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Part |: Basics, Modeling and Algorithms

From local to nonlocal approximations;

Nonlocal means, block matching filtering;

High-order local and nonlocal models;

Block matching and collaborative filtering (BM3D algorithm);
Redundancy and multiple model nonlocal approximations;

Applications: denoising, color image denoising, deblurring, demosaicking;

000000

Development of BM3D: shape-adaptive patches and adaptive PCA
transforms.
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Introduction

@ In local image reconstruction algorithms usually use observations in a
neighborhood of a pixel of the interest;
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Introduction

@ In local image reconstruction algorithms usually use observations in a
neighborhood of a pixel of the interest;

@ In the nonlocal techniques, algorithms analyze data “in large” and collects
the observations from the whole image looking for similar features;

@ The evolution of the nonlocal techniques from the sample nonlocal means
(NL) to the transform domain processing is an evolution to higher-order
models;

@ The latter algorithms are redundant, the data are processed by overlapping
blocks, and multiple estimates obtained for each pixel are fused (aggregated)
into the final image estimates.

Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, “From local kernel to
nonlocal multiple-model image denoising”, Int. J. Computer Vision, vol. 86,
no. 1, pp. 1-32, January 2010. doi:10.1007/s11263-009-0272-7
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Image denoising: observation model

Let we have independent random observation pairs {z;, x; }_; given for
simplicity in additive form
zi =yit&,

where y; = y(X,-) is a signal of interest, x; € R? and g = S(X,-) is an additive
noise.

The denoising problem is to reconstruct y(x,-) from {z,-},f’zl.

Variational and heuristic approaches.
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Image denoising: variational approach

The variational approach formalizes an image reconstruction as an optimization
problem

A H 1
y = argmin, — ||z —y||* +ppen(y), p > 0.

N—_———

fidelity penalty

The fidelity term follows from a statistical noise model and the penalty is a prior
for y.

Parametric and nonparametric formulations.

Typical parametric models are of the form

y(x) = Zk: Sy (x).
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Image denoising: heuristic approach (local means)

@ The weighted least square method gives the following criterion

J(x°, C) = ZW/,(XO —x5)e, e =z — (o,
S
where w is a signal-independent window function,
wh(x) = w(x/h),

and Cp is an approximation of y(x) at x = x°.
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Image denoising: heuristic approach (local means)

@ The weighted least square method gives the following criterion

J(x°,C) = ZWh(XO —x5)e, e =z — Cp,

S

where w is a signal-independent window function,
wh(x) = w(x/h),

and Cp is an approximation of y(x) at x = x°.
@ Minimizing J on Cp:

Co(x) = arg n%in J(x°, Co) = p(x°) = Co(x) = Yoo wiy(x? — xg
0
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Image denoising: heuristic approach (local means)

@ The weighted least square method gives the following criterion
J(x°,C) = th(xo —x5)e, e =z — Cp,
s
where w is a signal-independent window function,
wh(x) = w(x/h),

and Cp is an approximation of y(x) at x = x°.

@ Minimizing J on Cy:
Es Wh (XO - Xs)zs
Yo wh(x0 —xs)

Co(x) = arg min J(x°, o) = n(x°) = Go(x) =

@ Example of signal-independent weight

0 0=l

wp(x° —xs) =e  # , h>0.
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Image denoising: heuristic approach (local means)

@ The weighted least square method gives the following criterion
J(x°,C) = th(xo —x5)e, e =z — Cp,
s
where w is a signal-independent window function,
wh(x) = w(x/h),

and Cp is an approximation of y(x) at x = x°.

@ Minimizing J on Cy:
Es Wh (XO - Xs)zs
Yo wh(x0 —xs)

Co(x) = arg min J(x°, o) = n(x°) = Go(x) =

@ Example of signal-independent weight
l1x0—xs 12

wh(x —x)=e" ® ,  h>0.

@ Example of signal-dependent weight

O —xs][2 _ [y0-ys[?

Wh(xo—xs,yo—ys):e 72 v, q,h>0.
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Image denoising: heuristic approach (nonlocal means)

@ Criterion
Jh,xo(C> = ZWh(yo —ys)[zs — C0]2, yo = Y(Xo)v

where the weights w), depend on the distance between the signal values at
the observation points ys and the desirable point yO = y(xo).
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Image denoising: heuristic approach (nonlocal means)

@ Criterion

Ipxo(C) = ZWh(yo —¥s)[zs — Co]2. yo = Y(Xo)v

S

where the weights wy depend on the distance between the signal values at
the observation points ys and the desirable point yO = y(XO).

@ Minimization, minCJh'Xo(C), gives the nonlocal means estimate

1

T w0~y ZW”y )
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Local versus Nonlocal Supports

Local versus nonlocal supports for zero and first order polynomial fitting: local
111; nonlocal zero-order model / U II; nonlocal first-order model /.
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Local Pointwise Approximations

Three key slogans associated with these techniques:

o Locality;
@ Anisotropy;

o Adaptivity.

The locality means that there is a neighborhood where the image intensity
is well approximated some continuous basis functions.

The anisotropy means that a good local approximation can be achieved
only in a non-symmetric neighborhood.

The adaptivity means that both the size and the shape should be data
adaptive.
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Local Polynomial Approximation

@ In a neighborhood of x° the Taylor series gives for y(xs):
y(xe) = y(x0) = i () (6 = x1.6) — vy () (58 — xa,6) +
2 2
Pk () (0 = x1,6) 68 — x) + 2y (X0) (6 — x1,6) +

L2 () (o = xa,6)2...

@ Since the function y and the derivatives are unknown we look for
fitting data y(xs) in the form

y(x0 x) ~ G — G (XX —x16) — G = x06) +
Cra( — x1.5) (5 — x2.6) + %Cll(x;? —x15)? + %sz(XS —x2,5)°...
where the coefficients Cy, C; and G, give estimates for y(x?),

y)gll)(xo) and y)g)(xo),and Ci12, C11,Cyp give estimates for yx(lzl)x2 (x9),
P (x0) and yZ (x0).
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How to formalize a local fit?

@ The weighted least square method gives the following criterion
J(xX°,C) = ZWh(XO —xs)eZ,
S
€s = Ys — }/(Xov Xs)y

where w is a window function, wj(x) = w(x/h), and

C=(G.C,..)T.

@ Minimizing J on C:

C(x%) = arg mCin J(x°, C).

The notation C(XO) emphasizes that the estimate of C depends on

x0.
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The vector parameter C(xo) immediately gives the estimates of the

function y and the derivatives y'"/:

P(x) = Co(x),
) () = G(x°),
) (x0) = G(x),

The conventional windows can be used: Kaiser, Hamming, Bartlett,

Blackman, Chebyshev, etc.

ICIP 2010, Hong Kong 13/
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Convolutional estimates

Using the standard notation for multidimensional convolution, the
estimates can be represented in the following compact form

yh( O) = (gh ®Z Z gh _Xl,Sng _X2,S)Z(X1,51X2,S)v

X1,51X2,s

77 (x0) = (g @ 2)(x9), x0 € X
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2D examples (demo_ CreateLPAKernels.m)

The smoothing kernel gy, and its amplitude frequency characteristic |Gp|:
Gaussian window, m = [2,2].
The lowpass filter with a peak of the frequency characteristic at @ = Q.

o0 .m:Q‘Z)‘B:DD‘ESt\matEsau/axngxn 3
£ liic]

20 3

-0
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2D examples (cont.)

The differentiation kernel g,El'O) and its amplitude frequency characteristic

]Gi(ll'o)\: Gaussian window, m = [2,2].
The bandpass filter \G,Sl'o)| =0at@w=0.

.
ol me(2.2), 6=0°, estimates 1, 1,0
- lic]

x 10
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x10
3
Rt 2
n
0 | 0
o
i 2
K]
20
-20 10 0 10 20
(1,0,
15"
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2D examples (cont.)

The differentiation kernel g,EO'l) and its amplitude frequency characteristic

]Gi(lo'l)\: Gaussian window, m = [2,2].
The bandpass filter \G,SO'I)| =0at@w=0.

.
oy | me(2.2), 6=0%, estimates 2/, 1, 1
. e

x 10
20 4
x10
]
Rt 2
n
0 0
o
i -2
K]
20
-20 10 0 10 20
(0,1))
160%™
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2D examples (cont.)

(2,0)

The differentiation kernel g,""’ and its amplitude frequency characteristic
]Gi(,zo)\: Gaussian window, m = [2,2].

The bandpass filter \G,$2'0)| =0at@w=0.

20 m=2.2), 6L, sstimates 71, 5,0
; 4

20
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2D examples (cont.)

The differentiation kernel g,EO'Z) and its amplitude frequency characteristic

’GiSO,Q)"_ Gaussian window, m = [2,2].
The bandpass filter \G,SO'Q)| =0atw=0.

0P m=2.2), 6-LF, ostimates 71, 5, 2
X 5

a
20 s
! x10
-10
-2 - 0

(0,2)
16,671
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2D examples

(1,1)

The differentiation kernel g, and its amplitude frequency characteristic
]Gi(ll'l)\: Gaussian window, m = [2,2].
The bandpass filter \G,Sl'l)| =0at@w=0.

10 m=2.2), 60, ostimates 71, 5, 4
: &

(1,1)
1Gh6 1
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ICI Adaptive Window Size

We use pointwise nonparametric regression methods known under a
generic name Lepski’s approach and developed by Lepski O., Nemirovski
A., Goldenshluger A., Spokoiny V.

@ Overall, the algorithm searches for the largest local vicinity of the
point of estimation x where the LPA assumptions fit well to the data.
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ICI Adaptive Window Size

We use pointwise nonparametric regression methods known under a
generic name Lepski’s approach and developed by Lepski O., Nemirovski
A., Goldenshluger A., Spokoiny V.

@ Overall, the algorithm searches for the largest local vicinity of the
point of estimation x where the LPA assumptions fit well to the data.
@ The estimates are calculated for a few scales and compared.

@ The adaptive scale is defined as the largest one of those for which the
estimate does not differ significantly from the estimates corresponding
to the smaller scales.
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ICI Adaptive Window Size

We use pointwise nonparametric regression methods known under a
generic name Lepski’s approach and developed by Lepski O., Nemirovski
A., Goldenshluger A., Spokoiny V.

@ Overall, the algorithm searches for the largest local vicinity of the
point of estimation x where the LPA assumptions fit well to the data.
@ The estimates are calculated for a few scales and compared.

