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Abstract A novel anisotropic estimator for image restoration is presented. The proposed approach originates from the
geometric idea of a starshaped estimation neighborhood topology. In this perspective, an optimal adaptation is achieved by
selecting in a pointwise fashion the ideal starshaped neighborhood for the estimation point. In practice, this neighborhood is
approximated by a sectorial structure composed by conical sectors of adaptive size. Special varying-scale kernels, supported
on these sectors, are exploited in order to bring the original geometrical problem to a practical multiscale optimization.
It is proposed to use this adaptive estimator iteratively. This recursion results in the anisotropic enlargement of the estima-

tion neighborhood, an effect that can be interpreted as a special diffusion process.
The resulting estimators are truly anisotropic, providing clean and accurate edge adaptation and excellent restoration

performance. Their implementation is fast as it is based on simple convolutions and scalar optimizations. Although we focus
on image processing, the approach is general and can be extended to higher-dimensional data.

1. Motivation and idea

We consider the denoising problem of restoration of the image intensity y from the noisy observations z(x)= y(x)+ση(x),
η ∼N (0,1). Our main intention is to develop algorithms efÞcient for highly anisotropic images.
When estimating y, a trade-off between noise suppression (variance) and smoothing (bias) has to be considered. Usual

images are nonstationary, often characterized by localized features. Therefore, images should be treated adaptively: for
example, one would achieve a higher noise suppression where the original image is smooth than in the vicinity of sharp
transitions such as edges, where oversmoothing should be avoided. So, the desired balance between variance and bias depends
on the image�s local features. How to control this balance is a key problem in adaptive signal processing. A novel strategy to
achieve such adaptation is presented in this paper.

1.1 Estimates with support optimization

Let X ⊂R2 (or ⊂ Z2) be the image domain. Consider a conventional kernel estimator (Þlter) in the form
ŷ(x)=

!
1Ux (x−v)z(v)dv =

!
1Ũx (v)z(v)dv =

!
Ũx
z(v)dv/µ(Ux ) , (1.1)

where Ux is a neighborhood of the origin, and the uniform smoothing kernel 1Ux has support Ux and constant value 1/µ(Ux)
on Ux (µ(Ux) stands for the Lebesgue measure of Ux ). We use the decoration ∼ to denote the translated and mirrored
neighborhood about the reference point x , Ũx (·)=Ux (x−·), distinguishing it from Ux that is always about the origin. The
term neighborhood (of a point) is used in a generic sense, meaning a simply connected set (containing the point). Relations
between sets are always considered up to a null-set.
Bias and variance of the estimate (1.1) are, respectively, mŷ(x) = y(x)−

"
1Ũx (v)y(v)dv and σ

2
ŷ (x) = σ 2/µ(Ux). The

ideal support U∗x , yielding the best mean squared error, can be found by minimization of the quadratic risk lŷ(x):
U∗x = argminUx lŷ(x), l ŷ(x)= m2ŷ(x)+σ 2ŷ(x). (1.2)

Thus ŷ (x) = " 1U∗x (x − v)z(v)dv is the best local mean estimate of y (x). The optimization (1.2) can be quite difÞcult to
achieve. In order to make it practical further speciÞcations of the problem are required.

1.1.1 Starshaped unbiased estimates and the Ux topology
We discuss here a simpliÞed model, which will serve as a ground for the development of a more general approach. Let y be
a binary black-and-white image, i.e. y (x) ∈ {0,1} ∀x , and let us restrict our attention to starshaped unbiased estimates. It
means that we consider only sets Ux which are starshaped with respect to the origin and such that mŷ(x)= 0.
The best estimate is obtained by minimization of the variance only or, equivalently, by maximization (with respect to the

set inclusion ⊂) of the set Ux . Unbiasedness holds if and only if y (v)= y (x) for almost every v ∈ Ũx . Under mild regularity
assumptions on y (e.g. piecewise regular boundary of level sets), such equality has to hold for every v ∈ Ũx . Thus, the best
unbiased estimate corresponds to the largest starshaped Ux such that y(Ũx (v))= y (x) ∀v . This procedure can be formalized
nicely in a topological manner. Let Ux be the topology constituted by all sets Ux such that: (i) Ux \ {0} is an open set in
the Euclidean topology, (ii) Ux is starshaped with respect to 0 and (iii) y(x− v) = y (x) ∀v ∈ Ux . The maximum (w.r.t. ⊂)
element in Ux corresponds to the ideal starshaped unbiased estimate of y (x), U∗x =maxUx . This suggests a risk minimization
strategy based on a progressive set enlargement within this topology. It may be achieved also by �decomposing� Ux as follows.
Let {Si }Ki=1 be a collection of K starshaped neighborhoods of the origin such that ∪Ki=1Si = R2 (e.g. a collection of conical
sectors). Then, USix = {USi

x = Ux ∩ Si : Ux ∈ Ux } are also topologies, and U∗x = maxUx = ∪Ki=1maxUSix . It means that the
optimization can be performed independently on each �subcomponent� USix . Examples of the ideal Ũ∗x are given in Figure 1
for two images: the characteristic function of an open disc and the �Cheese� image. Although different points x 2, x 22 may



Figure 1: Examples of the ideal starshaped neighborhoods Ũ∗x resulting from U∗x =maxUx .

