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Part I: Basics, Modeling and Algorithms

1 From local to nonlocal approximations;

2 Nonlocal means, block matching �ltering;

3 High-order local and nonlocal models;

4 Block matching and collaborative �ltering (BM3D algorithm);

5 Redundancy and multiple model nonlocal approximations;

6 Applications: denoising, color image denoising, deblurring, demosaicking;

7 Development of BM3D: shape-adaptive patches and adaptive PCA
transforms.
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Introduction

In local image reconstruction algorithms usually use observations in a
neighborhood of a pixel of the interest;

In the nonlocal techniques, algorithms analyze data �in large�and collects
the observations from the whole image looking for similar features;

The evolution of the nonlocal techniques from the sample nonlocal means
(NL) to the transform domain processing is an evolution to higher-order
models;

The latter algorithms are redundant, the data are processed by overlapping
blocks, and multiple estimates obtained for each pixel are fused (aggregated)
into the �nal image estimates.
� � � � � �
Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �From local kernel to
nonlocal multiple-model image denoising�, Int. J. Computer Vision, vol. 86,
no. 1, pp. 1-32, January 2010. doi:10.1007/s11263-009-0272-7
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Image denoising: observation model

Let we have independent random observation pairs fzi , xigni=1 given for
simplicity in additive form

zi = yi + εi ,

where yi = y(xi ) is a signal of interest, xi 2 R2 and εi = ε(xi ) is an additive
noise.
The denoising problem is to reconstruct y(xi ) from fzigni=1.
Variational and heuristic approaches.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 5 / 223



Image denoising: variational approach

The variational approach formalizes an image reconstruction as an optimization
problem

ŷ = argminy
1

σ2
jjz � y jj2| {z }
�delity

+µ � pen(y)| {z }
penalty

, µ > 0.

The �delity term follows from a statistical noise model and the penalty is a prior
for y .
Parametric and nonparametric formulations.
Typical parametric models are of the form

y(x) = ∑
k

ckφk (x).
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Image denoising: heuristic approach (local means)

The weighted least square method gives the following criterion

J(x0,C ) = ∑
s
wh(x

0 � xs )e2s , es = zs � C0,

where w is a signal-independent window function,

wh(x) = w(x/h),

and C0 is an approximation of y(x) at x = x0.

Minimizing J on C0:

Ĉ0(x) = argmin
C0

J(x0,C0) =) ŷh(x
0) = Ĉ0(x) =

∑s wh(x
0 � xs )zs

∑s wh(x0 � xs )
.

Example of signal-independent weight

wh(x
0 � xs ) = e�

jjx0�xs jj2
h2 , h > 0.

Example of signal-dependent weight

wh(x
0 � xs , y0 � ys ) = e�

jjx0�xs jj2
h2

� jy0�ys j2
γ , γ, h > 0.
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0) = Ĉ0(x) =
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0) = Ĉ0(x) =
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Image denoising: heuristic approach (nonlocal means)

Criterion

Jh,x 0(C ) = ∑
s
wh(y

0 � ys )[zs � C0]2, y0 = y(x0),

where the weights wh depend on the distance between the signal values at
the observation points ys and the desirable point y0 = y(x0).

Minimization, minC Jh,x 0(C ), gives the nonlocal means estimate

ŷh(x
0) = Ĉ0(x0) =

1
∑s wh(y0 � ys ) ∑

s
wh(y

0 � ys )zs ,

where y0 = y(x0).
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Local versus Nonlocal Supports

Local versus nonlocal supports for zero and �rst order polynomial �tting: local
III ; nonlocal zero-order model I [ II ; nonlocal �rst-order model I .
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Local Pointwise Approximations

Three key slogans associated with these techniques:

Locality ;

Anisotropy ;

Adaptivity .

The locality means that there is a neighborhood where the image intensity
is well approximated some continuous basis functions.
The anisotropy means that a good local approximation can be achieved
only in a non-symmetric neighborhood.
The adaptivity means that both the size and the shape should be data
adaptive.
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Local Polynomial Approximation

In a neighborhood of x0 the Taylor series gives for y(xs ):

y(xs ) ' y(x0)� y (1)x1 (x0)(x01 � x1,s )� y
(1)
x2 (x

0)(x02 � x2,s )+

y (2)x1,x2(x
0)(x01 � x1,s )(x02 � x2,s ) + 1

2y
(2)
x1 (x

0)(x01 � x1,s )2 +
1
2y
(2)
x2 (x

0)(x02 � x2,s )2....

Since the function y and the derivatives are unknown we look for
�tting data y(xs ) in the form

y(x0, xs ) ' C0 � C1(x01 � x1,s )� C2(x02 � x2,s ) +
C12(x01 � x1,s )(x02 � x2,s ) + 1

2C11(x
0
1 � x1,s )2 + 1

2C22(x
0
2 � x2,s )2...

where the coe¢ cients C0, C1 and C2 give estimates for y(x0),

y (1)x1 (x
0) and y (1)x2 (x

0),and C12,C11,C22 give estimates for y
(2)
x1,x2(x

0),

y (2)x1 (x
0) and y (2)x2 (x

0).
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How to formalize a local �t?

The weighted least square method gives the following criterion

J(x0,C ) = ∑
s
wh(x

0 � xs )e2s ,

es = ys � y(x0, xs ),

where w is a window function, wh(x) = w(x/h), and
C = (C0,C1, ....)T .

Minimizing J on C :

Ĉ (x0) = argmin
C

J(x0,C ).

The notation Ĉ (x0) emphasizes that the estimate of C depends on
x0.
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Estimates

The vector parameter Ĉ (x0) immediately gives the estimates of the
function y and the derivatives y (r ):

ŷ(x0) = Ĉ0(x0),

ŷ (1)x1 (x
0) = Ĉ1(x0),

ŷ (1)x2 (x
0) = Ĉ2(x0),

.......

The conventional windows can be used: Kaiser , Hamming , Bartlett,
Blackman, Chebyshev , etc.
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Convolutional estimates

Using the standard notation for multidimensional convolution, the
estimates can be represented in the following compact form

ŷh(x
0) = (gh ~ z)(x0) = ∑

x1,s ,x2,s

gh(x
0
1 � x1,s , x02 � x2,s )z(x1,s , x2,s ),

ŷ (r )h (x0) = (g (r )h ~ z)(x0), x0 2 X
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2D examples (demo_CreateLPAKernels.m)

The smoothing kernel gh and its amplitude frequency characteristic jGh j:
Gaussian window, m = [2, 2].

The lowpass �lter with a peak of the frequency characteristic at ω̄ = 0.
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2D examples (cont.)

The di¤erentiation kernel g (1,0)h and its amplitude frequency characteristic

jG (1,0)h j: Gaussian window, m = [2, 2].
The bandpass �lter jG (1,0)h j = 0 at ω̄ = 0.
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2D examples (cont.)

The di¤erentiation kernel g (0,1)h and its amplitude frequency characteristic

jG (0,1)h j: Gaussian window, m = [2, 2].
The bandpass �lter jG (0,1)h j = 0 at ω̄ = 0.
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2D examples (cont.)

The di¤erentiation kernel g (2,0)h and its amplitude frequency characteristic

jG (2,0)h j: Gaussian window, m = [2, 2].
The bandpass �lter jG (2,0)h j = 0 at ω̄ = 0.
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2D examples (cont.)

The di¤erentiation kernel g (0,2)h and its amplitude frequency characteristic

jG (0,2)h j: Gaussian window, m = [2, 2].
The bandpass �lter jG (0,2)h j = 0 at ω̄ = 0.
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2D examples
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ICI Adaptive Window Size

We use pointwise nonparametric regression methods known under a
generic name Lepski 0s approach and developed by Lepski O., Nemirovski
A., Goldenshluger A., Spokoiny V .

Overall, the algorithm searches for the largest local vicinity of the
point of estimation x where the LPA assumptions �t well to the data.

The estimates are calculated for a few scales and compared.

The adaptive scale is de�ned as the largest one of those for which the
estimate does not di¤er signi�cantly from the estimates corresponding
to the smaller scales.

We use this methods in the form known as the intersection of
con�dence intervals (ICI ) rule.
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LPA accuracy

eŷh(x ) = y(x)� ŷh(x) = y(x)� (gh ~ (y + ε))(x) =

y(x)� (gh ~ y)(x)| {z }
bias

� (gh ~ ε)(x)| {z }
random error

.

The variance
σ2ŷh = σ2 ∑

s
g2h (xs ).

The ICI rule gives h minimizing MSE

lŷh = Efe2ŷh(x )g = bias
2 + σ2ŷh .
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ICI rule (minimum MSE window size)
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ICI rule (minimum MSE window size)

H = fh1 < h2 < ... < hJg.
Dj = [ŷhj (x)� Γ � σŷh (x), ŷhj (x) + Γ � σŷhj (x)], j = 1, ..., J,
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A layout of the adaptive scale LPA-ICI algorithm
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Anisotropy: starshaped neighborhood

Consider a ball (disk) of the radius h de�ning a spherical neighborhood of
x ,

Bh = fu : jjx � ujj � hg.
Introduce a sectorial partition of this ball with K nonoverlapping sectors
having x as a common vertex.
The adaptivity ICI technique is used to �nd the varying scale for each
sector independently. We obtain K estimates ŷh,θi (x), i = 1, ...,K , with K
nonoverlapping supports Shθi covering the ball Bh.
The union of the supports of these sectors is a starshaped set.
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Adaptive size sectorial neighborhoods are obtained by the
LPA-ICI algorithm

.
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These are ICI adaptive directional window sizes (scales) computed for 8
directions
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These ICI adaptive directional estimates are fused in the �nal one using
the anisotropic multi-window method
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Fusing (aggregation) of directional estimates

Using K sectors we obtain K independently derived estimates for each x .
The multi � window (fused) estimates are exploited to obtain the unique
�nal estimate ŷ(x) from the partial directional ones.
With the inverse variances as the weights for the linear fusing it gives

ŷ(x) = ∑K
j=1 λj ŷθj (x), ŷθj (x) = ŷh,θj (x)jh=h+(x ,θj ),

λj = σ�2j (x)/ ∑K
i=1 σ�2i (x),

where

ŷh,θj (x) = (gh,θj ~ z)(x), σ�2j (x) = σ2ŷ,θj
(x , h)jh=h+(x ,θj ),

σ2ŷ ,θj
(x , h) = σ2 ∑

x
g2h,θj (x).
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Fusing (aggregation) of directional estimates

The weights λj are data-driven adaptive as σ�2j (x) depend on the
adaptive pointwise h+(x , θj ).
Assuming that the supports of the kernels gθj ,h are not overlapping and
neglecting that the kernels have the point x in common, we obtain for the
variance of the fused estimate

σ2ŷ (x) = ∑K
j=1 λ2j σ

2
j (x) =

1

∑K
j=1 σ�2j (x)

.
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Shape-Adaptive DCT Filter (Local Multipoint)

This approach to estimation for a point x can be roughly described as the
following four stage procedure.