@ The adaptive scale is defined as the largest one of those for which the
estimate does not differ significantly from the estimates corresponding
to the smaller scales.

o We use this methods in the form known as the intersection of
confidence intervals (ICl) rule.
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LPA accuracy

&) = Y(X)=In(x) =y(x) = (gn®(y +e))(x) =
) — (& ®y)(x) — (& @) (x).

bias random error

(<
—

X
—

>
—~

The variance
0'}27h =0 g (x).
S

The ICI rule gives h minimizing MSE

ly, = E{e? o} = bias® + 03, .
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ICI rule (minimum MSE window size)
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ICI rule (minimum MSE window size)

H:{h1<h2<...<h_/}.
Dj = [yhj(X) —T~0’yh(x), }A/hj(X) —|—r'0’§,hj(X)], j=1,..J,

uh b)
U N
1 n,
v ] ] LFLy
U Ly U=U, 11_/2=U1|—.| QFUH
]777 EESNES l[J L LJ L _
¥ UFU
Pn,
B ) 12,3
y Ls =L,
(1,2)
A To-L
2 2~ L2
L, Z—IZLI
h h
hy hy hy=h" hy hy hy hy=h' hy
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A layout of the adaptive scale LPA-ICI algorithm

y h*(x)
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Anisotropy: starshaped neighborhood

Consider a ball (disk) of the radius h defining a spherical neighborhood of

X,
By =A{u:||x—ull <h}.

Introduce a sectorial partition of this ball with K nonoverlapping sectors
having x as a common vertex.

The adaptivity /C/ technique is used to find the varying scale for each
sector independently. We obtain K estimates J,¢.(x), i =1, ..., K, with K
nonoverlapping supports Sé’l_ covering the ball 5.

The union of the supports of these sectors is a starshaped set.
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Adaptive size sectorial neighborhoods are obtained by the
LPA-ICI algorithm
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These are ICl adaptive directional window sizes (scales) computed for 8

irections

d

Hong Kong

Nonlocal Image Filtering and Regularization
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These ICI adaptive directional estimates are fused in the final one using
the anisotropic multi-window method
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Fusing (aggregation) of directional estimates

Using K sectors we obtain K independently derived estimates for each x.
The multi — window (fused) estimates are exploited to obtain the unique
final estimate y(x) from the partial directional ones.

With the inverse variances as the weights for the linear fusing it gives

N K ~ ~ N
Px) = Yy Ai; (%), 96;(%) = Ing; (%) ln=r (x,0,).
_ K
Aj =0 2(x)/ Y10 2(x),
where

Ih6;(x) = (&, ® 2)(x), ‘7,-72(X) = ‘7;91. (¢ W) h=h (x,,)

Ty (0. 1) = 0* Lo, ()
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Fusing (aggregation) of directional estimates

The weights A; are data-driven adaptive as 0]2(x) depend on the
adaptive pointwise h™ (x, 6;).

Assuming that the supports of the kernels gy, , are not overlapping and
neglecting that the kernels have the point x in common, we obtain for the
variance of the fused estimate

1
202(
EJ 1 A5 ( ZK -2
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Shape-Adaptive DCT Filter (Local Multipoint)

This approach to estimation for a point x can be roughly described as the
following four stage procedure.

@ Stage | (spatial adaptation): For every x € X, define a neighborhood
U7 of x where a simple low-order polynomial model fits the data;
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Shape-Adaptive DCT Filter (Local Multipoint)

This approach to estimation for a point x can be roughly described as the
following four stage procedure.

@ Stage | (spatial adaptation): For every x € X, define a neighborhood
U;L of x where a simple low-order polynomial model fits the data;

o Stage Il (order selection): apply some localized transform (parametric
series model) to the data on the set U/, use thresholding operator
(model selection procedure) in order to identify the significant (i.e.
nonzero) elements of the transform (and thus the order of the
parametric model).
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Shape-Adaptive DCT Filter

@ Stage Il (approximation): Calculate, by inverse-transformation of the
significant elements only, the corresponding estimates j/w(v) of the
signal for all v € U}. These Jp, are calculated for all x € X.
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Shape-Adaptive DCT Filter

o Stage Ill (approximation): Calculate, by inverse-transformation of the
significant elements only, the corresponding estimates f/w(v) of the
signal for all v € U}. These Y, are calculated for all x € X.

@ Stage IV (aggregation): Let x € X and I, = {x eX:xe€ U;“} be
the set of the centers of the neighborhoods which have x as a
common point. The final estimate y(x) is calculated as an aggregate

Of {)A/U;r (X) }XGIX'
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Shape-Adaptive DCT Filter

o Stage Ill (approximation): Calculate, by inverse-transformation of the
significant elements only, the corresponding estimates f/w(v) of the
signal for all v € U}. These Y, are calculated for all x € X.

o Stage IV (aggregation): Let x € X and Iy = {x € X : x € U]} be
the set of the centers of the neighborhoods which have x as a
common point. The final estimate §(x) is calculated as an aggregate
Of {}7(]; <X)}X€/X'

@ One key aspect in this procedure is that by demanding the local fit of
a low-order polynomial model, we are able to avoid the presence of
singularities, discontinuities, or sharp transitions within the transform
support Uj. In this way, we increase the sparsity in the transform
domain, improving the effectiveness of thresholding.
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[llustrations

adaptive amsotroplc neighborhood
adaptive-scale kernel support
\ Supp gh;r(:z 0,).05 i

/
\ /

SUPD Gy(z.0,).0;"

\

Supp gh"'(z 0,),0, Supp thr(m*es)’es

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization 2010, Hong Kong 34



Shape-Adaptive DCT Transform

Illustration of the shape-adaptive DCT transform and its inverse.
Transformation is computed by cascaded application of one-dimensional
varying-length DCT transforms, along the columns and along the rows.

pores
2388¢ DCTg
§83aq poTy
——— DCT 4

1 1 — DCT3

1 I I —— DCTo
T I T —— DCTo
T DCTy

= 0
(=} - 1
: SApeT T L
S 8]
— o
B Q
S \ !Q\gerse sA-DCT 3
% : t IDCTs S "
IDCT5
_— IDCT 4
— IDCT3
E 1DCTo
- 1DCTy

1DCT]
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Multipoint Estimate Fusing (fusing-aggregation)

In order to obtain a single global estimate ¥ : X — R defined on the whole
image domain, all the local patch estimates are averaged together using
adaptive weights wy, € R in the following convex combination:

6. X
EXGX WX-yUX*"

y= :
Yoxex WxX
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Aggregation (multipoint) in action

A cross-section of length 31 pixels from Peppers test-image (o = 25).

- individual estimates
— observations
== aggregated estimate
— true signal
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Implementation of SA-DCT Filter

http://www.cs.tut.fi/ “foi/SA-DCT/
e demo_SADCT _denoising.m

@ demo SADCT color denoising.m

@ demo SADCT deblurring.m

e demo_SADCT _deblocking.m

e demo_SADCT inverse halftoning.m
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NL-means filters

A. Buades, et al., “A review of image denoising algorithms, with a new one,”
SIAM Multiscale Modeling and Simulation, vol. 4, 2005.

@ The nonlocal means (NL-means) as they are introduced by Buades et al.
(2005) have been given in a different form where these weights calculated
over spatial neighborhoods of the points x% and xs.
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N ns filters

A. Buades, et al., “A review of image denoising algorithms, with a new one,”
SIAM Multiscale Modeling and Simulation, vol. 4, 2005.

@ The nonlocal means (NL-means) as they are introduced by Buades et al.
(2005) have been given in a different form where these weights calculated
over spatial neighborhoods of the points x% and Xs-

@ These neighborhood-wise differences can be interpreted as more reliable way
to estimate yo — Vs from the noise samples alone.
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N ns filters

A. Buades, et al., “A review of image denoising algorithms, with a new one,”
SIAM Multiscale Modeling and Simulation, vol. 4, 2005.

@ The nonlocal means (NL-means) as they are introduced by Buades et al.
(2005) have been given in a different form where these weights calculated
over spatial neighborhoods of the points x% and Xs-

@ These neighborhood-wise differences can be interpreted as more reliable way

to estimate yo — ¥s from the noise samples alone.

@ Then, the nonlocal mean estimate is calculated in a pointwise manner as the
weighted mean with the weights defined by the proximity measure between
the image patches used in the estimate.
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ns filters (cont.)

@ This estimation can be formalized as minimization of the weighted squared
residual criterion

Ihx(C) = thys(xo,xs)[zs — C]2,

with, say, Gaussian weights

):Vev(z(xoﬁ»v)fz(xsﬁﬂl))z
Whs(x%, x5) = e~ 2
h,s y Xs

defined by the Euclidean distance between the observations z in

V-neighborhoods of the points x% and x5, V being a fixed neighborhood of

x0.
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ns filters (cont.)

@ This estimation can be formalized as minimization of the weighted squared
residual criterion

Ihx(C) = thys(xo,xs)[zs — C]2,

with, say, Gaussian weights

0 _):Vev(z(x0+v)fz(xs+v))2
whs(x®, xs) = e 2

defined by the Euclidean distance between the observations z in
V/-neighborhoods of the points x° and xs, V being a fixed neighborhood of

X9

@ The nonlocal means estimate is calculated as the weighted mean

0
In(x7) = Y (x")zs: g5 (x°) = M
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Nonlocal transform domain: multipoint estimates

We consider nonlocal estimates by use of the transforms enabling the adaptive
high-order approximations of the windowed data.

@ Let the image be defined on a regular 2D grid X. Consider a windowing
C = {Xr, r=1,..., Ns} of X with Ns blocks (uniform windows)
X, C X of size n, X n, such that Uf’;lX, = X.
The noise-free data y (x) and the noisy data z(x) windowed on X, are
arranged in n, X n, blocks denoted as Y, and Z,, respectively.
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Nonlocal transform domain: multipoint estimates

We consider nonlocal estimates by use of the transforms enabling the adaptive
high-order approximations of the windowed data.

@ Let the image be defined on a regular 2D grid X. Consider a windowing
C={X,, r=1,...,Ns} of X with Ns blocks (uniform windows)
X, C X of size n, X n, such that UivilX, = X.
The noise-free data y (x) and the noisy data z(x) windowed on X are
arranged in n, X n, blocks denoted as Y, and Z,, respectively.

@ Typically, the blocks may overlap and we use transforms in conjunction with
the concept of the redundancy of natural signals.
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Nonlocal transform domain (cont.)