Figure 2: Piecewise constant approximation of r∗(θ) and its representation by varying size sectors (a-b-c); adaptive fusing of
uniform sectorial kernels gh∗(x,θ i ),θ i produces the equivalent uniform anisotropic kernel g∗x (d-e).

have Ũ∗x 2 = Ũ∗x 22 , the corresponding U∗x 2 and U∗x 22 are not equal, and in both examples each point x has its own different ideal
neighborhood U∗x . Adapting perfectly to the edges, they are typically non-convex and their shape can be rather complex.
Despite the apparent simplicity of these speculations, the practical realization of this approach can be still hard to achieve,

since the function y is usually unknown and only its noisy observation z is available. In particular, unless y is known to belong
to some very speciÞc class, ensuring unbiasedness is not possible, and biased estimates have to be considered.

1.2 Estimates with kernel scale optimization

Another way to adapt to the signal�s varying local features, following the majority of multiscale techniques, is to use kernels
equipped with a scale parameter h (e.g. gh(·)= g(·/h)/h2). This estimate can be presented in the form ŷ(x) =

"
gh(x)(x −

v)z(v)dv . The scale optimization can be formulated, similarly to (1.2), as h∗(x) = argminh lŷ . The bias and variance are,
respectively, mŷ(x)= y(x)−

"
gh(x)(x− v)y(v)dv , and σ 2ŷ (x)= σ 2

"
g2h(x)(v)dv . This kind of optimization is known to be

practical and can give good results through algorithms of reasonable complexity (e.g. Mallat, 1999).
When the support of the kernel gh is bounded, the scale parameter h(x) controls the size of the neighborhood for estimation

at the point x . The support of the optimal scale kernel gh∗(x) can be thought as an approximation of the optimalU∗x considered
in (1.2). However, traditional kernels have supports of simple convex geometry (square, rectangle, circle, oval, etc.) whereas
the optimal neighborhoods can be quite complex, especially near edges or corners. Thus, this approximation of U∗x can be
quite poor.

2. Anisotropic estimator based on adaptive directional scale

A reasonable compromise between the geometrical approach discussed in section 1.1 and the above kernel-based method, is
obtained with a directional adaptive scale estimator (Katkovnik et al., 2004). The considerations from section 1.1.1 shed some
insight on how this sort of compromise is produced and clarify the geometrical properties of the estimator.
The starshapedness of U∗x allows to describe this set using polar coordinates: there exists a function r∗(θ), θ ∈ [0,2π)

(see Figure 2a), such thatU∗x ={v ∈ X,v = (v1,v2)= (rv cosθv ,rv sinθv) : rv < r∗(θv)}. Instinctively, one may assume some
sort of continuity of r∗(θ) with respect to its argument. This regularity, however, fails in the vicinity of edges where, as in
the examples shown in Figure 1, r∗(θ) presents sharp transitions. This irregular behaviour is a direct manifestation of the
anisotropy of y or, roughly speaking, that the function�s properties are different in different directions. The most natural
model, allowing good approximation of such rapid transitions and also discontinuities is to assume r∗(θ) as a piecewise
constant function of its angular argument, i.e. assuming that the optimal neighborhood U∗x has a sectorial structure, as shown
in Figure 2(b-c).
In our approach we exploit this sectorial decomposition. A collection of directional LPA (local polynomial approximation,

see Fan & Gijbels, 1996) kernels {gh,θ i }h∈H,i=1,...,K supported on such sectors is designed. Each kernel is characterized by a
direction θk and a scale parameter h. The corresponding estimate is the convolution ŷh,θ i (x)= (gh,θ i ~ z)(x). The statistical
ICI rule (Goldenshluger & Nemirovski, 1997; Katkovnik, 1999) is used to select a pointwise optimal scale h∗(x,θ i )≈ r∗(θ i )
for each direction. Let ŷh∗(x,θ i ),θ i (x) be the directional optimal scale estimate and σ 2i (x) its variance. All these estimates can
be fused in the Þnal one as follows:

ŷ(x)=
#

iλ(x,θ i )ŷh∗(x,θ i ),θ i(x), λ(x,θ i )=σ−2i (x)/
#

jσ
−2
j (x). (2.1)