Stage I (spatial adaptation): For every x 2 X , de�ne a neighborhood
Ũ+x of x where a simple low-order polynomial model �ts the data;

Stage II (order selection): apply some localized transform (parametric
series model) to the data on the set Ũ+x , use thresholding operator
(model selection procedure) in order to identify the signi�cant (i.e.
nonzero) elements of the transform (and thus the order of the
parametric model).
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Shape-Adaptive DCT Filter

Stage III (approximation): Calculate, by inverse-transformation of the
signi�cant elements only, the corresponding estimates ŷŨ+x (v) of the
signal for all v 2 Ũ+x . These ŷŨx are calculated for all x 2 X .

Stage IV (aggregation): Let x 2 X and Ix =
�
x 2 X : x 2 Ũ+x

	
be

the set of the centers of the neighborhoods which have x as a
common point. The �nal estimate ŷ(x) is calculated as an aggregate
of
�
ŷŨ+x (x)

	
x2Ix

.

One key aspect in this procedure is that by demanding the local �t of
a low-order polynomial model, we are able to avoid the presence of
singularities, discontinuities, or sharp transitions within the transform
support Ũ+x . In this way, we increase the sparsity in the transform
domain, improving the e¤ectiveness of thresholding.
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singularities, discontinuities, or sharp transitions within the transform
support Ũ+x . In this way, we increase the sparsity in the transform
domain, improving the e¤ectiveness of thresholding.
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Illustrations
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Shape-Adaptive DCT Transform

Illustration of the shape-adaptive DCT transform and its inverse.
Transformation is computed by cascaded application of one-dimensional
varying-length DCT transforms, along the columns and along the rows.
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Multipoint Estimate Fusing (fusing-aggregation)

In order to obtain a single global estimate ŷ : X ! R de�ned on the whole
image domain, all the local patch estimates are averaged together using
adaptive weights wx 2 R in the following convex combination:

ŷ =
∑x2X wx ŷŨ+x

jX

∑x2X wxχŨ+x
.
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Aggregation (multipoint) in action

A cross-section of length 31 pixels from Peppers test-image (σ = 25).
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Implementation of SA-DCT Filter

http://www.cs.tut.�/~foi/SA-DCT/

demo_SADCT_denoising.m

demo_SADCT_color_denoising.m

demo_SADCT_deblurring.m

demo_SADCT_deblocking.m

demo_SADCT_inverse_halftoning.m
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NL-means �lters

A. Buades, et al., �A review of image denoising algorithms, with a new one,�
SIAM Multiscale Modeling and Simulation, vol. 4, 2005.
� � � � � � � � �

The nonlocal means (NL-means) as they are introduced by Buades et al.
(2005) have been given in a di¤erent form where these weights calculated
over spatial neighborhoods of the points x0 and xs .

These neighborhood-wise di¤erences can be interpreted as more reliable way
to estimate y0 � ys from the noise samples alone.

Then, the nonlocal mean estimate is calculated in a pointwise manner as the
weighted mean with the weights de�ned by the proximity measure between
the image patches used in the estimate.
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NL-means �lters (cont.)

This estimation can be formalized as minimization of the weighted squared
residual criterion

Ih,x (C ) = ∑
s
wh,s (x

0, xs )[zs � C ]2,

with, say, Gaussian weights

wh,s (x
0, xs ) = e

�∑v2V (z(x0+v)�z (xs+v ))2

h2

de�ned by the Euclidean distance between the observations z in
V -neighborhoods of the points x0 and xs , V being a �xed neighborhood of
x0.

The nonlocal means estimate is calculated as the weighted mean

ŷh(x
0) = ∑

s
gh,s (x

0)zs , gh,s (x
0) =

wh,s (x0, xs )

∑s wh,s (x0, xs )
.
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Nonlocal transform domain: multipoint estimates

We consider nonlocal estimates by use of the transforms enabling the adaptive
high-order approximations of the windowed data.

Let the image be de�ned on a regular 2D grid X . Consider a windowing
C = fXr , r = 1, . . . ,Nsg of X with Ns blocks (uniform windows)
Xr � X of size nr � nr such that [Nsr=1Xr = X .
The noise-free data y (x) and the noisy data z(x) windowed on Xr are
arranged in nr � nr blocks denoted as Yr and Zr , respectively.

Typically, the blocks may overlap and we use transforms in conjunction with
the concept of the redundancy of natural signals.
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Nonlocal transform domain (cont.)

Mainly these are the 2-D discrete Fourier and cosine transforms (DFT and
DCT), orthogonal polynomials, and wavelet transforms. The transform,
denoted as T 2D

r , is applied for each window Xr independently as

θr = T 2D
r (Yr ) ,

h
θr = DrYrDTr

i
r = 1, . . . ,Ns ,

where θr is the spectrum of Yr , and Dr are orthonormal matrices

DrDTr = D
T
r Dr = I .

The equality enclosed in square brackets holds when the transform T 2D
r is

realized as a separable composition of 1-D transforms, each computed by
matrix multiplication against an nr � nr orthogonal matrix Dr .
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Nonlocal transform domain (cont.)

The inverse T 2D�1
r of T 2D

r de�nes the signal from the spectrum as

Yr = T 2D�1
r (θr ) ,

h
Yr = DTr θrDr

i
r = 1, . . . ,Ns .

The noisy spectrum of the noisy signal is de�ned as

θ̃r = T 2D
r (Zr ) ,

h
θ̃r = DrZrDTr

i
r = 1, . . . ,Ns .

The signal y is sparse if it can be well approximated by a small number of
non-zero elements of the spectrum θr .
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Nonlocal transform-domain calculation: single model

Let Zr be a reference window and Zs be all others.
The non-local estimate for r -th window is formalized as minimization of the
weighted criterion

Ih,Zr (θ) = ∑
s
wh(Zr ,Zs )jjZs �DT θD jj22,

with, say, Gaussian weights

wh(Zr ,Zs ) = exp(�jjZr � Zs jj22/h2).

The estimate for r -th reference window is

θ̂r = argmin
θ
Ih,Zr (θ).
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Nonlocal transform-domain calculation: single model
(cont.)

The minimum conditions

∂

∂θ
Ih,Zr (θ) = 0 =) ∑

s
wh(Zr ,Zs )(DZsD

T � θ) = 0 =)

θ̂r =
∑s wh(Zr ,Zs ) � θ̃s

∑s wh(Zr ,Zs )
, θ̃r = DZrDT .

The solution is the weighted mean of the noisy spectrums θ̃s versus the weighted
mean of the means in the standard NL-means.
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Nonlocal transform domain: single model with prior
(penalty)

All denoising is because of this weighted mean. It can be essentially improved
imposing a prior on the spectrum θ.

The non-local estimate for r -th window is formalized as minimization of the
weighted criterion

Ih,Zr (θ) =
1

σ2 ∑
s
wh(Zr ,Zs )jjZs �DT θD jj22 + µ2 � pen(θ).

pen(θ) = jjθjj0 is l0-norm is equal to a number of nonzero items in the
matrix θ. jjθjj0 is a measure of the model complexity.
Other norms also can be used jjθjj1 = ∑ jθij j, jjθjj2 =

q
∑ θ2ij .

A minimal complexity estimate is calculated as

θ̂r = argmin
θ

1
σ2 ∑

s
wh(Zr ,Zs )jjθ̃s � θjj22 + µ2 � jjθjj0.
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Nonlocal transform domain: single model with prior, single
window

For a single window the minimal complexity model is calculated as

θ̂r = argmin
θ

1
σ2
jjθ̃r � θjj22 + µ2 � jjθjj0.

It can be shown that this solution gives the so-called hard-thresholding (�ltering)

θ̂r (i , j) =
�

θ̃r (i , j), if jθ̃r (i , j)j � σµ,
0, if jθ̃r (i , j)j < σµ.

We use the symbol Υ(�) for the thresholding operation

θ̂r (i , j) = Υ(θ̃r (i , j)).

When θ̂r found the windowed estimate is calculated as

Ŷr = DT θ̂rD.
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Nonlocal transform domain: biasedness and variance

Let us evaluate the e¢ ciency of the thresholding �ltering.
For the noisy data we have (before �ltering)

Efθ̃r g = EfDrZrDTr g = DrEfZ r gD
T
r = DrYrD

T
r = θr ,

thus θr � Efθ̃rg = 0.
For the hard-thresholded data

Efθ̂r (i , j)g =
�

θr (i , j), if jθ̃r (i , j)j � σµ,
0, if jθ̃r (i , j)j < σµ,

=)

θr (i , j)� Efθ̂r (i , j)g =
�
0 , if jθ̃r (i , j)j � σµ,
θr , if jθ̃r (i , j)j < σµ.
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Nonlocal transform domain: biasedness and variance
(cont.)

The variance of the thresholded data

∆r θ = θ̃r � θr = DrZrDTr �DrYrDTr = DrErDTr ;

Svar = ∑
i ,j
varfθ̃r (i , j)g = ∑

i ,j
E (∆r θ(i , j))2 = σ2n2r .

Svar ,thr = ∑
i ,j
E (θ̂r (i , j))2 = σ2(n2r � n2r ,0) = σ2Nxrhar,

where n2r ,0 is a number of jθ̂r j = 0, Nxrhar is the number of retained (non-zero)
coe¢ cients after hard-thresholding.
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Nonlocal transform domain with prior: single model, many
windows

It can be veri�ed that
Ih,Zr (θ) =

1
σ2 ∑s wh(Zr ,Zs )jjZs �DT θD jj22 + µ2 � pen(θ) can be rewritten

as

Ih,Zr (θ) =
1

σ2 ∑
s
wh(Zr ,Zs )jjθ̄r � θjj22 + µ2 � pen(θ) + const,

where
θ̄r = ∑

s
wh(Zr ,Zs )θ̃s/ ∑

s
wh(Zr ,Zs ).

Then the minimization of Ih,Zr (θ) and estimation for the reference block becomes

θ̂ = argmin
θ
jjθ̄r � θjj22 + µ2r pen(θ),

Ŷr = T 2D�1 �θ̂� .
where µ2r = σ2µ2/ ∑s wh(Zr ,Zs ).
If pen(θ) = jjθjj0 the estimate θ̂ is a thresholded version of θ̄r .
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Block matching and 3D �ltering (BM3D): nonlocal
�ltering with multiple models

K. Dabov, et al., �Image denoising by sparse 3-D transform-domain
collaborative �ltering,� IEEE Trans. IP, vol. 16, no. 8, 2007.
� � � � � � � � � � �
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Stage I (block matching, grouping)

The grouping is a concept of collecting similar d-dimensional fragments of a
given signal into a d + 1-dimensional data structure that we term �group.�
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Stage I (block matching, grouping)

Distance between the blocks:

d (Zr ,Zs ) = kZr � Zskp ,

where typically p = 2.

Grouping rule:
Shtr = fs : d (Zr ,Zs ) � τg .

τ � 0 is a (dis)similarity threshold.

Group (stacking represented as disjoint union):

ZS htr = ä
s2S htr

Zs .
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Stage II (3D collaborative �ltering)

Collaborative �ltering is realized as shrinkage in transform domain.
Assuming (2+ 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.

Apply a (2+ 1)-dimensional linear transform on a group.

Shrink (e.g. by soft- and hard-thresholding, Wiener �ltering) the transform
coe¢ cients to attenuate the noise.