@ Mainly these are the 2-D discrete Fourier and cosine transforms (DFT and
DCT), orthogonal polynomials, and wavelet transforms. The transform,
denoted as 7,°°, is applied for each window X, independently as

0, =T (V,), [G,ZD,Y,D,T] r=1,...,N,
where 0, is the spectrum of Y}, and D, are orthonormal matrices

D,DT =D'D, = 1.
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Nonlocal transform domain (cont.)

@ Mainly these are the 2-D discrete Fourier and cosine transforms (DFT and
DCT), orthogonal polynomials, and wavelet transforms. The transform,
denoted as T,ZD, is applied for each window X, independently as

0, =T7° (V) [Q,ZD,Y,D,T] r=1,..., N,
where 0, is the spectrum of Y}, and D, are orthonormal matrices
D,D] =D'D, = 1.
@ The equality enclosed in square brackets holds when the transform T7° s

realized as a separable composition of 1-D transforms, each computed by
matrix multiplication against an n, X n, orthogonal matrix D,.
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Nonlocal transform domain (cont.)

. -1 . .
@ The inverse 7,”° ~ of 7;° defines the signal from the spectrum as

Y, =77 (6,), [Y,:D,TQ,D,] r=1,...,N,.
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Nonlocal transform domain (cont.)

-1
@ The inverse 7,”° ~ of 7;° defines the signal from the spectrum as
-1
Y, =77 9,), [ Y, = D,TQ,Dr] r=1...,N;.
@ The noisy spectrum of the noisy signal is defined as

b, =T (Z,), [é,:D,z,D,T} r=1...,N;.
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Nonlocal transform domain (cont.)

@ The inverse T,2D71 of 7,7° defines the signal from the spectrum as
Y, =77 9,), [ Y, = D] 9,D, ] r=1...,N;.
@ The noisy spectrum of the noisy signal is defined as
b, =T (Z,), [é, =D,Z,D7 } r=1...,N;.

@ The signal y is sparse if it can be well approximated by a small number of
non-zero elements of the spectrum 6,.
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Nonlocal transform-domain calculation: single model

Let Z, be a reference window and Zs be all others.
The non-local estimate for r-th window is formalized as minimization of the
weighted criterion

Ihz,(0) = Y wh(Z,. 2.)||Z,— D6DI}3
S
with, say, Gaussian weights
wh(Z;, Zs) = exp(—|Z, = Z|[3/ 1*).
The estimate for r-th reference window is

0, = arg m9in Inz,(0).
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Nonlocal transform-domain calculation: single model

(cont.)

The minimum conditions

)

_ T _
MMLW)—0:>;wMLJQWLD —0)=0—

A Y Wh(erZS) 'és A T
0, = .0, =DZ,D".
Zs Wh(Zf'ZS)

The solution is the weighted mean of the noisy spectrums 05 versus the weighted
mean of the means in the standard NL-means.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 45 / 223



Nonlocal transform domain: single model with prior

(penalty)

All denoising is because of this weighted mean. It can be essentially improved

imposing a prior on the spectrum 6.

@ The non-local estimate for r-th window is formalized as minimization of the
weighted criterion

1
Iz, (0) = 72 Y wi(Z., Z,)||Z; — DTOD||5 + u* - pen(6).
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Nonlocal transform domain: single model with prior

(penalty)

All denoising is because of this weighted mean. It can be essentially improved

imposing a prior on the spectrum 6.

@ The non-local estimate for r-th window is formalized as minimization of the
weighted criterion

1
Ihz,(9) = 5 Y wi(Z,, Z)||Zs — DTOD|[3 + p® - pen(6).
S

@ pen(0) = ||0]]o is lp-norm is equal to a number of nonzero items in the
matrix 6. ||0]]o is a measure of the model complexity.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 46 / 223



Nonlocal transform domain: single model with prior

(penalty)

All denoising is because of this weighted mean. It can be essentially improved

imposing a prior on the spectrum 6.

@ The non-local estimate for r-th window is formalized as minimization of the
weighted criterion

1
Ihz,(9) = 5 Y wi(Z,, Z)||Zs — DTOD|[3 + p® - pen(6).
S

e pen(0) = ||0]]o is lp-norm is equal to a number of nonzero items in the
matrix 0. ||0]]o is a measure of the model complexity.

@ Other norms also can be used ||6||1 = Y16/, ||6]]2 = 1/29,21-.
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Nonlocal transform domain: single model with prior

(penalty)

All denoising is because of this weighted mean. It can be essentially improved

imposing a prior on the spectrum 6.

@ The non-local estimate for r-th window is formalized as minimization of the
weighted criterion

1
Ihz,(9) = 5 Y wi(Z,, Z)||Zs — DTOD|[3 + p® - pen(6).
S

e pen(0) = ||0]]o is lp-norm is equal to a number of nonzero items in the
matrix 0. ||0]]o is a measure of the model complexity.

@ Other norms also can be used ||0][1 = Y10, ||0]]2 = \/20,21-.

@ A minimal complexity estimate is calculated as

A 1 -
0, =arg min th(Z,, Z5)||0s — 9|\§ +y2 - 116]]o-
S
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Nonlocal transform domain: single model with prior, single

window

For a single window the minimal complexity model is calculated as
b, = in 2118, — 0112 + 12116
r = argmin 5 [[6, — 0[5+ p= - [[8]]o-

It can be shown that this solution gives the so-called hard-thresholding (filtering)

A [ 0.3i.)), if|0,(i.))] > ou,
r(7.J) _{ 0, if 16,(i,j)| < oy
We use the symbol Y(-) for the thresholding operation
0,(i.j) = Y(8,(i.))).

When 9, found the windowed estimate is calculated as

Y, =D'9,D.
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Nonlocal transform domain: biasedness and variance

Let us evaluate the efficiency of the thresholding filtering.
For the noisy data we have (before filtering)
Al Ty _ T__ T_
E{0,} =E{D,Z,D; } =D,E{Z,}D, = D,Y,D/ =6,,
thus 6, — E{é,} = 0.
For the hard-thresholded data

O e e

0.(i.j) — E{0,(i.j)} = { : i;cf|%,((i},jj))|| 2<(Z;l
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Nonlocal transform domain: biasedness and variance

(cont.)

The variance of the thresholded data
A® = 6,-6,=D,ZD' —D,Y,D] =D,ED;

Svar = Zvar{é,(i,j)} = ZE(Arf)(i,j))2 =o?n?

Svar,thr = ZE(é,(i,j))2 = UQ(”E - ”E,O) = 0—2Nf)1(;r'
iJj

where n? o is a number of |6,] = 0, N, is the number of retained (non-zero)

coefficients after hard-thresholding.
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Nonlocal transform domain with prior: single model, many

windows

It can be verified that
Ihz(0) = # Y wi(Zr, Zs)|| Zs — DTOD||3 + p? - pen(6) can be rewritten
as

1 ~
Inz(0) = ) Y wi(Z., Z,)|16, — 0|[5 + p* - pen(6) + const,
S

where

0, =) wn(Z,Z)8s/ Y win(Z:, Zs).
s s
Then the minimization of I, 7 (6) and estimation for the reference block becomes
0 =arg mein |16, — 0|[3 + u? pen(6),
Y, =T>"1(9).

where y% = 0'2‘142/ Yo win(Z, Zs).
If pen(6) = ||6]]o the estimate 6 is a thresholded version of 6,.
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Block matching and 3D filtering (BM3D): nonlocal
filtering with multiple models

K. Dabov, et al., “Image denoising by sparse 3-D transform-domain
collaborative filtering,” |IEEE Trans. IP, vol. 16, no. 8, 2007.
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Stage | (block matching, grouping)

The grouping is a concept of collecting similar d-dimensional fragments of a
given signal into a d 4+ 1-dimensional data structure that we term “group.”
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Stage | (block matching, grouping)

@ Distance between the blocks:
d (er ZS) - HZr - ZSHp '

where typically p = 2.
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Stage | (block matching, grouping)

@ Distance between the blocks:
d(Z.Z)=|Z — Z|, .

where typically p = 2.

@ Grouping rule:

St =1{s:d(Z,2)<1}.

T > 0 is a (dis)similarity threshold.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 53 / 223



Stage | (block matching, grouping)

@ Distance between the blocks:
d(Z.Z)=|Z — Z|, .

where typically p = 2.

@ Grouping rule:

St =1{s:d(Z,Z)<1}.

T > 0 is a (dis)similarity threshold.

@ Group (stacking represented as disjoint union):

Zsrht - H ZS.

sesht
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Stage Il (3D collaborative filtering)

@ Collaborative filtering is realized as shrinkage in transform domain.
Assuming (2 4 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.
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Stage Il (3D collaborative filtering)

@ Collaborative filtering is realized as shrinkage in transform domain.
Assuming (2 + 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.

@ Apply a (2 + 1)—dimensiona| linear transform on a group.
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Stage Il (3D collaborative filtering)

@ Collaborative filtering is realized as shrinkage in transform domain.
Assuming (2 + 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.

@ Apply a (2 + 1)—dimensiona| linear transform on a group.

@ Shrink (e.g. by soft- and hard-thresholding, Wiener filtering) the transform
coefficients to attenuate the noise.
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Stage Il (3D collaborative filtering)

@ Collaborative filtering is realized as shrinkage in transform domain.
Assuming (2 + 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.

@ Apply a (2 + 1)—dimensiona| linear transform on a group.

@ Shrink (e.g. by soft- and hard-thresholding, Wiener filtering) the transform
coefficients to attenuate the noise.

@ Invert the transform to produce estimates of all grouped fragments.
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Stage Il (3D collaborative filtering)

@ Collaborative filtering is realized as shrinkage in transform domain.
Assuming (2 + 1)-dimensional groups of similar signal fragments are already
formed, the approach comprises of the following steps.

@ Apply a (2 + 1)—dimensiona| linear transform on a group.

@ Shrink (e.g. by soft- and hard-thresholding, Wiener filtering) the transform
coefficients to attenuate the noise.

@ Invert the transform to produce estimates of all grouped fragments.

@ Return the filtered fragments to their original locations.
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Collaborative filtering implementation

The collaborative filtering of ZSQ; is realized by hard-thresholding in 3D transform
domain.