The weights λ(x,θ i ) in the above convex combination are data-driven adaptive, as σ−2i (x) depend on the adaptive
h∗(x,θ i ). The estimate (2.1) is equivalent to the adaptive anisotropic kernel estimate ŷ (x) =

"
g∗x (x−v) z (v)dv , where

g∗x =
$
i λ(x,θ i )gh∗(x,θ i ),θ i . When uniform kernels gh,θk are used, the adaptive weights λ(x,θ i ) make so that also the

anisotropic kernel g∗x is uniform on its support, i.e. g∗x = 1∪i suppgh∗(x,θ i ),θ i , as shown in Figure 2(d-e).
Figure 3 shows the estimation neighborhoods resulting from the proposed anisotropic LPA-ICI approach for noisy images

(σ = 0.1). A comparison with Figure 1 shows the similarity between the previous ideal example and this concrete case.



Figure 3: �Cheese� and Cameraman (detail): optimal estimation neighborhoods Ũ∗x obtained by ICI using sectorial kernels.

Figure 4: Recursive LPA-ICI: estimation neighborhood�s fattening (left), and layout of algorithm�s implementation (right).

2.1 Recursive LPA-ICI Þltering

The idea behind this procedure is to apply recursively the anisotropic LPA-ICI algorithm, Þltering the Þnal output ŷ (2.1) once
or many times over again. Denoting by LI the overall anisotropic LPA-ICI Þlter, this recursion is expressed as follows:

z(1) = z, ŷ(l) = LI(z(l)), z(l+1) = ŷ(l), l = 1,2, . . . . (2.2)
Expanding (2.2), in order to explicitly write ŷ(l) with respect to the initial observations z, we obtain

ŷ(l)(x)=
!
g∗(l)x (x−v)ŷ(l−1)(v)dv =

! %!
···
! &
g̃∗(l)x (v(1))g̃∗(l−1)

v(1)
(v(2))···g̃∗(1)

v(l−1)(v
(l))
'
dv(1)...dv(l−1)

(
z(v(l))dv(l), (2.3)

where g∗(l)x is the anisotropic kernel at the l-th iteration, g̃∗(l)x (·)= g∗(l)x (x−·), and v(i) are auxiliary variables.

2.1.1 Estimation neighborhood�s enlargement

Under the simple settings discussed in section 1.1.1, the ideal U∗x does not depend on the observed signal z, but rather only
on the (unknown) signal y. When a second iteration is performed in (2.2), the ideal neighborhood for estimating y (x)
from z(2) = ŷ(1) is again the same U∗x as in the Þrst iteration. Since this applies to all iterations, the whole process is
described by replacing all kernels g̃∗(·)t with 1Ũ∗t in (2.3). Despite the ideal neighborhood U

∗
x is always the same for all

l, the support of the resulting kernel that is used for integration against z(v(l)) in the right hand side of (2.3) may grow
at every iteration. For example, at the second iteration the estimation support with respect to the initial observations z is
supp

"
1Ũ∗x (v)1Ũ∗v (·)dv = ∪v∈Ũ∗x Ũ∗v . This is illustrated in Figure 4(left), with (a) some ideal starshaped neighborhoods Ũ∗v

corresponding to points v belonging to, (b) the ideal neighborhood Ũ∗x of the estimation point x , and (c) the resulting enlarged
neighborhood of x , ∪v∈Ũ∗x Ũ∗v , obtained by the second iteration of the adaptive algorithm. Such sets are not necessarily
starshaped w.r.t. x .
If the ideal neighborhoods were translation-invariant, U∗x = U∗ ∀x , then (2.3) would take the simple convolutional form

ŷ(l) (x) = (1U∗ ~ · · ·~ 1U∗ ~ z)(x), where convolution between kernels is repeated l-1 times. This resembles other iterative
constructions, such as the Gaussian/Laplacian pyramids or wavelet-type projections (e.g. Mallat, 1999), where multiscale
Þltering is obtained by recursively convolving the observations against the same Þlter.
In general, however, formula (2.3) cannot be written in a simple convolutional form, because the adaptive kernels are not

translation-invariant. Nevertheless, the considerations previously given about the enlargement of ideal neighborhoods hold
similarly for the supports of the fused kernels. This anisotropic propagation of estimation neighborhoods realizes a diffusion
ßow similar to the non-linear anisotropic diffusion (Perona & Malik, 1990), but intrinsically robust to noise because of the
ICI-based adaptive scale. Regardless of their linear appearance, (2.3), as well as (2.1), are also non-linear estimators. The
non-linearity is introduced by the adaptive selection of the directional scale h∗(x,θ i ).