Invert the transform to produce estimates of all grouped fragments.

Return the �ltered fragments to their original locations.
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Collaborative �ltering implementation

The collaborative �ltering of ZS htxr is realized by hard-thresholding in 3D transform
domain.
The 3D linear transform, denoted T ht3D , is expected to take advantage of the
sparsity for the true signal group YS htxr .
This allows for e¤ective noise attenuation by hard-thresholding, followed by
inverse transform that yields a 3D array of block-wise estimates

bYhtS htxr = T ht�13D

�
Υ
�
T ht3D

�
ZS htxr

���
,

where Υ is a hard-threshold operator with threshold µ3Dσ.
It is assumed that the T ht3D transform has a DC-term which is never thresholded.
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Sparsity of Collaborative 3D Hard-Thresholding
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Stage III (fusion/aggregation of �ltered fragments)

The estimates of Stage II are heavily overlapping.
Calculate the pointwise estimates using the variances of the estimates in the
fragments.
The �nal estimate by is computed by a weighted average of the block-wise
estimates bY ht,xrx2S htxr

using the special weights whtxR

bybasic (x) = ∑
xr2X

∑
xm2S htxr

whtxr
bY ht,xrxm (x)

∑
xr2X

∑
xm2S htxr

whtxr χxm (x)
, 8x 2 X ,

whtxr =
1

σ2Nxrhar

where χxm : X ! f0, 1g is the characteristic function of the square support of a
block located at xm 2 X , and the block-wise estimates bY ht,xrxm are zero-padded
outside of their support, where Nxrhar � 1 is the number of retained (non-zero)
coe¢ cients after hard-thresholding.
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BM3D Algorithm Flowchart

Step 1 �Hard thresholding
Step 2 �Wiener �ltering
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Features of BM3D�s Wiener-�ltering step

Block Matching is carried out on the basic estimate bybasic (output of the
hard-thresholding step).

Hard thresholding is replaced by Wiener �ltering. We de�ne the empirical
Wiener shrinkage coe¢ cients as

WSwiexr
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Examples of BM3D denoising performance
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Nonlocal BM3D vs SA-DCT: value of nonlocality
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PSNR as a function of σ. BM3D ("squares"), BLS-GSM (circles),

exemplar-based denoising ("x"), K-SVD denoising ("diamonds"), and Pointwise
SA-DCT denoising ("stars").
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Dependency of the output PSNR (dB) on the used
transforms

Transform Boats Lena
σ = 25 T ht2D T wie2D T1D T ht2D T wie2D T1D
Haar 29.31 29.84 29.91 31.24 31.93 32.08
Db2 29.22 29.83 29.90 31.19 31.97 32.06
Db4 29.34 29.88 29.89 31.31 32.01 32.06
Db6 29.30 29.86 29.89 31.28 31.98 32.06
Bior1.3 29.42 29.87 29.90 31.35 31.96 32.06
Bior1.5 29.43 29.88 29.90 31.37 31.97 32.06
WHT 29.22 29.84 29.88 31.24 32.00 32.07
DCT 29.35 29.91 29.88 31.42 32.08 32.07
DST 29.33 29.91 29.79 31.36 31.97 31.92
DC+rand 29.07 29.75 29.88 31.06 31.88 32.06
DC-only - - 28.03 - - 30.65
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Computational complexity
Quality vs. speed scalability

Approx. execution time for a 256�256 grayscale image
on 1.5-GHz Celeron M (Matlab)

Fast pro�le 0.7 sec.
Normal pro�le 4.1 sec.

Fast pro�le results in about 0.2-dB PSNR loss vs. Normal pro�le.
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Extensive independent benchmarking demonstrates the
superiority of the BM3D algorithms

PSNR/MSSIM

http://www.stanford.edu/~slansel/DenoiseLab/
http://www.cs.utoronto.ca/~strider/Denoise/Benchmark/

Perceptual quality (human subjects)

Van der Weken, D., E. Kerre, E. Vansteenkiste, and W. Philips, �Evaluation of fuzzy

image quality measures using a multidimensional scaling framework�, Proc. 2nd Int.

Workshop Video Process. Quality Metrics Consum. Electron., VPQM2006, Scottsdale,

AZ, Jan. 2006.

Vansteenkiste, E., D. Van der Weken, W. Philips, and E. Kerre, �Perceived image Quality

Measurement of state-of-the-art Noise Reduction Schemes�, Lecture Notes in Computer

Science 4179 - ACIVS 2006, pp. 114-124, Springer, Sep. 2006.

Performance bounds for the image denoising problem

http://users.soe.ucsc.edu/~priyam/bounds/
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Performance bounds for the image denoising problem
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Performance bounds for the image denoising problem
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Color denoising
Exploit structural correlation in luminance-chrominance space

Key idea: the structures (e.g., objects, edges, details) which determine
the spatial adaptivity are the same across all color channels.24 y1

y2
y3
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The method is implemented after transformation to a luminance-chrominance
color-space (e.g., opponent, YUV, YCbCr).
� � � � � � � � � � � � � �
Foi, A., V. Katkovnik, and K. Egiazarian, �Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of

Grayscale and Color Images�, IEEE TIP, vol. 16, no. 5, 2007.
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Color Image Denoising with C-BM3D

The same grouping de�ned for the luminance channel is used for all three color
channels.

Flowchart of C-BM3D.

� � � � � � � � � � � � � �

K. Dabov, et al., �Color image denoising via sparse 3D collaborative �ltering with grouping constraint in luminance-chrominance

space,� Proc. IEEE Int. Conf. Image Process., ICIP 2007, San Antonio, TX, USA, 2007.
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Color Image Denoising Example

Top row contains noise-free Y, Cb, and Cr channels and the bottom row contains
corresponding noisy ones (σ = 22).
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Color Image Denoising Example

On the left: noisy (σ =35) House and a fragment of it; on the right: the
corresponding denoised image (PSNR=31.58 dB) and fragment.
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Image Denoising with BM3D

http://www.cs.tut.�/~foi/GCF-BM3D/

(1) BM3D.m

[PSNR, y_est] = BM3D(y, z, sigma, pro�le, print_to_screen)

(2) CBM3D.m (color version)

[PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma, pro�le, print_to_screen,
colorspace).
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Image Deblurring: setting of the problem

Deblurring problem: reconstruct yi from fzi , xigni=1,

zi = (y ~ v)(xi ) + σεi ,

where εi = ε(xi ) i.i.d. N (0, 1).
Standard approach: regularized inverse

ŷ = argmin
y
jjz � (y ~ v)jj22 + µ � pen(y), λ > 0.

An invariant µ is a principal limitation.
In what follows we use V (f ) = Ffvg and Z (f ) = Ffzg, Y (f ) = Ffyg.
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BM3D based deblurring

Our approach is based on two inverse estimates:

Regularized inverse with small regularization parameter complemented by
BM3D �ltering: in the frequency domain it is calculated as

Ŷ RI (f ) =
V �(f )

jV (f )j2 + α2
Z (f ),

Wiener inverse complemented by BM3D �ltering: in the frequency domain it
is calculated as

Ŷ RWI (f ) =
V �(f )

jV (f )j2 + n1n2σ2/jŶ RI (f )j2
Z (f ).

This �ltering implements (imitates) e¤ects of the varying adaptive
regularization parameter µ.
� � � � �
K. Dabov, et al., �Image restoration by sparse 3D transform-domain collaborative

�ltering,� Proc. SPIE Electronic Imaging �08, no. 6812-07, San Jose, 2008.
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Image Deblurring with BM3D (BM3DDEB.m)
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Color Filter Array Demosaicking

Bayer color �lter array (CFA)
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Noise-Free Demosaicking

High correlation between channels. It is likely that color channels are going to
have similar texture and edge locations.
� � � � � �
L. Zhang and X. Wu, �Color demosaicking via directional linear minimum mean
square-error estimation,� IEEE Trans. IP., vol. 14, no. 12, 2005.
� � � � � �
Paliy, et al. �Denoising and Interpolation of Noisy Bayer Data with Adaptive
Cross-Color Filters�, SPIE-IS&T Electronic Imaging, Visual Communications and
Image Processing 2008, vol. 6822, San Jose, 2008.
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Noise-Free CFA Demosaicking
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Noisy CFA Demosaicking
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How to deal with noise?

Denoising AFTER demosaicking.

No adequate noise model! Interpolation changes statistical model of the noise in
a complex and hardly computable form;
Filter should rely only on constraints re�ecting the general a priori knowledge
about the image structure.

JOINT demosaicking-denoising.(Paliy et al., Zhang et. al)

Modify demosaicking method to be robust against noise;
Design is di¢ cult! Combining antagonistic procedures. Denoising s smoothing,
while demosaicking/interpolation s reconstruction of high-frequency details.

Can we do Denoising BEFORE demosaicking?

Mosaic structure violates assumptions about local smoothness of the natural
images on which �lters were relying;
Split(R,G 1,G 2,B) -> Denoise -> Combine - this leads to smoothing �ne
details.
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Modern Cross-Color Denoising Approaches

What has changed in novel algorithms?
Local smoothing is not critical anymore. Filters exploiting non-local similarity of
small image patches.

� � � � � � �
Zhang, et all., �PCA-based Spatial Adaptive Denoising of CFA Images for
Single-Sensor Digital Cameras,� IEEE Trans. IP, vol. 18, no. 4, 2009.

� � � � � � �
A. Danielyan, et al., �Cross-color BM3D �ltering of noisy raw data�, Proc. Int.
Workshop on Local and Non-Local Approx. in Image Process., LNLA 2009,
Tuusula, Finland, pp. 125-129, 2009.

� � � � � � �
Foi, A., �Clipped noisy images: heteroskedastic modeling and practical
denoising�, Signal Processing, vol. 89, no. 12, pp. 2609-2629, Dec. 2009.
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BM3D with color-constrained grouping

Block grouping in BM3D modeling: unconstrained (left) and color-constrained
(right)
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Experiment 1. Denoising and demosaicking (GN).

Proposed Zhang, 2009 Proposed Zhang, 2009
σ 5/255 12/255

R

G

B

37.8
39.1
37.5

36.8
38.0
36.6

33.9
34.6
33.8

32.6
33.2
32.6

R

G

B

32.7
34.5
32.8

31.7
33.2
31.9

29.6
30.5
29.8

28.5
29.3
28.7

R

G

B

35.7
36.8
36.3

34.8
35.9
35.4

31.8
32.5
32.6

30.9
31.6
31.6

R

G

B

37.7
39.3
38.2

37.3
38.7
37.6

34.4
35.5
34.6

33.9
34.8
33.9

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 82 / 223



Experiment 2. Gaussian-Poissonian Noise and clipping

Proposed Zhang, 2009
σ2 (y) = ay + b a = 0.004, b = 0.022
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Gaussian noise

From left to right: ground truth, proposed denoising + interpolation
(Zhang, 2005), denoising (Zhang, 2009) + interpolation (Zhang, 2005),
Gaussian noise, σ = 12/255.
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Signal-dependent noise

From left to right: ground truth, proposed denoising + interpolation
(Zhang, 2005), denoising (Zhang, 2009) + interpolation (Zhang, 2005),
signal-dependent noise (a = 0.004, b = 0.02 ).
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BM3D algorithms with
adaptive-shape neighborhoods
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BM3D algorithm with SA-DCT (SA-BM3D)

The algorithm uses grouping of adaptive-shape neighborhoods whose
surrounding square supersets have been found similar by a block-matching
procedure.