The 3D linear transform, denoted T;bt is expected to take advantage of the
sparsity for the true signal group YSL“-

This allows for effective noise attenuation by hard-thresholding, followed by
inverse transform that yields a 3D array of block-wise estimates

7y = (v (5 (2))).

where Y is a hard-threshold operator with threshold U3p0-
It is assumed that the T;B transform has a DC-term which is never thresholded.
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Sparsity of Collaborative 3D Hard-Thresholding

T*-spectrum T*-spectrum T *°-spectra
y o 7 -
y o Y, =
TlD_1 l
TZD-spectra image domain
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Stage Il (fusion/aggregation of filtered fragments)

The estimates of Stage I are heavily overlapping.
Calculate the pointwise estimates using the variances of the estimates in the
fragments.
The final estimate y is computed by a weighted average of the block-wise
estimates Y:é_%rt using the special weights W;‘;
ht ’yht,x,
L L V()
~basic XrEX xm€S5
Y (x) = VX € X,
oL owix, ()

X €X xmeESht

ht 1

W, = ———
Xr 2 NXr
aeN.T

where x, : X — {0, 1} is the characteristic function of the square support of a

block located at x,,; € X, and the block-wise estimates Y;‘,:'X’ are zero-padded
outside of their support, where N > 1 is the number of retained (non-zero)

har
coefficients after hard-thresholding.
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BM3D Algorithm Flowchart

Noisy Step 1 _»Basic estimate Step 2
= [ ] Final
Block-wise estimates = Aggregation == Block-wise estimates == Aggregatlon-vaner
\— 1 + f . estimate
Inverse 3D transform i Inverse 3D transform v
Grouping by Vi Groupmg by t i
! I

- ng chncr ﬁltcrmg -------- ;

blOCk'm%t'Ching Hard-thresholding - -------
| Welght

‘ ! e
— g — 3D transform i g 3D transform

Step 1 — Hard thresholding
Step 2 — Wiener filtering
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Features of BM3D's Wiener-filtering step

basic (

@ Block Matching is carried out on the basic estimate y output of the

hard-thresholding step).
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Features of BM3D's Wiener-filtering step

@ Block Matching is carried out on the basic estimate Y2 (output of the
hard-thresholding step).

@ Hard thresholding is replaced by Wiener filtering. We define the empirical
Wiener shrinkage coefficients as

~ . 2
wie basic
78 (V)

’f];v\éie (?basic) ’2 + 0—2

wie
er

wie —
Sy

vwie __ gwie ! wie
'YS)‘?’,ie - 3D Ws;vrie 3D Zs)\?/rie .
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Features of BM3D's Wiener-filtering step

@ Block Matching is carried out on the basic estimate Y2 (output of the
hard-thresholding step).

@ Hard thresholding is replaced by Wiener filtering. We define the empirical
Wiener shrinkage coefficients as

~ . 2
wie basic
78 (Vi)

5 (2]

wie —
Sy

Gwie __ gwie ! wie
> ’YS)‘?’rie — 7-3D <WS‘)\2vrie7i3D <ZS¥Vrie)> .
+ 02

@ The weights in the aggregation are calculated as
YL wYdo
Xr€X xpeSyie xm

T » wier, ()

xreX Xm ES)\;\/{ie

S/\final (X)

, VX & X, WWie: 0‘72 stwie
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Examples of BM3D denoising performance

(a) Lena (PSNR 32.08 dB) (b) Barbara (PSNR 30.73 dB) (¢) Cameraman (PSNR 29.45 dB)

. B
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Nonlocal BM3D vs SA-DCT: value of nonlocality

N
[$2)

O bk o1

10 15 20 10 15 20 25 10 15 20
o g o
(c) House

(a) Barbara (b) Lena
PSNR as a function of 0. BM3D ("squares"), BLS-GSM (circles),

exemplar-based denoising ("x"), K-SVD denoising ("diamonds"), and Pointwise
SA-DCT denoising ("stars").
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Dependency of the output PSNR (dB) on the used

transforms

Transform Boats Lena

0=25 | Ty | T | Tw [ Ty | Tp° [ Two
Haar 29.31 | 29.84 | 29.91 | 31.24 | 31.93 | 32.08
Db2 29.22 | 29.83 | 29.90 | 31.19 | 31.97 | 32.06
Db4 29.34 | 29.88 | 29.89 | 31.31 | 32.01 | 32.06
Db6 29.30 | 29.86 | 29.89 | 31.28 | 31.98 | 32.06
Biorl.3 29.42 | 29.87 | 29.90 | 31.35 | 31.96 | 32.06
Biorl.5 29.43 | 29.88 | 29.90 | 31.37 | 31.97 | 32.06
WHT 29.22 | 29.84 | 29.88 | 31.24 | 32.00 | 32.07
DCT 29.35 | 29.91 | 29.88 | 31.42 | 32.08 | 32.07
DST 29.33 | 29.91 | 29.79 | 31.36 | 31.97 | 31.92
DC+rand | 29.07 | 29.75 | 29.88 | 31.06 | 31.88 | 32.06
DC-only - - 28.03 - - 30.65

Katkovnik and Foi (TUT)
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Computational complexity

Quality vs. speed scalability

Approx. execution time for a 256 X256 grayscale image
on 1.5-GHz Celeron M (Matlab)

Fast profile 0.7 sec.
Normal profile 4.1 sec.

Fast profile results in about 0.2-dB PSNR loss vs. Normal profile.
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Extensive independent benchmarking demonstrates the

superiority of the BM3D algorithms

PSNR/MSSIM

@ http://www.stanford.edu/~slansel /DenoiseLab/
@ http://www.cs.utoronto.ca/~strider/Denoise/Benchmark/

Perceptual quality (human subjects)

@ Van der Weken, D., E. Kerre, E. Vansteenkiste, and W. Philips, “Evaluation of fuzzy
image quality measures using a multidimensional scaling framework”, Proc. 2nd Int.
Workshop Video Process. Quality Metrics Consum. Electron., VPQM2006, Scottsdale,
AZ, Jan. 2006.

@ Vansteenkiste, E., D. Van der Weken, W. Philips, and E. Kerre, “Perceived image Quality
Measurement of state-of-the-art Noise Reduction Schemes”, Lecture Notes in Computer
Science 4179 - ACIVS 2006, pp. 114-124, Springer, Sep. 2006.

Performance bounds for the image denoising problem

@ http://users.soe.ucsc.edu/~ priyam/bounds/
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rmance bounds for the image denoising problem

Katkovnik and Foi
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Is Denoising Dead?

Priyam Chatterjee, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstraci—Image denoising has been a well studied problem in
the field of image processing. Yet researchers continue to focus at-
tention on it to better the current state-of-the-art. Recently pro-
posed methods take different approaches to the problem and yet
their denoising performances are comparable. A pertinent ques-
tion then to ask is whether there is a theoretical limit to denoising
performance and, more importantly, are we there yet? As camera
manufacturers continue to pack Increasing numbers of pixels per
unit area, an i in nolse sensitivity itself in the form

erature on such performance limits exists for some of the more
complex image processing problems such as image registration
[7], [8] and super-resolution [9}-[12]. Performance limits to
object or feature recovery in images in the presence of point-
wise degradation has been studied by Treibitz ef al. [13]. In
their work, the authors study the effects of noise among other
ds ions and formulate ions for the imal filtering

of a noisier image. We study the performance bounds for the image
denoising problem. Our work in this paper estimates a lower bound
on the mean squared error of the denolsed resuli and compares the
performance of current state-of-the-art denolsing methods with
this bound. We show that despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remalns for a wide elass of general kmages, and at certaln
‘signal-te-nolse levels. Therefore, Image denolsing s not dead—yet,

Index Terms—Bayesian Cramér-Rao lower bound (CRLB),
bias, bootstrapping, image denoising, mean squared error.

1L INTRODUCTION

Nonlocal Image Filtering and Regularization

that define the resolution limils 1o recovering any
given feature in the image. While their study is practical, it
does not define statistical performance limits to denoising
general images. In [14], Voloshynovskiy ef al briefly analyze
the performance of MAP estimators for the denoising problem.
However, our bounds are developed in a much more general
setting and, to the best of our knowledge, no comparable study
currently exists for the problem of denoising. The present
study will enable us 10 understand how well the state-of-the-art
denoising algorithms perform as compared to these limits.
From a practical perspective, it will also lead to understanding
the fundamental limits of increasing the number of sensors in
the imaging system with acceptable image quality being made

possible by noise suppression algarithms.
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Performance bounds for the image denoising problem
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Is Denoising Dead?
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despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remains for a wide class of general images, and at certain
signal-to-noise levels. Therefore, image denoising is not dead—yet.

Katkovnik and Foi (TUT)

bound oo not define statistical performance limits 1o denoising

m. Our und
on the mean squared error of the denolsed result and compares the
performance of current state-of-the-art denolsing methods with
this bound. We show that despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remalns for a wide elass of general kmages, and at certaln
‘signal-te-nolse levels. Therefore, Image denolsing s not dead—yet,

Index Terms—Bayesian Cramér-Rao lower bound (CRLB),
bias, bootstrapping, image denoising, mean squared error.

1L INTRODUCTION

Nonlocal Image Filtering and Regularization

general images. Tn [14], Voloshynovskiy ef al. briefly analyze
the performance of MAP estimators for the denoising problem.
However, our bounds are developed in a much more general
setting and, to the best of our knowledge, no comparable study
currently exists for the problem of denoising. The present
study will enable us 10 understand how well the state-of-the-art
denoising algorithms perform as compared to these limits.
From a practical perspective, it will also lead to understanding
the fundamental limits of increasing the number of sensors in
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Color denoising

Exploit structural correlation in luminance-chrominance space

Key idea: the structures (e.g., objects, edges, details) which determine
the spatial adaptivity are the same across all color channels.

7 1/3 1/3 1/3 e opponent color
v |=| 1/V6 0 —1/V6 || ¥ P

¥3 1/(3v2) —v2/3 1/(3V2) Yb

transformation

w\
\

7

RGB Y u \Y

The method is implemented after transformation to a luminance-chrominance
color-space (e.g., opponent, YUV, YCbCr).