2.1.2 Variance of l-th iteration�s estimates

Let G(l)x,h,θ i (·) =
"· · ·" (gh,θ i (x − v(1))g̃∗(l−1)v(1)

(v(2)) ·· · g̃∗(1)
v(l−1) (·))dv(1)...dv(l−1), then, the standard deviation of the estimate

ŷ(l)h,θ i (x), needed in order to use the ICI rule to select the optimal scale h
∗(x,θ i ) at the l-th iteration, is σ ||G(l)x,h,θ i ||2. However,

its calculation is computationally quite complex, and it requires also a good deal of computer memory. These technical reasons
limit the direct and accurate implementation of the recursive system (2.2). It would be appealing to use a simpler construction,
where each step is performed without keeping track of the previous iterations, i.e. using theLI operator as a �black box�, with
a pair of inputs (observations and their standard deviations) and a pair of outputs (estimates and their standard deviations), as
shown in Figure 4(right).



Figure 5: Fragment of the Cameraman image: from left to right, original, noisy image, LPA-ICI estimate (Þrst iteration),
recursive LPA-ICI estimate (second iteration). Further iterations of the recursive procedure yield visually identical estimates.

2.1.3 Implementation
The residual noise in the estimate ŷ from (2.1) is no longer uncorrelated (estimation neighborhoods may overlap with each
other) nor its standard deviation is a constant (estimation neighborhoods are adaptive), as shown in Figure 4(right). The
expression for its variance is σ̂ 2ŷ (x) = 1/

$
i σ
−2
i (x). If we assume that this residual noise is uncorrelated, the standard

deviation of the directional estimates ŷ(2)h,θ i (x) for the second stage of the recursive algorithm would be simply calculated
as the convolution (g2h,θ i~ σ̂

2
ŷ(1) )

1/2, avoiding the use of the complicated kernel G(2)x,h,θ i . This reasoning may be extended to
further iterations, assuming that the noise in ŷ(l) is always uncorrelated. However, as this assumption does not hold, the quality
of estimation deteriorates, and typically results in oversmoothing of details in the image. It turns out, for low-order kernels,
that a simple compensating factor for the standard deviation can effectively reduce this degeneration. This modiÞcation of the
calculation of the variance may be interpreted as an attempt to Þlter out only the white component of the residual noise.
After setting the initial conditions y(0) = z and σ̂ (0)y ≡ σ , the l-th recursive step of the modiÞed recursive algorithm is

ŷ(l) = LI(ŷ(l−1)), σ̂ ŷ(l) =
%#

i

&
σ̂
(l)
i

'−2(−1/2
, l = 1,2, . . . ,

where σ̂(l)i = σ̂ ŷ(l)h∗(x,θ i ),θ i , σ̂ ŷ(l)h,θ i = α(g
2
h,θ i ~ σ̂

2
ŷ(l−1) )

1/2, and α < 1 being the Þxed correcting factor.

In spite of the striking simplicity of the modiÞcation, simulation results show that it enables ICI to properly select the
adaptive scale. Moreover, convergence of the above recursive system is easily guaranteed, since σ̂ (l)ŷ = O(αl)→ 0. More

precisely, since ||g∗x ||2≤1, there exist a constant c such that |ŷ(l)(x)− ŷ(l+1)(x) |< cσ̂ (l)ŷ (x)≤ cαlσ . This implies that ŷ(l)(x)
is a Cauchy sequence. Qualitatively, the actual convergence rate of the algorithm depends on µ

)
U∗x
* ≈ ||g∗x ||−12 , and usually

the algorithm reaches a numerical steady-state already after three iterations. The proposed recursive method can be used for
accurate detail-preserving image denoising, segmentation and edge detection applications.
Table 1 shows the ISNR and MAE (/1-distance) results for the restoration of the Cameraman image, corrupted by additive

Gaussian white noise, σ = 0.1. Zero-order uniform kernels for a total of eight directions and four scales, h ∈ {1,2,3,5},
were used with Þxed α = 2/3. These results are illustrated (for a fragment of the image) in Figure 5. The table shows a fast
convergence of the iterations and criteria values attesting the high quality of the Þltering.

iteration # noisy 1 2 3 4 5 6
ISNR (dB) 0 7.361 8.098 8.119 8.120 8.120 8.120
255∗MAE 20.38 7.894 6.597 6.538 6.535 6.535 6.535

Table 1: ISNR andMAE results for the Cameraman image denoising experiment (σ=0.1, SNR=14.39dB).

The use of higher order kernel mixtures, together with a more reÞned update of the standard deviations and a larger set of
scales allows to achieve, for the same experiment, an ISNR of 7.50, 8.23 and 8.47dB at the Þrst, second and third iteration,
respectively. A similar performance cannot be achieved by the non-recursive algorithm.
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