The data de�ned on these grouped neighborhoods is stacked together,
resulting in 3-D structures which are generalized cylinders with
adaptive-shape cross sections.

These 3-D groups are characterized by a high correlation along all the three
dimensions.

A 3-D decorrelating transform is computed as a separable composition of the
Shape-Adaptive DCT (SA-DCT) and a 1-D orthonormal transform.
� � � � �
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �A Nonlocal and Shape-Adaptive Transform-Domain Collaborative

Filtering,� Proc. 2008 Int. Workshop on Local and Non-Local Approximation in Image Processing, LNLA 2008,

Lausanne, Switzerland, 2008.
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BM3D algorithm with SA-DCT (SA-BM3D)

Illustration of applying 3D transform on a group of shape-adaptive
neighborhoods.
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BM3D algorithm with SA-DCT (SA-BM3D)

BM3D SA-DCT SA-BM3D
27.93 27.51 27.95

BM3D�s good reconstruction of textures and regular image structures and
SA-DCT�s good reconstruction of sharp edges of varying curvature and image
singularities.
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BM3D algorithm with shape-adaptive PCA
(BM3D-SAPCA)

A proper selection of the transform is crucial element for ensuring the
success of the transform-based methods.

This problem, known under di¤erent names as best basis, dictionary, or prior
selection, has been a subject of intensive study from the very beginning of
the development and application of estimation/approximation methods. In
particular, the use of bases adaptive to the data at hand is of special interest.

This latest version of BM3D algorithm incorporating a shape-adaptive
Principal Component Analysis (PCA) as part of the 3-D transform. For a
3-D group of adaptive-shape image patches, a shape-adaptive PCA basis is
obtained by eigenvalue decomposition of an empirical second-moment
matrix computed from these patches.

Overall 3-D transform is a separable composition of the PCA (applied on
each image patch) and a �xed orthogonal 1-D transform in the third
dimension.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 90 / 223



Flowchart of BM3D-SAPCA

� � � � � � � � � � � � �
K. Dabov, et al., �BM3D Image Denoising with Shape-Adaptive Principal Component Analysis�, Proc. Workshop on Signal

Processing with Adaptive Sparse Structured Representations (SPARS�09), Saint-Malo, France, April 2009
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Principal Components of PCA in BM3D-SAPCA

Illustration of the PCs (shown on the right side). The green overlay shows the
found similar neighborhoods used to form a 3-D group.

The PCs are listed in decreasing magnitude of their corresponding eigenvalues.
The �rst few PCs have the strongest similarity with the noise-free signal in the

neighborhood.
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PCA calculations

Each of the 2-D neighborhoods in the group is vectorized with vectors as
of the length Ne . The sample estimate of the covariance matrix Ne �Ne
is calculated as

Ĉ = [a1, a2, ..., aNg ] � [a1, a2, ..., aNg ]T ,

where Ng is a number of the patches in the group.
The PCA eigenvalue decomposition yields

UT ĈU = S = diagfs1, ..., sNe g.

The largest eigenvalues such that sj > th � σ2 are selected and the
corresponding orthonormal columns of U are used as a set of orthonormal
bases.
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Illustrations: from BM3D to BM3D-SAPCA

Original Noisy, σ = 35 BM3D (27.82, 0.8207)

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)

The use of a data-driven adaptive transforms for the collaborative �ltering results
in a further improvement of the denoising performance, especially in preserving

image details and introducing very few artifacts.
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Experimental comparison

The algorithms are applied on a set of 10 di¤erent test images corrupted by
additive white Gaussian noise with standard deviations σ = 5, 15, 20, 25, 35.
The comparison is made in terms of both PSNR and mean structural-similarity
index map (MSSIM).

We can see that three algorithms based on the collaborative �ltering paradigm
occupy the top-three places also in this comparison.

� � � �
Z. Wang, et al."Image quality assessment: From error visibility to structural similarity," IEEE

Trans. IP. 13, no. 4, 2004.
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Experimental comparison (PNSR)

PSNR results obtained for 10 di¤erent images with 5 di¤erent levels of noise. The
numbers are the results obtained by the BM3D-SAPCA algorithm.
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Experimental comparison (MSSIM)

MSSIM results obtained for 10 di¤erent images with 5 di¤erent levels of noise.
The numbers are the results obtained by the BM3D-SAPCA algorithm.
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Experimental comparison (PNSR)
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Experimental comparison (PNSR)
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Part II: Some Applications

Non-Gaussian Image Processing;

Video Processing with BM3D;

Compressive Sensing;

Image Resizing;

Video Super-Resolution;

BM3D Joint Denoising-Sharpening through Alpha-Rooting
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One-parameter families of distributions

Let z 2 Z � R be a random variable distributed according to a one-parameter
family of distributions DDDDDDDDD = fDθg, where θ 2 Θ � R denotes the parameter.

µ (θ) = E fz jθg and σ (θ) = std fz jθg
conditional expectation and standard deviation of z

given as functions of the parameter θ.

Example: DDDDDDDDD Poisson distributions with mean θ 2 Θ = [0,+∞),

Pr [z = ζjθ] = e�θ θζ

ζ! , ζ 2 N.

σ (θ) =
p

θ

µ (θ) = θ
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One-parameter families of distributions

Dθ µ (θ) σ (θ)

Poisson

Pr [z = ζjθ] = e�θ θζ

ζ! , ζ 2 N, θ 2 [0,+∞) θ
p

θ

Scaled Poisson (scale χ > 0)

Pr
h
z = ζ

χ jθ
i
= e�θ θζ

ζ! , ζ 2 N, θ 2 [0,+∞) θ
χ

p
θ

χ =

r
µ(θ)

χ

Binomial (n trials)

Pr [z = ζjθ] = (nζ)θζ (1� θ)n�ζ , ζ 2 N, θ 2 [0, 1] nθ
p
nθ (1� θ) =

q
µ(θ)(n�µ(θ))

n
Scaled binomial (n trials, scale n)

Pr
h
z = ζ

n jθ
i
= (nζ)θ

ζ (1� θ)n�ζ , ζ 2 N, θ 2 [0, 1] θ

q
θ(1�θ)
n

Negative binomial (exponent k)

Pr [z = ζjθ] = Γ(ζ+k )
ζ!Γ(k )

�
θ

θ+k

�ζ � k+θ
k

��k
, ζ 2 N, θ 2 [0,+∞) θ

q
θ(θ+k )
k

Scaled negative binomial (exponent k , scale χ > 0)

Pr
h
z = ζ

χ jθ
i
=

Γ(ζ+k )
ζ!Γ(k )

�
θ

θ+k

�ζ � k+θ
k

��k
, ζ 2 N, θ 2 [0,+∞) θ

χ

r
θ(θ+k )

χ2k
=

r
µ(θ)(µ(θ)χ+k )

χk

Multiplicative normal (scale χ > 0)

pdf [z jθ] (ζ) = χ

θ
p
2π
e
� (ζ�θ)2χ2

2θ2 θ θ
χ

Doubly censored normal with standard-deviation s (θ)

pdf [z jθ] (ζ) = Φ
�
�y

σ(y )

�
δ0(ζ) +

1
σ(y ) φ

�
ζ�y
σ(y )

�
χ[0,1] +

�
1�Φ

�
1�y
σ(y )

��
δ0(1� ζ)
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Variance-stabilization problem

Find a function f : Z ! R such that the transformed variable f (z)
has constant standard deviation, say, equal to c , std ff (z) jθg = c .

the (conditional) standard deviation does not depend anymore on the
distribution parameter;
heteroskedastic z turns into a homoskedastic f (z).

Constraints:

!!! f should be independent of θ;
!!! avoid pathological solutions (e.g., f identically constant);
require, e.g., f to be monotone strictly increasing;
the conditional distributions of f (z) possibly not too bad.
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Variance stabilization is typically impossible to achieve

Positive result: multiplicative normal
f (z) = log jz j

Negative result: Bernoulli
Binary samples z 2 f0, 1g of the Bernoulli distribution with parameter

θ = E fz jθg cannot be stabilized to the same constant variance for
di¤erent values of θ:

E fg (z) jθg = θg (1) + (1� θ) g (0)

var fg (z) jθg = E
n
(g (z)� E fg (z) jθg)2 jθ

o
=

(g (0)� g (1))2 θ (1� θ).

Exact stabilization is not possible for Poisson, Binomial, and most other
families used in applications.

In practice, we deal with either approximate or asymptotic stabilization.Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 104 / 223



Variance stabilization: history and examples

Classic heuristic stabilizer as inde�nite integral form

f (z) =
Z z 1

σ (θ)
dµ (θ) . (**)

Idea: consider a local �rst-order expansion of f at µ (θ)
(i.e., assume σ (θ) locally constant),

f (z) ' f (µ (θ)) + (z � µ (θ))
∂f
∂z
(µ (θ)) ,

We have

std ff (z) jθg ' ∂f
∂z
(µ (θ)) σ (θ) ,

then impose std ff (z) jθg = c and obtain the inde�nite integral (**).

Known and used already in the 1930�s (e.g., Tippett 1934, Bartlett 1936),
often rediscovered in signal processing (e.g., Prucnal&Saleh 1981,
Arsenault&Denis 1981, Kasturi et al. 1983, Hirakawa&Parks 2006).

Very rough, but useful as a �rst guess: nearly all classical stabilizers can be
seen as a slight modi�cation of (**).
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Variance stabilization: Poisson

f (z) =
R z 1

σ(θ)
dµ (θ) =

R z 1p
θ
dµ (θ) = 2

p
z .

Bartlett 1936: 2
q
z + 1

2

Anscombe 1948: 2
q
z + 3

8 (Anscombe attributes the result to
A.H.L. Johnson)

Freeman&Tukey 1950:
p
z +

p
z + 1

In the same way stabilizers were derived for the Binomial and Negative
Binomial distribution families (�angular� transformations based on the
arcsin and hyperbolic arcsin).
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Variance stabilization: Poisson

std ff (z ) jyg

E fz jyg = y
Figure: Conditional standard-deviation std ff (z) jyg of the transformed Poisson
variables z with parameter y after stabilization by �ve root-type transformations.
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Denoising Poisson-count images

One approach is to use the following three-step procedure:

Stabilize the noise variance by applying the Anscombe transformation.

Denoise with an algorithm designed for AWGN.

Apply an inverse transformation to the denoised image.
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Poisson noise

We observe pixel values zi , i = 1, . . . ,N (=noisy data).

We consider each zi to be an independent random Poisson variable,
whose mean yi we want to estimate.

Variance is data-dependent:

Efzi j yig = yi = varfzi j yig.
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Poisson noise

Poisson noise is de�ned as

ηi = zi � Efzi j yig.

Thus, we have

varfηi j yig = varfzi j yig = yi .

We want to remove this data-dependence by a variance-stabilizing
transform.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 110 / 223



Poisson noise

Poisson noise is de�ned as

ηi = zi � Efzi j yig.