Foi, A., V. Katkovnik, and K. Egiazarian, “Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of

Grayscale and Color Images”, IEEE TIP, vol. 16, no. 5, 2007.
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Color Image Denoising with C-BM3D

The same grouping defined for the luminance channel is used for all three color

channels.

hasic

~» Basic estimate ym

Ht(:;B — 2y Block-wise ostimamsz Aggr‘(‘gatio y‘;““D Block-wise cstimatcsz Aggr(\gutiunz (‘1&12:”
Lum. [] ' ‘ l f” /'D 1t to
Chrom. ﬁ Tnverse 3D transform Inverse Z}D'liansform i RGB
tt ‘ 3
Grouping by A Grouping by Tiener — ! l
[ hlock—matching Hard—thres;mldmg \\/ o blo(k—matchmg V‘Im‘u? Iﬁlieilllg “Welshis
eights {jbasic 3 g
Zigb 3D transform Yy, 1 3D transform :023;1
1}\"]3%\1}3 — | ybhg _ D(;%l(gi]s}(‘d
image -;—, yhm image
P =T
A T =22 g

2 2]

Flowchart of C-BM3D.

K. Dabov, et al., “Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance

space,” Proc. IEEE Int. Conf. Image Process., ICIP 2007, San Antonio, TX, USA, 2007.
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Color Image Denoising Example

Top row contains noise-free Y, Cb, and Cr channels and the bottom row contains
corresponding noisy ones (0 = 22).
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Color Image Denoising Example

On the left: noisy (00 =35) House and a fragment of it; on the right: the
corresponding denoised image (PSNR=31.58 dB) and fragment.
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Image Denoising with BM3D

http://www.cs.tut.fi/ ~foi/GCF-BM3D/

(1) BM3D.m

[PSNR, y _est] = BM3D(y, z, sigma, profile, print_to_screen)

(2) CBM3D.m (color version)

[PSNR, YRGB _est] = CBM3D(yRGB, zRGB, sigma, profile, print_to_screen,
colorspace).
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Image Deblurring: setting of the problem

Deblurring problem: reconstruct y; from {z,',x,'}le,
zi = (y®v)(x) +os,
where &; = e(x;) i.i.d. N(0,1).
Standard approach: regularized inverse
y=argmin||z = (y@v)|[3+p- pen(y). A >0.

An invariant ¢ is a principal limitation.

In what follows we use V(f) = F{v} and Z(f) = F{z}, Y(f) = F{y}.
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BM3D based deblurring

Our approach is based on two inverse estimates:

@ Regularized inverse with small regularization parameter complemented by
BM3D filtering: in the frequency domain it is calculated as

v(f)
Ve +a2 )

A

YRI(F) =
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BM3D based deblurring

Our approach is based on two inverse estimates:

@ Regularized inverse with small regularization parameter complemented by
BM3D filtering: in the frequency domain it is calculated as

_ ()
G

A

YRI(F)

@ Wiener inverse complemented by BM3D filtering: in the frequency domain it
is calculated as

\A/RWI(]() o V*(f)

N ‘V(f)|2 + nlnzaz/‘\A/Rl(f)‘QZ(f)-

This filtering implements (imitates) effects of the varying adaptive
regularization parameter J.

K. Dabov, et al., “Image restoration by sparse 3D transform-domain collaborative

filtering,” Proc. SPIE Electronic Imaging '08, no. 6812-07, San Jose, 2008.
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Image Deblurring with BM3D (BM3DDEB.m)

BM3D filtering
z Regularized with
Inverse collaborative
Blurred hard-thresholding N
and yR,l
Noisy
I
mage l l Step 2
RWI i
Regularized z BM3]3Vifti}lf e ARWI
— }Ulener collaborative
nverse Wiener filtering Restored Image
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Color Filter Array Demosaicking

Color Filter Array

Bayer color filter array (CFA)
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Noise-Free Demosaicking

High correlation between channels. It is likely that color channels are going to
have similar texture and edge locations.

L. Zhang and X. Wu, "Color demosaicking via directional linear minimum mean
square-error estimation,” |IEEE Trans. IP., vol. 14, no. 12, 2005.

Paliy, et al. “Denoising and Interpolation of Noisy Bayer Data with Adaptive
Cross-Color Filters", SPIE-IS&T Electronic Imaging, Visual Communications and
Image Processing 2008, vol. 6822, San Jose, 2008.
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Noise-Free CFA Demosaicking
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Noisy CFA Demosaicking
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How to deal with noise?

@ Denoising AFTER demosaicking.

No adequate noise model! Interpolation changes statistical model of the noise in
a complex and hardly computable form;

Filter should rely only on constraints reflecting the general a priori knowledge
about the image structure.

@ JOINT demosaicking-denoising.(Paliy et al., Zhang et. al)

Modify demosaicking method to be robust against noise;
Design is difficult! Combining antagonistic procedures. Denoising ~ smoothing,
while demosaicking/interpolation ~ reconstruction of high-frequency details.

@ Can we do Denoising BEFORE demosaicking?

Mosaic structure violates assumptions about local smoothness of the natural
images on which filters were relying;

Split(R, G1, G2, B) -> Denoise -> Combine - this leads to smoothing fine
details.
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Modern Cross-Color Denoising Approaches

What has changed in novel algorithms?
Local smoothing is not critical anymore. Filters exploiting non-local similarity of
small image patches.

Zhang, et all., "PCA-based Spatial Adaptive Denoising of CFA Images for
Single-Sensor Digital Cameras,” IEEE Trans. IP, vol. 18, no. 4, 20009.

A. Danielyan, et al., “Cross-color BM3D filtering of noisy raw data”, Proc. Int.
Workshop on Local and Non-Local Approx. in Image Process., LNLA 2009,
Tuusula, Finland, pp. 125-129, 2009.

Foi, A., “Clipped noisy images: heteroskedastic modeling and practical
denoising”, Signal Processing, vol. 89, no. 12, pp. 2609-2629, Dec. 2009.
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BM3D with color-constrained grouping

Block grouping in BM3D modeling: unconstrained (left) and color-constrained
(right)
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Experiment 1. Denoising and demosaicking (GN).

Proposed ‘ Zhang, 2009 | Proposed ‘ Zhang, 2009
5/255 12/255
R 37.8 36.8 33.9 32.6
G 39.1 38.0 34.6 33.2
B 375 36.6 33.8 32.6
R 32.7 31.7 29.6 28.5
G 34.5 33.2 30.5 29.3
B 32.8 31.9 29.8 28.7
R 35.7 34.8 31.8 30.9
G 36.8 35.9 325 31.6
B 36.3 354 32.6 31.6
R 37.7 37.3 34.4 33.9
G 39.3 38.7 35.5 34.8
B 38.2 37.6 34.6 33.9
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Experiment 2. Gaussian-Poissonian Noise and clipping

Proposed ‘ Zhang, 2009
a=0.004, b=0.02°
34.1 32.7
34.9 335
343 33.1
29.5 28.3
30.4 29.2
29.7 28.5
32.0 31.0
32.6 31.7
32.7 31.7
34.2 33.7
35.4 347
34.8 34.2

Katkovnik and Foi

Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong
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Gaussian noise

From left to right: ground truth, proposed denoising + interpolation
(Zhang, 2005), denoising (Zhang, 2009) + interpolation (Zhang, 2005),
Gaussian noise, o = 12/255.
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Signal-dependent noise

i

From left to right: ground truth, proposed denoising + interpolation
(Zhang, 2005), denoising (Zhang, 2009) -+ interpolation (Zhang, 2005),
signal-dependent noise (a = 0.004, b = 0.02 ).
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BM3D algorithms with
adaptive-shape neighborhoods
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The algorithm uses grouping of adaptive-shape neighborhoods whose

surrounding square supersets have been found similar by a block-matching
procedure.

The data defined on these grouped neighborhoods is stacked together,
resulting in 3-D structures which are generalized cylinders with
adaptive-shape cross sections.

These 3-D groups are characterized by a high correlation along all the three

dimensions.

A 3-D decorrelating transform is computed as a separable composition of the
Shape-Adaptive DCT (SA-DCT) and a 1-D orthonormal transform.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “A Nonlocal and Shape-Adaptive Transform-Domain Collaborative
Filtering,” Proc. 2008 Int. Workshop on Local and Non-Local Approximation in Image Processing, LNLA 2008,

Lausanne, Switzerland, 2008.
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BM3D algorithm with SA-DCT (SA-BM3D)

2D SA-DCT

'~ 9D SA-DCT _

~separated DC coefficients

/’
4/

/ ?; 2DSADCI

Addptne-shdpe group

o~

v =
a
L
L
~—_——
SA-DCT spectra
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\

L e T 1
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P
! —
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» | A
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[llustration of applying 3D transform on a group of shape-adaptive

neighborhoods.
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BM3D algorithm with SA-DCT (SA-BM3D)

SA-DCT SA-BM3D
27.51 27.95

BM3D's good reconstruction of textures and regular image structures and
SA-DCT's good reconstruction of sharp edges of varying curvature and image
singularities.
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BM3D algorithm with shape-adaptive PCA

(BM3D-SAPCA)

@ A proper selection of the transform is crucial element for ensuring the
success of the transform-based methods.

@ This problem, known under different names as best basis, dictionary, or prior
selection, has been a subject of intensive study from the very beginning of
the development and application of estimation/approximation methods. In
particular, the use of bases adaptive to the data at hand is of special interest.

@ This latest version of BM3D algorithm incorporating a shape-adaptive
Principal Component Analysis (PCA) as part of the 3-D transform. For a
3-D group of adaptive-shape image patches, a shape-adaptive PCA basis is
obtained by eigenvalue decomposition of an empirical second-moment
matrix computed from these patches.

@ Overall 3-D transform is a separable composition of the PCA (applied on
each image patch) and a fixed orthogonal 1-D transform in the third
dimension.
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Flowchart of BM3D-SAPCA

[ Input noisy image ]

Compute
shape-

Apply| adaptive
shape PCA

| Group similar blocks | | 2.1 transform <----- _
1 Shrinkage

Obtain shape
using LPA-ICI @

[Inverse 3-D transform]<

|2

Aggregation

Operations performed for

sach processed block N .
B [Dcnmscd image ]

K. Dabov, et al., “BM3D Image Denoising with Shape-Adaptive Principal Component Analysis”, Proc. Workshop on Signal

Processing with Adaptive Sparse Structured Representations (SPARS’'09), Saint-Malo, France, April 2009
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Principal Components of PCA in BM3D-SAPCA

[llustration of the PCs (shown on the right side). The green overlay shows the
found similar neighborhoods used to form a 3-D group.
The PCs are listed in decreasing magnitude of their corresponding eigenvalues.
The first few PCs have the strongest similarity with the noise-free signal in the
neighborhood.
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PCA calculations

Each of the 2-D neighborhoods in the group is vectorized with vectors as
of the length N. The sample estimate of the covariance matrix Ng x N,
is calculated as

é = [31, 32,...,aNg] . [al, 32,...,3Ng]T,

where N is a number of the patches in the group.
The PCA eigenvalue decomposition yields

UTCU =S = diag{s,....sn,}.

