) ŷ (30.42dB) z2 = ŷ+∆̂ (40.34dB) ŷ2 (41.16dB)

Fig. 3. View of denoising of Lena corrupted by q3 of Table 1
with σ2 = 0.02. From left to right: the noisy image (z), result
of collaborative hard-thresholding (ŷ), result of collaborative hard-
thresholding combined with its residual (z2), and result of refiltering
z2 (ŷ2). PSNR values in parentheses are for the full images.

which affect both the threshold in hard-thresholding and the attenu-
ation coefficients of the Wiener filter, and thus can be significantly
improved by replacing the previous estimates vi (7) with the exact
variances (13).

Unlike v
xR,x j

i,2
, the variances vx1,...,xM

i, j
cannot be precomputed

before the block matching, because they depend on the relative spa-
tial configuration of the entire group: for a typical size of search
neighborhoods and number M of blocks in the group, the number
of possible configurations is huge. Thus, vx1,...,xM

i, j
are computed

online after each group is formed.

2.3.3. Aggregation
After shrinkage, the processed blocks are transformed by (T 3D)−1

and aggregated to form an estimate of y. In aggregation, denoised
blocks from different groups are weighted based on the residual
noise of the shrunk group spectrum; the weight of a group is cal-
culated as the reciprocal of the sum of the products of variances
and squared shrinkage attenuation factors [4]. These aggregation
weights can be computed from the exact variances (13) used in
shrinkage, in place of the conventional variance estimates (7).

2.3.4. Fast implementation
The increased complexity compared to the conventional methods can
be seen from the additional global convolution in (12) or the multi-
plication and an additional Fourier transform in (13) compared to (4).
Moreover, (13) has to be recomputed for each group, whereas (7) can
be computed once at the beginning of the algorithm and reused for
every group. Even using fast algorithms, computing either (12) or
(13) for every group is not feasible for any reasonably sized image.
To decrease the computational time, the following points may be
leveraged:

1. Compute (13) with respect to a smaller Fourier transform with a
downscaled PSD;



Table 2. Average PSNR (dB) for denoising of white noise and the four correlated noise types defined in Table 1, over Barbara, Boat,
Cameraman, Hill, House, Lena, Man, and Peppers. In “proposed (refilter)”, we apply also the refiltering process described in Section 2.4
after both hard-thresholding and Wiener stages.

white noise q1 q2 q3 q4

var{η }= ‖g ‖22 0.001 0.01 0.02 0.05 0.001 0.01 0.02 0.001 0.01 0.02 0.001 0.01 0.02 0.001 0.01 0.02
proposed 35.82 30.42 28.83 26.68 36.05 28.23 25.70 35.39 29.12 27.42 37.41 31.78 30.32 33.36 25.15 22.55

proposed (refilter) 35.82 30.40 28.80 26.66 36.45 28.68 26.11 36.42 30.66 28.99 42.40 41.59 41.17 33.49 25.30 22.69
BM3D 35.83 30.47 28.86 25.79 35.93 26.64 23.24 34.36 25.36 22.46 32.42 21.76 18.67 33.21 24.26 21.44

NLM-C 34.06 28.64 27.02 24.79 30.44 21.25 18.46 30.62 21.71 19.01 29.96 20.47 17.56 19.25 19.19 19.12

2. b̃1D
j is sparse, as well as the individual cascaded 1-dimensional

FFTs required for the separable computation of F
[
b̃1D
j

]
;

3. Since most of the signal is often compacted into few sx1,...,xM
i, j

with small j, we can compute vx1,...,xM
i, j

exactly only for
j ≤ J ≤ M and approximate the rest by exploiting the iden-
tity

∑M
j=1 v

x1,...,xM
i, j

= Mvi that holds for an orthonormal T 1D.

These make it possible to achieve runtimes comparable to the orig-
inal BM3D and BM3D for correlated noise [3, 4] without signifi-
cant sacrifices in accuracy. We use a 32×32 PSD and J = 4 for the
experiments in this paper, causing around 45% increase in runtime
compared to [4]. This increase is almost entirely due to the online
calculation of the variances used for shrinkage and aggregation.

2.4. Inherent limitations of transform-domain block filtering
Even with the exact variances (13), it may not be possible to ade-
quately preserve image details while attenuating noise with certain
PSDs. In particular, the used T 2D may lack directional selectivity,
e.g., the 2-D DCT cannot differentiate between diagonal and antidi-
agonal components. The small size of the blocks further limits the
frequency resolution of T 2D. In practice, this results in oversmooth-
ing the estimate.

An estimate of the details lost due to these factors may be
obtained by comparing the global FFT spectrum of the residual
∆ = z − ŷ, where ŷ is the denoised image, against the noise PSD:

∆̂ = F−1[F [∆]H[α∆]] ,

where α∆ is a three-sigma test

α∆ =

{
1 if |F [∆] | > 3

√
Ψ

0 otherwise,

and H is a morphological dilation filter to smooth the result of the
test. A new noisy image z2 with PSD ΨH[α∆] is defined as

z2 = ŷ + ∆̂ .

As demonstrated in Figure 3, by refiltering z2 with the collaborative
filter, we can restore additional details lost when filtering z. Iterative
application of this process was not found to provide further benefits.

3. EXPERIMENTS

To assess the performance gain from the improvements described
in Section 2.3, we compare denoising results of BM3D with the pro-
posed improvements versus BM3D for correlated noise [4] as well as
NLMeans-C [10]. We consider a variety of noise correlation types
and strengths on a set of 8 natural test images. The results are re-
ported in Table 2. We can see that the exact variances play a crucial
role in enabling an effective denoising of not only correlated noise
but also strong white noise. The results obtained with the refilter-
ing described in Section 2.4 are also included in the table, with a

Noisy (17.22dB) NLM-C (17.82dB) BM3D (19.20dB) proposed (39.68dB)
(refilter)

Noisy (20.06dB) NLM-C (21.14dB) BM3D (26.90dB) proposed (27.87dB)
(refilter)

Fig. 4. A view of Peppers with diagonal pattern noise (q3, σ2=0.02)
and a view of Couple with horizontal noise (q1, σ2=0.01) denoised
by BM3D [4], NLMeans-C [10], and BM3D with the proposed im-
provements. PSNR values in parentheses are for the full images.

few examples displayed in Figure 4: in most cases the improvement
is significant, and it is especially dramatic for the diagonal pattern
noise q3, which exemplifies the limitations discussed in Section 2.4.

4. DISCUSSION AND CONCLUSIONS

We presented a method which allows for both the exact computa-
tion and effective approximations of the noise spectrum in nonlocal
collaborative transforms by taking into account the relative positions
of the matched blocks. The conducted experiments show that the
presented method can yield significant improvements in BM3D de-
noising especially in the case of strongly correlated noise. Specif-
ically, the exact variances allow us to both operate more accurate
shrinkage and to avoid matching blocks that are strongly correlated
in noise without being similar in the noise-free image. We note that
some limitations inherent to the used transforms and small size of
the block can be substantially ameliorated by refiltering the image
estimate with an added thresholded residual.

Although neural networks are widely regarded as the state-of-
the-art in white noise denoising, neural network based methods for
correlated noise denoising have not yet caught up. Expensive re-
training of the network is required especially in the case of structured
noise with visible long range correlation. The proposed method can
adapt to varying correlation without any prior training and can thus
be utilized within filters and iterative recovery schemes that require
online adjustment of the noise model such as [11, 12].
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