Thus, we have

varfηi j yig = varfzi j yig = yi .

We want to remove this data-dependence by a variance-stabilizing
transform.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 110 / 223



Poisson noise

Poisson noise is de�ned as

ηi = zi � Efzi j yig.

Thus, we have

varfηi j yig = varfzi j yig = yi .

We want to remove this data-dependence by a variance-stabilizing
transform.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 110 / 223



Anscombe transformation

Forward Anscombe transformation:

f (z) = 2

r
z +

3
8
.

Applying Anscombe f to Poisson distributed data produces a signal
whose noise is asymptotically additive standard normal (i.e. of unitary
variance).

In other words, the transformation is both (asymptotically)
variance-stabilizing and normalizing.
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Inverse Anscombe transformation

After applying the forward Anscombe transformation we denoise the
signal f (z) with e.g. BM3D, SAFIR or BLS-GSM, thus obtaining a
signal D.

We consider D to be an estimate of Eff (z) j yg.
We need to apply an inverse transformation to D in order to obtain
the wanted estimate of y .
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Inverse Anscombe transformation

The direct algebraic inverse of Anscombe f is

IA(D) = f �1(D) =
�
D
2

�2
� 3
8
.

This leads to a biased estimate of y , because f is nonlinear:

Eff (z) j yg 6= f (Efz j yg).

Another possibility is to use

IB (D) =
�
D
2

�2
� 1
8
,

which provides asymptotical unbiasedness for large counts.
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Asymptotically unbiased inverse

Spots (intensity range [0.03 5.02]), denoised with BM3D and inverted
with the asymptotically unbiased inverse.

original noisy estimate
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Exact unbiased inverse

Applying the asymptotically unbiased inverse to high-count data gives
good results, but for low-count data it produces a biased estimate.

Assuming the denoising was successful (D can be treated as
Eff (z) j yg), we can solve the problem by �nding an inverse
transformation IC that maps the values Eff (z) j yg to the desired
values Efz j yg:

IC : Eff (z) j yg 7�! Efz j yg.

For any given y , Efz j yg = y , but we also need to compute the
values of Eff (z) j yg.

� � � � � �
Mäkitalo, M., and A. Foi, �Optimal inversion of the Anscombe transformation in low-count

Poisson image denoising�, to appear in IEEE Trans. Image Process., 2010.
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Exact unbiased inverse

Expected value:

Eff (z) j yg =
Z +∞

�∞
f (z)p(z j y) dz .

We have discrete Poisson probabilities P(z j y), so

Eff (z) j yg =
+∞

∑
z=0

f (z)P(z j y).

Explicitly:

Eff (z) j yg = 2
+∞

∑
z=0

 r
z +

3
8
� y

ze�y

z !

!
.
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Exact unbiased inverse

In practice we do the summation over speci�c values of z to keep the
error very small.

We compute the values Eff (z) j yg for a limited set of values y : for
arbitrary values of y we use linear interpolation and for large values of
y we approximate IC by IB .
Matlab �les implementing the exact unbiased inverse are available
online at http://www.cs.tut.�/~foi/invansc.
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Exact unbiased inverse

At low counts the asymptotically unbiased inverse actually leads to a
larger bias than the algebraic inverse:

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E{ f(z )  | y }  = D
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ML inverse

The exact unbiased inverse assumes that the denoising is perfectly
successful: we treat D as Eff (z) j yg.

Now assume instead that the pointwise MSE of D as an estimate of
Eff (z) j yg is

ε2 = E
n
(D � Eff (z) j yg)2

o
.

In practice the distribution of D is unknown. For simplicity, assume
normality: D � N

�
Eff (z) j yg, ε2

�
.

Formally this implies that D is an unbiased estimate of Eff (z) j yg,
however also unknown estimation-bias errors can be considered as
contributors of ε2: the symmetry of the distribution about Eff (z) j yg
re�ecting our uncertainty about the sign of the bias.
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ML inverse

By treating D as the data, the maximum likelihood (ML) inverse is
de�ned as

IML(D) = argmax
y

p(D j y),

p(D j y) = 1p
2πε2

e�
1
2ε2
(D�E ff (z )jyg)2 .

Under the given assumptions,

IML(D) =
�
IC (D), if D � 2

p
3/8

0, if D < 2
p
3/8.

Thus, exact unbiased inverse is a ML inverse.

IML(D) is independent of ε.

Valid for any unimodal distribution with mode at Eff (z) j yg.
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Test images

All images 256x256, both low-count and high-count images included.
The images are from Zhang, Fadili and Starck: Wavelets, ridgelets,
and curvelets for Poisson noise removal (2008).

Spots Galaxy Ridges Barbara Cells

[0.03, 5.02] [0, 5] [0.05, 0.85] [0.93, 15.73] [0.53, 16.93]
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Experiments

Three steps: forward Anscombe transformation, denoising
(BM3D/SAFIR/BLS-GSM), and the exact unbiased inverse.

The same is also done for the asymptotically unbiased inverse.

We evaluate the performance by normalized mean integrated square
error (NMISE):

1
N̄ ∑
i :yi>0

�
(ŷi � yi )2/yi

�
, (1)

where ŷi are the estimated intensities, yi the respective true values,
and the sum is computed over the N̄ pixels in the image for which
yi > 0.

For each image we do �ve replications and present the average
NMISE.
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Results with BM3D

Spots [0.03, 5.02] denoised with BM3D.

original noisy asymptotical exact
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Results with BM3D

Ridges [0.05, 0.85] denoised with BM3D.

original noisy asymptotical exact
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Numerical results (NMISE)

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms

WT BM3D SAFIR BLS-GSM BM3D SAFIR BLS-GSM PH-HMT MS-VST

Spots [0.03, 5.02] 2.34 1.7395 1.7495 2.0370 0.0365 0.0384 0.2024 0.048 0.069

Galaxy [0, 5] 0.15 0.1025 0.1110 0.1253 0.0299 0.0301 0.0385 0.030 0.035

Ridges [0.05, 0.85] 0.83 0.7018 0.7252 0.7694 0.0128 0.0173 0.0332 - 0.017

Barbara [0.93, 15.73] 0.26 0.0880 0.1178 0.1122 0.0880 0.1178 0.1123 0.159 0.17

Cells [0.53, 16.93] 0.095 0.0660 0.0683 0.0718 0.0649 0.0671 0.0707 0.082 0.078

We compare to two algorithms speci�cally designed for Poisson noise
removal: MS-VST (Zhang, Fadili, Starck 2008) and PH-HMT
(Lefkimmiatis, Maragos, Papandreou 2009).

BM3D + exact unbiased inverse gives the best result for all �ve test
images.
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Comparisons

BM3D (0.0128) SAFIR (0.0173) BLS-GSM (0.0332) MS-VST (0.017)

BM3D (0.0880) SAFIR (0.1178) BLS-GSM (0.1123) MS-VST (0.17)
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Summary

The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is signi�cant for low-count images.

Denoising with Anscombe and exact unbiased inverse is competitive
with MS-VST and PH-HMT, which are speci�cally designed for
Poisson noise removal.

Even though most of the improvement is due to the exact unbiased
inverse, the choice of the denoising algorithm does also matter:
BM3D outperforms all other �lters.

Approach is not limited to 2-D data.

Matlab �les implementing the exact unbiased inverse are available
online at http://www.cs.tut.�/~foi/invansc
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Raw-data observation model

For imaging sensors (CCD or CMOS)

varfz (x)g = ay(x) + b, y(x) � b/a, a, b > 0.

For clipped data

z̃ (x) = max f0,min fz (x) , 1gg , ỹ(x) = Efz̃(x)g 6= y(x),

with standard deviation curves:

It is important to compute the functions ỹ and σ̃ given σ and y , and vice versa.
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Raw-data analysis and processing algorithms

ClipPoisGaus toolbox for Matlab
http://www.cs.tut.�/~foi/sensornoise.html

1 Fully automatic estimation of noise parameters from a single image with
clipped or non-clipped data corrupted by signal-dependent noise.

2 Fully automatic denoising and debiasing of clipped images with
Poissonian-Gaussian noise using variance-stabilization and homoskedastic
�ltering.

Foi, A., �Clipped noisy images: heteroskedastic modeling and practical denoising�, Signal

Processing, vol. 89, no. 12, pp. 2609-2629, December 2009.

Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, �Practical Poissonian-Gaussian

noise modeling and �tting for single image raw-data�, IEEE Trans. Image Process., vol.

17, no. 10, pp. 1737-1754, October 2008.
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Optimization of variance stabilization for raw data

fk std ffk (z̃) jỹg std ffk (z̃) jỹg

Foi, A., �Direct optimization of nonparametric variance-stabilizing transformations�, Proc.

8èmes Rencontres de Statistiques Mathématiques, CIRM Luminy, Marseille, France,

December 2008.

Foi, A., �Optimization of variance-stabilizing transformations�, preprint, submitted.
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Practical raw-data denoising

Algorithm consists from the following steps:

1 Noise estimation (optional);

2 Design and apply variance-stabilizing transformation;

3 Denoise the transformed data using some denoising algorithm for
homoskedastic noise (e.g., BM3D);

4 Apply the exact unbiased inverse of the variance stabilizing transform;

5 Perform declipping.
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Examples

left: original (range [-0.2, 1.2]) center+right: noisy and clipped (range [0, 1])
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Examples

Denoising clipped data (range [0, 1])
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Examples

Denoising and declipping.
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Examples

Denoising and declipping.
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Examples

Cross-sections of observations and estimates.
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Declipping: numerical results

PSNR (dB) values for the denoised D(z̃), denoised and declipped ŷ , and
range-constrained estimates.
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Examples: raw data

Raw data from Fuji�lm FinePix S9600, ISO 1600
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Examples: raw data
Noise estimation

estimation and �tting st.dev.-function σ̃

â = 0.0043 b̂ = 0.00038
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Examples: raw data
Variance-stabilizing transformation

variance-stabilizing f
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Examples: raw data
Denoising

Denoised estimate
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Examples: raw data
Declipping

Declipped estimate
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Examples: raw data
Declipping

Declipped estimate
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Examples: raw data
Declipping
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Video Processing with V-BM3D (VBM3D.m)

It implements a video denoising method that enables highly e¤ective noise
attenuation at near real-time execution times.
It is based on enhanced sparse representation in local 3D transform domain.
As the noisy video is processed in block-wise manner, the sparsity enhancement is
achieved by grouping 2D fragments similar to the current one into a 3D data
array that we call group.
� � � � � � �
K. Dabov, et al., �Video denoising by sparse 3D transform-domain collaborative
�ltering,�Proc. 15th European Signal Processing Conference, EUSIPCO 2007,
Poznan, Poland, September 2007.
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Video Processing with V-BM3D

The grouping is realized as a predictive-search block-matching, similar to
techniques used for motion estimation;

For each formed group, we apply collaborative �ltering in order to take
advantage of the correlation between grouped blocks. We realize this
�ltering by a 3D transform-domain shrinkage (hard-thresholding and Wiener
�ltering). The collaborative �ltering produces estimates of all grouped
blocks.

Since these estimates are overlapping in general, we aggregate them by a
weighted average in order to form a non-redundant video estimate.