The largest eigenvalues such that s; > th- 02 are selected and the
corresponding orthonormal columns of U are used as a set of orthonormal
bases.
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[llustrations: from BM3D to BM3D-SAPCA

Original Nois, o =35 BM3D (27.82, 0.8207)

K%

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)

The use of a data-driven adaptive transforms for the coIIaboratlve fllterlng results

l N
ICIP 7010 Hong Kong 94 / 223
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Experimental comparison

The algorithms are applied on a set of 10 different test images corrupted by
additive white Gaussian noise with standard deviations o = 5, 15, 20, 25, 35.
The comparison is made in terms of both PSNR and mean structural-similarity
index map (MSSIM).

We can see that three algorithms based on the collaborative filtering paradigm
occupy the top-three places also in this comparison.

Z. Wang, et al."Image quality assessment: From error visibility to structural similarity," IEEE
Trans. IP. 13, no. 4, 2004.
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Experimental comparison (PNSR)

Difference in PSNR [dB]

- -V -
. o 5 > ]
$— * ; &
05—
— —_—
-1t ]
15 ¢
P
2
G
25
15 20 = ”

Noise standard deviation

——BM3D-SAPCA (proposed)
-+ SA-BM3D (Dabov2008)
—+—BM3D (Dabov2007)
MS-K-SVD (Mairal2008)
- SA-DCT (Foi2007)
—+K-SVD (Aharon2006)
-~ OAGSMNC (Hammond2008)
—+FoE (Roth2005)
——TLS (Hirakawa2006)
SAFIR (Kervrann2008)
——BLS-GSM (Portilla2004)
--LPA-ICI (Katkovnik2004)
—+NL-means (Buades2005)
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Experimental comparison (PNSR)

Cameraman
S
Y e ol A" -~BM3D-SAPCA (proposed)
Un ’ ’ “1  ~ SA-BM3D (Dabov2008)
_ % | —~BMB3D (Dabov2007)
a 05 MS-K-SVD (Mairal2008)
S ~=-SA-DCT (Foi2007)
= ~+K-SVD (Aharon2006)
2 - OAGSMNC (Hammond2008)
= ~FoE (Roth2005)
P ~TLS (Hirakawa2006)
2-1.5] SAFIR (Kervrann2008)
= ~~BLS-GSM (Portilla2004)
= —> LPA-ICI (Katkovnik2004)
a =2 —+NL-means (Buades2005)
-2.5
15 20 25 35

Noise standard deviation
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Part Il: Some Applications

Non-Gaussian Image Processing;
Video Processing with BM3D;
Compressive Sensing;

Image Resizing;

Video Super-Resolution;

BM3D Joint Denoising-Sharpening through Alpha-Rooting
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One-parameter families of distributions

Let z € Z C IR be a random variable distributed according to a one-parameter
family of distributions D = {Dy}, where 6 € ©® C R denotes the parameter.

w(0) = E{z0} and o (8) =std {z]0}

conditional expectation and standard deviation of z
given as functions of the parameter 6.

Example: D Poisson distributions with mean 6 € ® = [0, +0),

Pr(z =¢8] = efe%g!, ¢ eN.
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One-parameter families of distributions

Do [#® ] 70
Poisson
Priz=l0]=e % (€N, 0¢ 0, +w) 0] NG
Scaled Poisson (scale x > 0)
Prle=Llo] =e "%, N, 0 € [0, +) ¢ ‘ Vo 10
Binomial (n trials)
Priz = gl6] = (6F (1-0)" %, ;e N, 6 € [0,1] | w0 | /moa—o - /t@00 )
Scaled binomial (n trials, scale n)
Prlz=5le] = @6 10" F ceN b e o] | o] V=0
Negative binomial (exponent k)
T =7
Priz =0 = Ttal (o%%)" (442) " geN 0 c o, +) ‘ 0 ‘ V/ 2k

Scaled negative binomial (exponent k, scale x > 0)

4 k
Priz=£lo] = ZoH (5% )" (&£2) . ceN 6 €0, +00) ‘ o ‘ \/e(em _ \/yw)o:;?w)

X 2k
Multiplicative normal (scale y > 0)
g
pdf(z|6] (¢) = jE—e 207 0 .
Doubly censored normal with standard-deviation s (0)
pflel9) @) = (7) 0®) + gy #(5f) oy + (1~ 2[5 0 -9
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Variance-stabilization problem

Find a function f : Z — R such that the transformed variable f (z)
has constant standard deviation, say, equal to ¢, std {f (z) |6} = c.

o the (conditional) standard deviation does not depend anymore on the
distribution parameter;
o heteroskedastic z turns into a homoskedastic f (z).

Constraints:

Il f should be independent of 6;

I avoid pathological solutions (e.g., f identically constant);
require, e.g., f to be monotone strictly increasing;

the conditional distributions of f (z) possibly not too bad.
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Variance stabilization is typically impossible to achieve

Positive result: multiplicative normal
f(z) = log|z|

Negative result: Bernoulli

Binary samples z € {0, 1} of the Bernoulli distribution with parameter
6 = E {z|0} cannot be stabilized to the same constant variance for
different values of 6:

E{g(2)[6} = 6g (1) + (1-0)g(0)
var {g ()0} = E{(g (z) — E{g (2) [0})" |6} =
(g(0) — g (1))°6(1-6).

Exact stabilization is not possible for Poisson, Binomial, and most other
families used in applications.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 104 / 223



Variance stabilization: history and examples

Classic heuristic stabilizer as indefinite integral form

F(e)= [ ggen o). ()

Idea: consider a local first-order expansion of f at u (0)
(i.e., assume o () locally constant),
of
f(z) = f(u(0)+(z—p(0) 5 (1(9)),

We have of
std {f (2) [0} =~ 5~ (u (6)) o (6),

then impose std {f (z) |0} = ¢ and obtain the indefinite integral (**).

Known and used already in the 1930's (e.g., Tippett 1934, Bartlett 1936),
often rediscovered in signal processing (e.g., Prucnal&Saleh 1981,
Arsenault&Denis 1981, Kasturi et al. 1983, Hirakawa&Parks 2006).
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Variance stabilization: Poisson

F(2) = [ Slydn (0) = | J5dn (0) = 2vz
Bartlett 1936: 24/z+ 3

Anscombe 1948: 2,/z 4+ % (Anscombe attributes the result to
A.H.L. Johnson)

Freeman&Tukey 1950: /z++/z+1

In the same way stabilizers were derived for the Binomial and Negative
Binomial distribution families (“angular” transformations based on the
arcsin and hyperbolic arcsin).
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Variance stabilization: Poisson
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19l IVE T
] NZHNzZ41 D —
L I
o/ T
N
std { () |y} // . Y7+,
0.6/// 2’2—{—%
0.4
o.zV
%05 1 15 2 25 3 35 4 45 5

E{zly} =y
Figure: Conditional standard-deviation std {f (z) |y} of the transformed Poisson
variables z with parameter y after stabilization by five root-type transformations.
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Denoising Poisson-count images

One approach is to use the following three-step procedure:
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Denoising Poisson-count images

One approach is to use the following three-step procedure:

@ Stabilize the noise variance by applying the Anscombe transformation.
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Denoising Poisson-count images

One approach is to use the following three-step procedure:

@ Stabilize the noise variance by applying the Anscombe transformation.
@ Denoise with an algorithm designed for AWGN.
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Denoising Poisson-count images

One approach is to use the following three-step procedure:
@ Stabilize the noise variance by applying the Anscombe transformation.
@ Denoise with an algorithm designed for AWGN.

@ Apply an inverse transformation to the denoised image.
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Poisson noise

@ We observe pixel values z;,i = 1,..., N (=noisy data).
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Poisson noise

@ We observe pixel values z;,i = 1,..., N (=noisy data).

@ We consider each z; to be an independent random Poisson variable,
whose mean y; we want to estimate.
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Poisson noise

@ We observe pixel values z;,i = 1,..., N (=noisy data).

@ We consider each z; to be an independent random Poisson variable,
whose mean y; we want to estimate.

@ Variance is data-dependent:

E{z | yi} = yi =var{z | yi}.
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Poisson noise

@ Poisson noise is defined as

n, =z —E{zi | yi}.
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Poisson noise

@ Poisson noise is defined as
n, =z —E{zi | yi}.
@ Thus, we have

Var{’?f | yi} = var{z | yi} = yi.
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Poisson noise

@ Poisson noise is defined as
n; =z — E{z | yi}.
@ Thus, we have
var{n, | yi} = var{z | yi} = yi.

@ We want to remove this data-dependence by a variance-stabilizing
transform.
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Anscombe transformation

@ Forward Anscombe transformation:

R
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Anscombe transformation

@ Forward Anscombe transformation:

R

@ Applying Anscombe f to Poisson distributed data produces a signal
whose noise is asymptotically additive standard normal (i.e. of unitary

variance).
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Anscombe transformation

@ Forward Anscombe transformation:

R

@ Applying Anscombe f to Poisson distributed data produces a signal
whose noise is asymptotically additive standard normal (i.e. of unitary
variance).

@ In other words, the transformation is both (asymptotically)
variance-stabilizing and normalizing.
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Inverse Anscombe transformation

o After applying the forward Anscombe transformation we denoise the
signal f(z) with e.g. BM3D, SAFIR or BLS-GSM, thus obtaining a
signal D.
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Inverse Anscombe transformation

o After applying the forward Anscombe transformation we denoise the
signal f(z) with e.g. BM3D, SAFIR or BLS-GSM, thus obtaining a
signal D.

@ We consider D to be an estimate of E{f(z) | y}.
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Inverse Anscombe transformation

o After applying the forward Anscombe transformation we denoise the
signal f(z) with e.g. BM3D, SAFIR or BLS-GSM, thus obtaining a
signal D.

@ We consider D to be an estimate of E{f(z) | y}.