A signi�cant improvement of this approach is the use of 2-step algorithm
where an intermediate estimate is produced by grouping and collaborative
hard-thresholding and then used for improving the grouping and for applying
collaborative empirical Wiener �ltering.

The experimental results demonstrate the state-of-the-art denoising
performance and subjective visual quality.
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Video Processing with V-BM3D
Flowchart of the algorithm

Flowchart of the V-BM3D video-denoising algorithm.
The operation enclosed by dashed lines are repeated for each reference block.
Grouping is illustrated by showing a reference block marked with �R�and the

matched ones in a temporal window of 5 frames.
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Video Processing with V-BM3D
Predictive-search block-matching

Illustration of the proposed predictive-search block-matching.
Each pixel represents a block located at it; grey pixels denote blocks that are part

of the search neighborhood; red pixels denote blocks matched as similar.
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Video Processing with V-BM3D
Predictive-search block-matching

For frame t, which contains the reference block, the search neighborhood is
(non-adaptive) �xed around the reference block.

For frame t�1, the blocks matched as similar to in the frame t are used to
determine the centers of the small 3 � 3 neighborhoods, whose union forms
the overall adaptive neighborhood for this frame.

For frame t�2, the motion compensated predictive search uses the motion
vectors (shown as white arrows) between the matched blocks of the previous
two frames to determine the centers of the 3 �3 neighborhoods.
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Video-demo, Bus

BUS!
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Video-demo, Flowers

Flowers!
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Video-demo, Man

Man!
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Compressive sensing (CS): conventional approach

The basic setting: an unknown signal of interest is observed (sensed)
through a limited number linear functionals;

These observations can be considered as an incomplete portion of the
spectrum of the signal with respect to a given linear transform;

It is assumed that the signal can be represented sparsely with respect to a
di¤erent relevant basis (e.g., wavelets);

The algorithms rely on convex optimization with a penalty expressed by the
`0 or `1 norms which is exploited to enable the assumed sparsity;

It results in parametric modeling of the solution and in problems that are
then solved by mathematical programming algorithms.

� � �
Candes, E., J. Romberg, and T. Tao, �Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information�, IEEE Trans. Inf.
Theory, vol. 52, no. 2, 2006.
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Compressive sensing (CS): our approach

We replace the traditional parametric modeling used in CS by a
nonparametric one.

The nonparametric modeling is implemented by the use of spatially adaptive
�lters.
The logic behind of this approach is as follows.

The regularization imposed by the `0 or `1 norms (or by more general
criteria) is essentially only as a tool for design of some nonlinear �ltering.

Let us replace this implicit regularization by explicit �ltering, exploiting
spatially adaptive �lters sensitive to image features and details.

Then, CS signal reconstruction is realized by a recursive algorithm based on
spatially adaptive image denoising.
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Examples: observations

Sample domain Ω for the FFT spectrum: 22 radial lines, 11 radial lines,
90 degrees limited-angle with 61 radial lines.
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Examples: reconstructions

Clockwise from top-left: back-projection estimates for 22 radial lines, 11 radial lines, 61 radial lines with limited-angle (90

degrees), and original phantom (unknown and shown here only as a reference). For all three experiments, the estimates obtained

after convergence of the algorithm coincide with the original image.
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Observation model

Let y and θ = T fyg be, respectively, the image intensity and its 2-D transform.
If all elements of the spectrum θ are given then the signal can be recovered by
inverting the transform, y = T �1fθg.
In CS problems only a small portion of the spectrum is available, which makes the
reconstruction of y an ill-posed problem.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 157 / 223



Observation model (cont)

Introduce a sampling operator as the characteristic function S = χΩ (with values
0 or 1) of the available portion Ω of the spectrum.
Thus, the pointwise products S .� θ and (1� S).�θ produce a decomposition of
the spectrum in two complementary parts

θ1 = S .� θ, θ2 = (1� S) .� θ,

with the equation

θ = θ1 + θ2 = S .� θ + (1� S) .� θ.

Here, θ1 and θ2 are the observed (known) and the unobserved (unknown) part of
θ, respectively.
The goal is reconstruct y (or equivalently θ2) from the available data θ1.
� � � � �
K. Egiazarian et al., "Compressed sensing image reconstruction via recursive
spatially adaptive �ltering ," ICIP, 2007.
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Recursive algorithm

Given an estimate θ̂
(k )
2 of θ2, we de�ne the estimate θ̂

(k )
of θ as

θ̂
(k )
= θ1 + θ̂

(k )
2 .

The algorithm is as follows:

θ̂
(k )
2 = θ̂

(k�1)
2 � γk [θ̂

(k�1)
2 � (1� S) .� T

�
Φ
�
T �1

�
θ1 + θ̂

(k�1)
2

���
+

+ (1� S) .� ηk ], k = 1, 2, ..., θ̂
(0)
2 = 0.

Each iteration (k � 1) comprises of the following steps:
Image-domain estimate �ltering

Φ
�
T �1

�
θ1 + θ̂

(k�1)
2

��
;

Excitation by random ηk .
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The recursive algorithm can be treated as the Robbins-Monro stochastic
approximation procedure for the equation

θ̂2� (1� S) .� T
�
Φ
�
T �1

�
θ1 + θ̂2

���
= 0.

The noise ηk serves as a generator of the spectrum θ2 features and for
acceleration of the convergence.
If Φ = I then any θ̂2 satis�es this equation.
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Compressed sensing for image Upsampling (Resizing)

We do not know which blurring and decimation operators have been used to
obtain the given image.
Instead, we assume that the blurring kernel is the low-pass analysis �lter of a
wavelet transform.
Hence, we seek for a high-resolution image whose wavelet approximation
coe¢ cients in the lower resolution subband decomposition coincide to the pixel
values of the given low-resolution image.
A high-resolution image is reconstructed by alternating two procedures: spatially
adaptive �ltering and projection on the observation-constrained subspace.
The Block Matching and 3D �ltering (BM3D) technique is used to suppress
ringing, and reconstruct missing wavelet detail coe¢ cients.
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Image Resizing with BM3D Examples

Upsampling with m-stage algorithm: Cameraman, 4 times
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Upsampling with m-stage algorithm:Lighthouse, 8 times.
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Image Resizing with BM3D Examples

Upsampling of fragments of the images with m-stage algorithm: Text, 4 times.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 164 / 223



Image and Video Super-Resolution with BM3D

The classical SR approach is based on three steps:

1) registration of the LR images to a HR coordinate grid,

2) warping of the LR images onto that grid by interpolation,

3) fusion of the warped images into the �nal HR image.
An additional deblurring step is sometimes considered to compensate the
blur existing in the LR frames.

The novel algorithm is developed generalizing VBM3D.m for
super-resolution imaging.

� � � �
Danielyan, A., A. Foi, V. Katkovnik, and K. Egiazarian, "Image and video superresolution via

spatially adaptive �ltering,"in Proc. 2008 Int. Workshop on Local and Non-Local Approximation

in Image Processing, LNLA 2008, Lausanne, Switzerland, 2008.

Danielyan, A., A. Foi, V. Katkovnik, and K. Egiazarian, �Spatially adaptive �ltering as

regularization in inverse imaging: compressive sensing, upsampling, and super-resolution�, in

Super-Resolution Imaging (P. Milanfar, ed.) CRC Press / Taylor & Francis, 2010.
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Image and Video Super-Resolution with BM3D
Preliminaries

Let fTmgMm=0 be a family of orthonormal transforms of increasing sizes
xhm � xvm , xhm < xhm+1, xvm < xvm+1, such that for any pair m,m0 with

m < m0, up to a scaling factor βm,m 0 =

r
x h
m0x

v
m0

x hmx vm
, the whole Tm -spectrum

can be considered as a smaller portion of the Tm 0 -spectrum.

This means that the supports Ωm of the Tm -transform coe¢ cients form a
nested sequence of subsets of ΩM , i.e. Ω0 � � � � � ΩM , where ΩM is a
complete set of the coe¢ cients.

The examples of such fTmgMm=0 families are DCT and DFT transforms of
di¤erent sizes, discrete wavelet transforms associated to one common scaling
function, as well as block-wise DCT, DFT and WT.
Sets Ωm are commonly referred to as lower-resolution, low-frequency, or
coarser-scale subbands of the TM -spectrum.
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Image and Video Super-Resolution: nested spectrum sets

(a) DFT (b) Block DCT

(c) DWT, DCT
Nested support subsets.
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Image and Video Super-Resolution: basic operators

For m < m0 the three operators are de�ned:
the restriction operator jΩm,m0

that, from a given Tm 0 -spectrum, extracts a
smaller portion de�ned on Ωm , which can be considered as the
Tm -spectrum of a smaller image;

the zero-padding operator Um,m 0 that expands a Tm -spectrum de�ned on
Ωm to the Tm 0 -spectrum de�ned on the superset Ωm 0 � Ωm by
introducing zeros in the complementary Ωm 0 nΩm ;

the projection operator P?m,m 0 that zeroes all coe¢ cients of Tm 0 -spectrum
on Ωm .

Note that Um,m 0 (A)jΩm
= A for any Tm -spectrum A, and

B = P?m,m 0 (B) + Um,m 0
�
B jΩm

�
for any Tm 0 -spectrum B .
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that, from a given Tm 0 -spectrum, extracts a
smaller portion de�ned on Ωm , which can be considered as the
Tm -spectrum of a smaller image;

the zero-padding operator Um,m 0 that expands a Tm -spectrum de�ned on
Ωm to the Tm 0 -spectrum de�ned on the superset Ωm 0 � Ωm by
introducing zeros in the complementary Ωm 0 nΩm ;

the projection operator P?m,m 0 that zeroes all coe¢ cients of Tm 0 -spectrum
on Ωm .

Note that Um,m 0 (A)jΩm
= A for any Tm -spectrum A, and

B = P?m,m 0 (B) + Um,m 0
�
B jΩm

�
for any Tm 0 -spectrum B .
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Observation model and superresolution as compressed
sensing problem

Let a sequence of low-resolution images be given fylow rgRr=1 of the sizes
xh0 � xv0 , and assume each ylow r being obtained from the subband of the

corresponding TM spectra of original higher-resolution images fyhi rgRr=1 of size
xhM � xvM as follows:

ylow r = T �10

�
β�10,M TM (yhi r )jΩ0,M

�
,

where the scaling factor β0,M ensures that the means of yhi r and ylow r are equal
to each other.
The superresolution problem is to reconstruct fyhi rgRr=1 from fylow rg

R
r=1.

For R = 1, the observation model corresponds to the image upsampling problem.
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Algorithm

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

ŷr ,0= y low r , r = 1, . . . ,R,
for m = 1 : M
ŷ (0)r ,m= T�1m

�
Um�1,m

�
βm�1,mTm�1 (ŷr ,m�1)

��
, r = 1, . . . ,R,

for k = 1 : k�nal

ŷ (k )r ,m=T �1m

0BB@
U0,m

�
β0,mT0 (ylow r )

�
+

+ P?0,m
�
Tm
�
Φ
�n
ŷ (k�1)r ,m

oR
r=1

���
1CCA ,

r = 1, . . . ,R,
end for k

ŷr ,m= ŷ
(k�nal)
r ,m , r = 1, . . . ,R,

end for m

ŷr= ŷ
(k�nal )
r ,M , r = 1, . . . ,R.
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Flowchart of the algorithm
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Experiments: Image and Video Super-Resolution

In all these experiments, the LR image is obtained from the HR one by �rst
blurring using a 3� 3 uniform kernel, shifted and then decimating by factor 3.
It gives a set of nine shifted sampled LR versions of HR blurred image.
� � � � � �
The comparison is done vs: M. Protter, M. Elad, H. Takeda, and P. Milanfar,
"Generalizing the Non-Local-Means to Super-Resolution Reconstruction", IEEE
TIP, Vol. 18, No. 1, Jan. 2009.
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Image and Video Super-Resolution with BM3D: Examples

Nearest neighbor Super-resolved Upsampled

Ground truth Ground truth (blurred)
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Image and Video Super-Resolution with BM3D Examples:
Suzie

Nearest neighbor Super-resolved Upsampled

Ground truth Ground truth (blurred)
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Super-resolution results for the 23rd frame of Foreman

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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Super-resolution results for the 23rd frame of Suzie

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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Super-resolution results for the 23rd frame of Miss America

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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PSNR Results

Nearest
neighbor

Protter et al. Proposed

PSNR PSNR PSNR

Foreman 29.0 32.9 35.0
Suzie 30.3 33.0 34.2
Miss America 32.0 34.74 37.0

Mean over all 30 frames
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BM3D Denoising and Alpha-Root Sharpening

1 Use block-matching to �nd the locations of the blocks in z that are similar
to the currently processed one.

1 Apply a 3D transform on the formed group;
2 Attenuate the noise by hard-thresholding the 3D transform spectrum;
3 Apply alpha rooting on the hard-thresholded 3D transform spectrum
and invert the 3D transform to produce �ltered grouped blocks;

2 Return the �ltered blocks to their original locations in the image domain and
compute the resultant �ltered image as a weighted average of these �ltered
blocks.

� � � � � � � � � � � � � �
Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, �Joint image sharpening and denoising by 3D transform-domain
collaborative �ltering, � Proc. SMMSP 2007, Moscow, Russia, 2007.
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Collaborative sharpening by Alpha Rooting

Except for the alpha rooting and a modi�cation of the aggregation weights, both
described below, the rest of the steps of the algorithm are taken without
modi�cation from the �rst step of BM3D.

Given a transform spectrum of a signal, which contains a DC coe¢ cient denoted
as θ̂s (1, 1), the alpha rooting (Aghagolzadeh&Ersoy, 1992) is performed as

θ̂
sh
s (i , j) =

8<: sign θ̂s (i , j)
��θ̂s (1, 1)�� ��� θ̂s (i ,j)

θ̂s (1,1)

��� 1α , if θ̂s (i , j) 6= 0
θ̂s (i , j), otherwise.
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Collaborative sharpening by Alpha Rooting
Aggregation weights for sharpening

Variance of sharpened coe¢ cients (using �rst order approximations)

var
n

θ̂
sh
s (i , j)

o
� ωi ,jσ

2 =

=

�
1� 1

α

�2 ��θ̂s (1, 1)��� 2
α
��θ̂s (i , j)�� 2α σ2 +

1
α2

��θ̂s (i , j)�� 2α�2 ��θ̂s (1, 1)��2� 2
α σ2.

The total variance of the thresholded and sharpened group bYsharp
xR is

approximated as

tsvar
nbYsharp

xR

o
= σ2 + ∑

θ̂s (i ,j) 6=0, (i ,j) 6=(1,1)
ωi ,jσ

2.

Hence, the aggregation weights are wxR =
1

tsvarfbYsharpxR g .
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BM3D sharpening experiments

Noisy House, σ = 10
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BM3D sharpening experiments

BM3D-SH3D, α = 1.2
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BM3D sharpening experiments

BM3D-SH3D, α = 1.4
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BM3D sharpening experiments

BM3D-SH3D, α = 1.6
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BM3D sharpening experiments

BM3D-SH3D, α = 1.8
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BM3D sharpening experiments

BM3D-SH3D, α = 2.0
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BM3D sharpening experiments

Noisy Fundus σ = 20 BM3D-SH3D
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Part III: Variational BM3D Formulation. Motivation

Block Matching and 3-D collaborative Filtering (BM3D) algorithm (Dabov,
Foi, Katkovnik, and Egiazarian, IEEE TIP, 2007) is currently recognized as
one of the best performing denoising algorithms.

A family of algorithms of this type has been developed for various
applications: video, demosaicking, deblurring, super-resolution, etc.

All these algorithms are based on overcomplete windowed image modeling
and special nonlocal nonparametric techniques.

Recently, a special prior has been proposed allowing to reformulate the
multi-stage hard-thresholding BM3D denoising as global minimization of a
special energy criterion
(V. Katkovnik and K. Egiazarian, "Nonlocal image deblurring: variational
formulation with nonlocal collaborative l0-norm imaging," LNLA 2009,
Tuusula, Finland, 2009).
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Main results

Better understanding BM3D as an universal improved image modeling
technique.

Novel recursive deblurring algorithms have been developed based on this
nonlocal collaborative l0-norm prior.

Simulation experiments demonstrate a very good performance of this novel
deblurring algorithm.
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Variational Formulation

Suppose we have independent random observation pairs fzi , xig,

zi = yi + εi ,

where yi = y(xi ) is a signal of interest, xi 2 R2, and εi = ε(xi ) is an
additive noise, εi � N (0, σ2).
The denoising problem is to reconstruct y(xi ) from fzig:
Variational approach

ŷ = argmin
y

jjy � z jj22/σ2| {z }
�delity

+ λ � pen(y)| {z }
penalty

,

Heuristic (or semi-heuristic) approach as an alternative to the variational
one.

Examples: local and nonlocal nonparametric regression methods, BM3D, etc.
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Conventional penalties

Quadratic penalties (Tikhonov A.N. and V.Y. Arsenin, 1977)

pen(y) =
Z
jy j2dx , pen(y) =

Z
jLy j2dx .

These penalties mean that the solution is penalized with respect to:

min
y

Z
jy j2dx ! y0 = 0, min

y

Z
jjry jj22dx ! ry0 = 0,

min
y

Z
jLy j2dx ! Ly0 = 0;

Total variation ( Rudin, Osher, and Fatemi, 1992).

pen(y) =
Z
jjry jj2dx ! ry0 = 0,

where ∆y is a vector-gradient of y . This penalty allows discontinuous
solutions and preserve edges while �ltering out high-frequency oscillations.
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Conventional penalties (cont.)

Complexity penalty is formulated usually for spectrum representations of the
image as θ = T fyg, where T stands for orthonormal or overcomplete
transforms. This penalty is calculated as

pen(θ) = jjθjj0,

where the l0-norm gives a number of active spectrum elements di¤erent from zero.
It enables penalization with respect to jjθjj0 = 1;
Nonlocal penalization with respect to a desirable image (Kindermann, Osher, and
Jones, 2005)

pen(y) =
Z
g

 ��yTRUE (x)� y (v)��2
h2

!
w(jx � v j)dxdv ,

where w > 0 is a window, and g is a di¤erentiable function, g(0) = 0.
It gives miny pen(y) =) y0 = yTRUE .
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Block-wise imaging: windowing

Let the signals be de�ned on the regular 2-D grid X .

Consider a windowing C = fXr , r = 1, . . . ,Nsg of X with Ns blocks
(uniform windows, patches) Xr � X such that
[Nsr=1Xr = X .
Each x 2 X belongs to at least one subset Xr .

The noise-free data Y and the noisy data Z windowed on Xr are arranged
in blocks denoted as Yr and Zr , respectively.

The blocks are overlapping and therefore some of the elements may belong
to more than one block.
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Block-wise imaging: transform domain representations

We use transforms (orthonormal series) of pixels in the blocks.
The transform, denoted as T 2D

r , is applied for each window Xr
independently as

θr = T 2D
r (Yr ) ,

h
= DrYrDTr

i
r = 1, . . . ,Ns ,

where θr is the spectrum of Yr .

The inverse T 2D�1
r of T 2D

r de�nes the signal from the spectrum as

Yr = T 2D�1
r (θr ) ,

h
= DTr θrDr

i
r = 1, . . . ,Ns .

The noisy spectrum of the noisy signal is de�ned as

θ̃r = T 2D
r (Zr ) ,

h
= DrZrDTr

i
r = 1, . . . ,Ns .
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Group-wise collaborative penalty

It is assumed that there is a similarity between some of the blocks and the similar
blocks are clustered in "groups".
Initially, the penalty for the r -th group can be de�ned as

penr (fθjgj2Kr , fϑr ,jgj2Kr ) =
 

∑
j2Kr

jjθj � ϑr ,j jj22

!
+ λr jjfϑr ,jgj2Kr jj0,

where
Kr =

�
j : jjYr � Yj jj22 � h

	
Here, fϑr ,jgj2Kr is a set of the models for all j-th blocks included in the r -th
group, and fθjgj2Kr are the corresponding noise-free block spectra in this group.
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Group-wise collaborative penalty (cont.)

Let us treat the collection of 2-D block spectra fθr ,jgj2Kr as 3-D array,
where j is the index used for the third dimension.
Applying a 1-D orthonormal transform T 1D with respect to j we arrive to a 3-D
group spectrum

ΩY
r = T 1D (fθr ,jgj2Kr ).

Replace the set Kr of the 2-D spectrum-approximations fϑr ,jgj2Kr with this
joint 3-D spectrum ΩY

r .
The l0-norm jjfϑr ,jgj2Kr jj0 in the penalty is replaced with the norm in this 3-D
spectrum space de�ned as

jjΩr jjl0 = ∑
k ,l

1(Ωr (k, l) 6= 0).

This 3-D spectrum representation is used as a joint collaborative model of the
signal clustered in the r -th group:

penr (ΩY
r ,Ωr ) = jjΩY

r �Ωr jj22| {z }
Accuracy

+ λr jjΩr jj0| {z }
Complexity

.
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Global penalty in spectrum domain

Let us go further and introduce the global penalty as the weighted mean of the
group-wise penalties

PEN(
n

ΩY
r

o
, fΩrg) = ∑

r
gr � penr (ΩY

r , Ωr ) =

∑
r
gr
�
jjΩY

r �Ωr jj22 + λr jjΩr jj0
�
,

with the group weights gr calculated as

gr =
1/jjΩr jj0

∑r 1/jjΩr jj0
,

where the spectrum Ωr is an estimate for the spectrums ΩY
r in the r -th group,

and jjΩr jj0 is the l0-norm penalty for this estimate.
In the global penalty the group-wise ones are weighed with the weights inversely
proportional to the complexity of the group-wise models.
This rule perfectly corresponds to the idea of sparse image modeling with a
low-complexity model as the main goal.
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Global penalty in signal domain

In the signal/image domain the global penalty can be represented using the
block-wise true signals Yj and the signal approximations Yr ,j in the following form

PEN(fYjg , fΩrg) = ∑
r
gr

 
∑
j2Kr

jjYj � Yr ,j jj22 + λr jjΩr jj0

!
,

where
Yr ,j = T 2D�1 (θr ,j ) , Θr = fθr ,jgj2Kr = T 1D�1 (Ωr ) .
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Deblurring: variational formulation

Suppose we have independent random observation pairs fzi , xig given in
the form

zi = (w � y)(xi ) + σεi ,

where zi = z(xi ) and yi = y(xi ) are noisy observations and signal of
interest, respectively, εi � N (0, 1).
The deblurring problem is to reconstruct y(xi ) from noisy observations
fzig.