@ We need to apply an inverse transformation to D in order to obtain
the wanted estimate of y.
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Inverse Anscombe transformation

@ The direct algebraic inverse of Anscombe f is
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Inverse Anscombe transformation

@ The direct algebraic inverse of Anscombe f is

@ This leads to a biased estimate of y, because f is nonlinear:

E{f(z) |y} # f(E{z|y}).
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Inverse Anscombe transformation

@ The direct algebraic inverse of Anscombe f is

@ This leads to a biased estimate of y, because f is nonlinear:

E{f(z) |y} # f(E{z|y}).

@ Another possibility is to use

which provides asymptotical unbiasedness for large counts.
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Asymptotically unbiased inverse

@ Spots (intensity range [0.03 5.02]), denoised with BM3D and inverted
with the asymptotically unbiased inverse.

original noisy estimate
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Exact unbiased inverse

@ Applying the asymptotically unbiased inverse to high-count data gives
good results, but for low-count data it produces a biased estimate.

Mskitalo, M., and A. Foi, "Optimal inversion of the Anscombe transformation in low-count

Poisson image denoising”, to appear in IEEE Trans. Image Process., 2010.
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Exact unbiased inverse

@ Applying the asymptotically unbiased inverse to high-count data gives
good results, but for low-count data it produces a biased estimate.

@ Assuming the denoising was successful (D can be treated as
E{f(z) | y}), we can solve the problem by finding an inverse
transformation Z¢ that maps the values E{f(z) | y} to the desired
values E{z | y}:

Ic:E{f(z) |y} — E{z|y}.

Mskitalo, M., and A. Foi, "Optimal inversion of the Anscombe transformation in low-count

Poisson image denoising”, to appear in IEEE Trans. Image Process., 2010.
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Exact unbiased inverse

@ Applying the asymptotically unbiased inverse to high-count data gives
good results, but for low-count data it produces a biased estimate.

@ Assuming the denoising was successful (D can be treated as
E{f(z) | y}), we can solve the problem by finding an inverse
transformation Z¢ that maps the values E{f(z) | y} to the desired
values E{z | y}:

Ic:E{f(z) |y} — E{z|y}.

e For any given y, E{z | y} = y, but we also need to compute the
values of E{f(z) | y}.

Mskitalo, M., and A. Foi, "Optimal inversion of the Anscombe transformation in low-count

Poisson image denoising”, to appear in IEEE Trans. Image Process., 2010.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 115 / 223



Exact unbiased inverse

o Expected value:

E(F(2) vk = [ Fo)p(z | y)de
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Exact unbiased inverse

o Expected value:

E(F) Iyt = [ flelp(e | ) de

@ We have discrete Poisson probabilities P(z | y), so

E{f(z Iy}—Zf(z (z|y).
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Exact unbiased inverse

o Expected value:

E(F(2) [y} = [ fle)plz] y) de

@ We have discrete Poisson probabilities P(z | y), so

E{f(z Iy}—Zf(z (z|y).

E{f(z |y}—22 (,/z+3 yzze!y>.

o Explicitly:
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Exact unbiased inverse

@ In practice we do the summation over specific values of z to keep the
error very small.
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Exact unbiased inverse

@ In practice we do the summation over specific values of z to keep the
error very small.

@ We compute the values E{f(z) | y} for a limited set of values y: for
arbitrary values of y we use linear interpolation and for large values of

y we approximate Z¢ by Zg.
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Exact unbiased inverse

@ In practice we do the summation over specific values of z to keep the
error very small.

@ We compute the values E{f(z) | y} for a limited set of values y: for
arbitrary values of y we use linear interpolation and for large values of
y we approximate Z¢ by Zg.

@ Matlab files implementing the exact unbiased inverse are available
online at http://www.cs.tut.fi/~foi/invansc.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 117 / 223



Exact unbiased inverse

@ At low counts the asymptotically unbiased inverse actually leads to a
larger bias than the algebraic inverse:

o2 . . . . . . . ,
V3/8 14 16 18 2 22 24 26 28 3
E{f(z) ly}=D

0
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ML inverse

@ The exact unbiased inverse assumes that the denoising is perfectly
successful: we treat D as E{f(z) | y}.
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ML inverse

@ The exact unbiased inverse assumes that the denoising is perfectly
successful: we treat D as E{f(z) | y}.

@ Now assume instead that the pointwise MSE of D as an estimate of
E{f(z)|y}is

e =E{(D—E{f(2) | y})}.
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ML inverse

@ The exact unbiased inverse assumes that the denoising is perfectly
successful: we treat D as E{f(z) | y}.

@ Now assume instead that the pointwise MSE of D as an estimate of
E{f(z)|y}is

e =E{(D—E{f(2) | y})}.

@ In practice the distribution of D is unknown. For simplicity, assume
normality: D~ N (E{f(z) I y), 82) _
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ML inverse

@ The exact unbiased inverse assumes that the denoising is perfectly
successful: we treat D as E{f(z) | y}.

@ Now assume instead that the pointwise MSE of D as an estimate of
E{f(z)|y}is

e =E{(D—E{f(2) | y})}.

@ In practice the distribution of D is unknown. For simplicity, assume
normality: D~ N (E{f(z) I y), 82) _

@ Formally this implies that D is an unbiased estimate of E{f(z) | y},
however also unknown estimation-bias errors can be considered as
contributors of €2: the symmetry of the distribution about E{f(z) | y}
reflecting our uncertainty about the sign of the bias.
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ML inverse

@ By treating D as the data, the maximum likelihood (ML) inverse is
defined as

ZuL(D) = argmaxp(D | y),
y

p(D | y) = —Lge arP-EFM

V27me?
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ML inverse

@ By treating D as the data, the maximum likelihood (ML) inverse is
defined as

Zuc(D) = arg maXP<D | ¥),

p(D|y) = 21715 e 22 (D E{f(2)ly})*

@ Under the given assumptions,

T (D) = Zc(D), if D> 2v/3/8
ML=V o, if D < 2/3/8.

Thus, exact unbiased inverse is a ML inverse.
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ML inverse

@ By treating D as the data, the maximum likelihood (ML) inverse is
defined as

Zuc(D) = arg maXP<D | ¥),

p(D|y) = 21715 e 22 (D E{f(2)ly})*

@ Under the given assumptions,

T (D) = Zc(D), if D> 2v/3/8
ML=V o, if D < 2/3/8.

Thus, exact unbiased inverse is a ML inverse.
@ Iy (D) is independent of «.
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ML inverse

@ By treating D as the data, the maximum likelihood (ML) inverse is
defined as
IuL(D) = arg maxp(D | y),

p(D|y) = 21715 e 22 (D E{f(2)ly})*

@ Under the given assumptions,

T (D) = Zc(D), if D> 2v/3/8
ML=V o, if D < 2/3/8.

Thus, exact unbiased inverse is a ML inverse.
@ Iy (D) is independent of «.
e Valid for any unimodal distribution with mode at E{f(z) | y}.
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o All images 256x256, both low-count and high-count images included.
The images are from Zhang, Fadili and Starck: Wavelets, ridgelets,
and curvelets for Poisson noise removal (2008).

Spots Galaxy Ridges Barbara Cells

[0.03, 5.02] [0, 5] [0.05, 0.85] [0.93, 15.73] [0.53, 16.93]
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@ Three steps: forward Anscombe transformation, denoising
(BM3D/SAFIR/BLS-GSM), and the exact unbiased inverse.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 122 / 223



@ Three steps: forward Anscombe transformation, denoising
(BM3D/SAFIR/BLS-GSM), and the exact unbiased inverse.

@ The same is also done for the asymptotically unbiased inverse.
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@ Three steps: forward Anscombe transformation, denoising
(BM3D/SAFIR/BLS-GSM), and the exact unbiased inverse.

@ The same is also done for the asymptotically unbiased inverse.

@ We evaluate the performance by normalized mean integrated square
error (NMISE):
1 .
= Y (Gi—vi)?yi). (1)
ityi>0
where y; are the estimated intensities, y; the respective true values,
and the sum is computed over the N pixels in the image for which
yi > 0.
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@ Three steps: forward Anscombe transformation, denoising
(BM3D/SAFIR/BLS-GSM), and the exact unbiased inverse.

@ The same is also done for the asymptotically unbiased inverse.

@ We evaluate the performance by normalized mean integrated square
error (NMISE):
1 .
= Y (Gi—vi)?yi). (1)
ityi>0
where y; are the estimated intensities, y; the respective true values,
and the sum is computed over the N pixels in the image for which
yi > 0.

@ For each image we do five replications and present the average
NMISE.
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Results with BM3D

e Spots [0.03, 5.02] denoised with BM3D.
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Results with BM3D

e Ridges [0.05, 0.85] denoised with BM3D.

original noisy asymptotical exact
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Numerical results (NMISE)

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms

wWT ‘ BM3D ‘ SAFIR [BLS-GSM|| BM3D ‘ SAFIR

BLS-GSM |[PH-HMT| MS-VST

Spots [0.03, 5.02] 2.34 1.7395 1.7495 2.0370 0.0365 0.0384 0.2024 0.048 0.069
Galaxy [0, 5] 0.15 0.1025 0.1110 0.1253 0.0299 0.0301 0.0385 0.030 0.035
Ridges [0.05, 0.85] 0.83 0.7018 0.7252 0.7694 0.0128 0.0173 0.0332 - 0.017

Barbara [0.93, 15.73] 0.26 0.0880 0.1178 0.1122 0.0880 0.1178 0.1123 0.159 0.17

Cells [0.53, 16.93] 0.095 0.0660 0.0683 0.0718 0.0649 0.0671 0.0707 0.082 0.078

@ We compare to two algorithms specifically designed for Poisson noise
removal: MS-VST (Zhang, Fadili, Starck 2008) and PH-HMT
(Lefkimmiatis, Maragos, Papandreou 2009).
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Numerical results (NMISE)

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms

BLS-GSM |[PH-HMT| MS-VST

wWT ‘ BM3D ‘ SAFIR [BLS-GSM|| BM3D ‘ SAFIR

Spots [0.03, 5.02] 2.34 1.7395 1.7495 2.0370 0.0365 0.0384 0.2024 0.048 0.069
Galaxy [0, 5] 0.15 0.1025 0.1110 0.1253 0.0299 0.0301 0.0385 0.030 0.035
Ridges [0.05, 0.85] 0.83 0.7018 0.7252 0.7694 0.0128 0.0173 0.0332 - 0.017

Barbara [0.93, 15.73] 0.26 0.0880 0.1178 0.1122 0.0880 0.1178 0.1123 0.159 0.17

Cells [0.53, 16.93] 0.095 0.0660 0.0683 0.0718 0.0649 0.0671 0.0707 0.082 0.078

@ We compare to two algorithms specifically designed for Poisson noise
removal: MS-VST (Zhang, Fadili, Starck 2008) and PH-HMT
(Lefkimmiatis, Maragos, Papandreou 2009).