Some of the methods used:
(1) Decouple of deblurring and denoising, e.g. BM3D deblurring.
(2) Variational approach

J = jj(w � y)� z jj22/σ2| {z }
Fidelity

+ λ � pen(y)| {z }
Penalty

.
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Deblurring by global energy minimization

Let Y, Z, Yj , Ŷr ,j be the lexicographical vector representations of the
corresponding images/blocks Y , Z , Yj , Ŷr ,j .
The vectors Yj are projections of the vector Y, which can be de�ned through the
projection matrices Pj ,

Yj = PjY.

Here Pj are binary matrices with items (0,1).
Then the deblurring problem can be formulated as the variational problem:

Ŷ = arg min
Y,fΩr g

J,

J = jjZ� AYjj22/σ2 + λ � PEN(fYjg , fΩrg)).

For solution we exploit a recursive alternative minimization of J on fΩrg and Y.
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Minimization in spectrum domain

If Y and gr are given the minimization on fΩrg concerns the penalty term
PEN(fYjg , fΩrg)) only.
With a �xed gr the minimization is reduced to scalar calculations independent for
each element of Ωr :

Ω̂r (k, l) = argmin
x2R

�
ΩY
r (k, l)� x)2 + λr � 1(x 6= 0)

�
.

This solution is the hard-thresholding of ΩY
r (k, l) calculated as

Ω̂r (k, l) = ΩY
r (k, l) � 1

�
jΩY

r (k, l)j �
p

λr
�
.

When Ω̂r (k, l) are found the signal estimates are calculated as

fθ̂r ,jgj2Kr = T 1D�1 �Ω̂r
�
, Ŷr ,j = T 2D�1 �θ̂r ,j� .
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Minimization in signal domain

Consider minimization of J on Y provided fΩrgr are given as
�

Ω̂r
	
r .

The spectrums ΩY
r depend on Y and this dependence should be taken into

considerations:

J = jjZ� AYjj22/σ2 + µ �∑
r
gr �

 
∑
j2Kr

jjPjY� Ŷr ,j jj22 + λr jjΩr jj0

!
.

Di¤erentiation on Y gives after some manipulations the estimate of Y:

Ŷ = Φ�1 �
 
ATZ/σ2+µ �∑

r
gr ∑
j2Kr

PTj Ŷr ,j

!
,

Φ = ATA/σ2+µ �∑
r
gr ∑
j2Kr

PTj Pj .

Note, that the matrices PTj Pj and W = ∑r gr ∑j2K hr P
T
j Pj are diagonal.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 203 / 223



Matrix DEB-NEM algorithm

Recursive calculations based on the above matrix formulas result in the
following algorithm:
1: Initialization: Ŷ(0) and g (0)r = 1;
2: For every t = 0, 1, ...

Calculate the windowed signals Ŷ (t)r , the groupings

K (t)r = fj : 1(jjŶ (t)r � Ŷ (t)j jj22 � h)

and the spectra θ̃
(t)
r ,j = T

2D
r

�
Ŷ (t)j

�
, j 2 K hr , for all groups r ;

Calculate the group-wise "noisy" spectrums Ω̃Ŷ(t)
r , the 3D spectrum

thresholded estimates Ω̂(t)
r and the windowed signal estimates Ŷ (t)r ,j ;

Calculate the complexity jjΩ̂(t)
r jj0 of the group models and the weights

g (t)r =
1/jjΩ̂(t)

r jj0
∑r 1/jjΩ̂(t)

r jj0
;
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Matrix DEB-NEM algorithm (cont.)

Update the signal estimate Ŷ (t+1) using

Ŷ(t+1) = Φ�1 �

0@ATZ/σ2+µ �∑
r
g (t)r ∑

j2K (t)r

PTj Ŷ
(t)
r ,j

1A ,
Φ = ATA/σ2+µ �∑

r
g (t)r ∑

j2K (t)r

PTj Pj ;

Continue until convergence.
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"Ideal" collaborative penalty

Minimization on fΩrg yields

min
fΩr g

PEN(
n

ΩY
r

o
, fΩrg) =

min
fΩr gr

∑
r
gr

0@ ∑
j2K hr

jjΩY
r �Ωr jj22 + λr jjΩr jj0

1A =) Ω0
r ;

Minimization on Y yields

min
Y
PEN(fYjg ,

�
Ω0
r

	
) =) Y0,

Y0=

0@∑
r
gr ∑
j2K hr

PTj Pj

1A�10@∑
r
gr ∑
j2K hr

PTj Yr ,j

1A ,
Yr ,j = T 2D�1 (θr ,j ) , fθr ,jgj2K ∆

r
= T 1D�1 �Ω0

r

�
.
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Smoothed Y 0 images obtained for di¤erent λr .
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Links between NEM and BM3D for denoising

The basic hard-thresholding thresholding BM3D algorithm can be
interpreted as an alternative minimizer of the global penalty.

Let ΩY
r in the global penalty be replaced by the noisy ΩZ

r , and this global
penalty be minimized on fΩrg:

min
fΩr g

PEN(
n

ΩZ
r

o
, fΩrg) =

min
fΩr gr

∑
r
gr

0@ ∑
j2K hr

jjΩZ
r �Ωr jj22 + λr jjΩr jj0

1A =) Ω̂r ;
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Links between BM3D penalty and BM3D algorithm for
denoising (cont)

Minimization on Y gives the BM3D aggregation.
The vectorized representation of the signals gives the estimate of Y in the form

Ŷ = Φ�1 ∑
r
gr ∑
j2K hr

PTj Ŷr ,j ,

Φ = ∑
r
gr ∑
j2K hr

PTj Pj , gr =
1

σ2jjΩr jj0
,

which is identical to used in BM3D for aggregation of the estimates obtained by
the hard-thresholding.
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Frequency-domain deblurring algorithm

First, we rewrite the equation for Ŷ as a set of the linear equations�
ATA/σ2+µ �W

�
Ŷ = ATZ/σ2+µ �∑

r
gr ∑
j2Kr

PTj Ŷr ,j ,

and solve these equations with respect to Y using the recursive procedure

Ŷ(k+1) = Ŷ(k ) � αk [(A
TA/σ2+µ �W )Ŷ(k ) � ATZ/σ2�µ � ~Y],

where

~Y =∑
r
gr ∑
j2Kr

PTj Ŷr ,j , k = 1, ..., L.
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Frequency domain algorithm (cont.)

With above assumptions the vectorization of the convolution is valid

u = Ay, A = w 
 w ,

where w is a blur PSF and 
 stands for the Kronecker product.
Assuming that the blur is shift invariant circular, A is a structured Toeplitz matrix
and the discrete Fourier transform (DFT) can be used for the matrix calculations:

AT � Z =col(F�1fFfwg� � FfZgg),

ATA � Ŷ(k )= col(F�1fjFfwgj2 � FfY(k )gg).
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Frequency domain algorithm (cont.)

Then, the recursive algorithm can be implemented without variable vectorization
for variables organized as image-size matrices

Y(k+1) = Y(k ) � αk [F�1fjFfwgj2 � FfY(k )gg/σ2+

µ � (W̃ � Y(k ))�F�1fFfwg� � FfZgg/σ2�µ � Ỹ ],
k = 1, ..., L,

where
W̃ = reshapen�m [diagfW g], Ỹ = reshapen�m [~Y],

and W̃ � Y(k ) means the element-wise product of two matrices.
The DEB-NEM algorithm is organized as it is presented in the previous section
with

Y (t+1) = reshapen�m [Ŷ(t+1)]

calculated according to the above recursive procedure.
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Matrix DEB-NEM algorithm: experiments

In our experiments, we use 9� 9 uniform kernel (boxcar) blur PSF.
The noise is white zero-mean Gaussian with blurred-signal-to-nose-ratio
BSNR = 40 dB.
The parameters of the algorithm are �xed as λ/σ = 10 and µσ = 1.
The main goal of these experiments is to check a potential of the proposed
penalty function in the deblurring problem.

Table: Initial (DEBBM3D) PSNR and ISNR values given with the index 0 and
�nal (DEB-NEM) after 10 iterations (in dB).

PSNR0 [ISNR0] PSNR10 [ISNR10]

cameraman, 642 23.02 [7.18] 26.65 [10.81]
lena, 642 30.81 [6.41] 34.35 [9.95]
barbara, 642 25.27 [7.93] 26.27 [8.93]
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Visual improvements for cameraman

Cameraman fragment: true and blurred noisy images (left).
Cameraman fragment: initialization and 10-th iteration of DEB-NEM
reconstruction (right)

             PSN R  = 15.84 PSN R
0
 = 23 .02                 PSN R

10
 = 26 .65
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Visual improvements for Lena

Lena fragment: true and blurred noisy images (left).
Lena fragment: initialization and 10-th iteration of DEB-NEM
reconstruction (right)

             PSN R  = 24.40 PSN R
0
= 30.81                PSN R

10
= 34.35
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Frequency domain DEB-NEM: experiments

Fixed parameters: µ/σ2 = 2, λ = 6σ � 2.7, N1 = 8, N2 = 32, Nstep = 2
(for "Barbara" µ/σ2 = 8, λ = σ � 2.7).

Table: ISNR values for initial BM3D-DEB given with the index 0, for DEB-NEM
after 20 iterations (in dB), and best results by other methods.

ISNR0 (DEBBM3D) ISNR20 Other

Cameraman, 2562 8.4 9.92 9.1 (Portilla)

Lena, 5122 7.8 8.91 8.52 (Chantas)

Barbara, 5122 5.9 6.05 6.29 (Babacan)

House, 2562 10.9 12.8 10.74 (Portilla)

Boats, 5122 8.5 9.55
Checkerboard, 2562 23.3 48.3
Phantom, 2562 12.3 21.4 17.86 (Oliveira)
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a b

c d

Cameramen test image: true (a), blurred noisy (b), DEB-NEM reconstruction
after 20 iterations (c), DEBBM3D reconstruction (d).
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a b

c d

A fragment of Lena test image: true (a), blurred noisy (b), DEB-NEM
reconstruction after 20 iterations (c), DEBBM3D reconstruction (d).
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Conclusion

Currently we develop improved versions of the presented algorithm based
on variable splitting proximal operator and augmented Lagrangian
techniques.
The principal intention and result of our research is demonstrating the
power of the image modeling based on block matching and collaborative
3-D �ltering.

� � � � � � � � � � � � � �

A. Danielyan, V. Katkovnik and K. Egiazarian, �Image deblurring by augmented Lagrangian

with BM3D frame prior�, Proc. 3rd Workshop on Information Theoretic Methods in Science and

Engineering , WITMSE 2010, Tampere 2010.
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