@ BM3D + exact unbiased inverse gives the best result for all five test
images.
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Comparisons

BMS3D (0.0128) SAFIR (0.0173) BLS-GSM (0.0332)

MS-VST (0.017)

BM3D (0.0880) SAFIR (0.1178) BLS-GSM (01123) MS-VST (0.17)
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Summary

@ The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is significant for low-count images.
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@ The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is significant for low-count images.

@ Denoising with Anscombe and exact unbiased inverse is competitive
with MS-VST and PH-HMT, which are specifically designed for
Poisson noise removal.
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@ The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is significant for low-count images.

@ Denoising with Anscombe and exact unbiased inverse is competitive

with MS-VST and PH-HMT, which are specifically designed for
Poisson noise removal.

@ Even though most of the improvement is due to the exact unbiased
inverse, the choice of the denoising algorithm does also matter:
BM3D outperforms all other filters.
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@ The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is significant for low-count images.

@ Denoising with Anscombe and exact unbiased inverse is competitive
with MS-VST and PH-HMT, which are specifically designed for
Poisson noise removal.

@ Even though most of the improvement is due to the exact unbiased
inverse, the choice of the denoising algorithm does also matter:
BM3D outperforms all other filters.

@ Approach is not limited to 2-D data.
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@ The improvement from the asymptotically unbiased inverse to the
exact unbiased inverse is significant for low-count images.

@ Denoising with Anscombe and exact unbiased inverse is competitive
with MS-VST and PH-HMT, which are specifically designed for
Poisson noise removal.

@ Even though most of the improvement is due to the exact unbiased
inverse, the choice of the denoising algorithm does also matter:
BM3D outperforms all other filters.

@ Approach is not limited to 2-D data.

o Matlab files implementing the exact unbiased inverse are available
online at http://www.cs.tut.fi/~foi/invansc
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Raw-data observation model

For imaging sensors (CCD or CMOS)
var{z(x)} = ay(x) + b, y(x) > b/a, a, b > 0.
For clipped data
z(x) =max{0,min{z(x),1}},  y(x) = E{z2(x)} # y(x),

with standard deviation curves:

0.12 ‘ . ‘ ‘
o l—o(y) — (@) -
0.08
0.08

0.04 /
0.02 /

42

It is important to compute the functions ¥ and J given ¢ and y, and vice versa.

| Fujifim Finepix S5600 150 1600

.
0.2 0.4 0.6 0.8

02 04
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Raw-data analysis and processing algorithms

ClipPoisGaus toolbox for Matlab
http://www.cs.tut.fi/~foi/sensornoise.html

© Fully automatic estimation of noise parameters from a single image with
clipped or non-clipped data corrupted by signal-dependent noise.

@ Fully automatic denoising and debiasing of clipped images with
Poissonian-Gaussian noise using variance-stabilization and homoskedastic
filtering.

@ Foi, A., "Clipped noisy images: heteroskedastic modeling and practical denoising”, Signal

Processing, vol. 89, no. 12, pp. 2609-2629, December 2009.

@ Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-Gaussian
noise modeling and fitting for single image raw-data”, IEEE Trans. Image Process., vol.

17, no. 10, pp. 1737-1754, October 2008.
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Optimization of variance stabilization for raw data

04] v

1

-
[
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0. Inital
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fi std {fx (2) |y} std {fx (2) |y}

@ Foi, A., “Direct optimization of nonparametric variance-stabilizing transformations”, Proc.
8eémes Rencontres de Statistiques Mathématiques, CIRM Luminy, Marseille, France,
December 2008.

@ Foi, A., “"Optimization of variance-stabilizing transformations”, preprint, submitted.

3
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Practical raw-data denoising

Algorithm consists from the following steps:

© Noise estimation (optional);
© Design and apply variance-stabilizing transformation;

© Denoise the transformed data using some denoising algorithm for
homoskedastic noise (e.g., BM3D);

© Apply the exact unbiased inverse of the variance stabilizing transform;

© Perform declipping.
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Examples

0 2100
: [0300700? o e /1%0;0067
2000 300 400 s 508 100 200" 300 400" amn 506

n

left: original (range [-0.2, 1.2])  center+right: noisy and clipped (range [0, 1])
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Examples

100
2
00

100

200 300 400 500 50

Denoising clipped data (range [0, 1])
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Examples

Denoising and declipping.
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Examples

Denoising and declipping.
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Cross-sections of observations and estimates.
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Declipping: numerical results

S1 S2 S3

Noise parameters 4=0.004, h=0.022 a=1/30, b=0.12 a=0, h=0.22

Testpat Man Testpat Man Testpat Man
Noisy = 26.83 27.51 16.70 17.07 14.99 14.86

DG » F | DG 5 3 |be » 3| De » 3 | DE 5 3| DE Fp

BM3D [3] 39.03 41.20 42.29 | 33.75 33.75 33.76 | 28.49 31.53 32.33 | 27.72 27.99 28.03 | 26.45 29.36 30.15 | 25.26 26.32 26.44
TLS[18] 32.5031.3232.95 | 33.48 33.46 33.49 | 25.5425.69 26.78 | 27.28 27.36 27.50 | 23.90 24.26 25.23 | 24.72 25.24 25.54
K-SVD [7] 35.4934.2936.43 | 33.0533.01 33.05 | 26.03 26.66 27.48 | 26.08 26.06 26.15 | 23.99 24.77 25.36 | 23.47 23.80 23.96
BLS-GSM [20] | 33.26 28.78 33.72 | 33.58 33.57 33.59 | 24.64 22.5225.63 | 26.85 26.96 27.04 | 22.89 21.45 23.99 | 24.16 24.79 24.96
SA-DCT hom.[11] | 37.86 37.66 39.96 | 33.57 33.56 33.57 | 26.83 27.20 28.87 | 27.37 27.61 27.66 | 24.49 24.65 26.26 | 24.80 25.81 25.91
SA-DCT het. [12] | 38.57 35.85 41.40 | 33.52 33.53 33.54 | 27.91 22.53 30.95 | 27.69 28.07 28.13 | 25.97 19.94 28.94 | 25.25 25.92 26.82

PSNR (dB) values for the denoised D(Z), denoised and declipped §, and
range-constrained estimates.
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Examples: raw data

Raw data from Fujifilm FinePix $9600, 1SO 1600
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Examples: raw data

Noise estimation

estimation and fitting st.dev.-function &
a=0.0043 b =0.00038
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Examples: raw data

Variance-stabilizing transformation

25F T T T T T T T T T

0 L L ' L L L L L L
01 02 03 04 05 06 07 08 09

variance-stabilizing f
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Examples: raw data

Denoising

Denoised estimate
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Examples: raw data
Declipping

Declipped estimate
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Examples: raw data
Declipping

Declipped estimate
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Examples: raw data

Declipping

14 T
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Video Processing with V-BM3D (VBM3D.m)

It implements a video denoising method that enables highly effective noise
attenuation at near real-time execution times.

It is based on enhanced sparse representation in local 3D transform domain.

As the noisy video is processed in block-wise manner, the sparsity enhancement is
achieved by grouping 2D fragments similar to the current one into a 3D data

array that we call group.

K. Dabov, et al., "Video denoising by sparse 3D transform-domain collaborative
filtering,” Proc. 15th European Signal Processing Conference, EUSIPCO 2007,
Poznan, Poland, September 2007.
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Video Processing with V-BM3D

@ The grouping is realized as a predictive-search block-matching, similar to
techniques used for motion estimation;

@ For each formed group, we apply collaborative filtering in order to take
advantage of the correlation between grouped blocks. We realize this
filtering by a 3D transform-domain shrinkage (hard-thresholding and Wiener
filtering). The collaborative filtering produces estimates of all grouped
blocks.

@ Since these estimates are overlapping in general, we aggregate them by a
weighted average in order to form a non-redundant video estimate.

@ A significant improvement of this approach is the use of 2-step algorithm
where an intermediate estimate is produced by grouping and collaborative
hard-thresholding and then used for improving the grouping and for applying
collaborative empirical Wiener filtering.

@ The experimental results demonstrate the state-of-the-art denoising
performance and subjective visual quality.
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Video Processing with V-BM3D

Flowchart of the algorithm

Noisy Step 1 , Basic estimate Step 2
video D Block-wise estimates 14 d Block-wise estimates Final
Aggregation Aggregation =» Wiener
N estimate

~ Tnverse 3D transform

rr
g ﬂ ) ’D
: (Jr()upmg by

predictive- scqrch
block-n:]atchlng Hard-thresholding - - - - - -

H Weight : 1
L g —_ 3D tratnsfnrm gg_’ 3D transform

_ ) |
Inverse 3D transform !

I

I

I

Wi 1011(11 filtering - -----
Weight

Flowchart of the V-BM3D video-denoising algorithm.
The operation enclosed by dashed lines are repeated for each reference block.
Grouping is illustrated by showing a reference block marked with ‘R’ and the
matched ones in a temporal window of 5 frames.
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Video Processing with V-BM3D

Predictive-search block-matching

/
Frame ¢ Frame -1 Frame t-2

[llustration of the proposed predictive-search block-matching.
Each pixel represents a block located at it; grey pixels denote blocks that are part
of the search neighborhood; red pixels denote blocks matched as similar.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 148 / 223



Video Processing with V-BM3D

Predictive-search block-matching

@ For frame t, which contains the reference block, the search neighborhood is
(non-adaptive) fixed around the reference block.

@ For frame t=1, the blocks matched as similar to in the frame t are used to
determine the centers of the small 3 X 3 neighborhoods, whose union forms
the overall adaptive neighborhood for this frame.

@ For frame t=%2, the motion compensated predictive search uses the motion
vectors (shown as white arrows) between the matched blocks of the previous
two frames to determine the centers of the 3 X3 neighborhoods.
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Video-demo, Bus

BUS!
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Video-demo, Flowers

Flowers!
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Video-demo, Man

Man!

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong



Compressive sensing (CS): conventional approach

@ The basic setting: an unknown signal of interest is observed (sensed)
through a limited number linear functionals;

@ These observations can be considered as an incomplete portion of the
spectrum of the signal with respect to a given linear transform;

@ It is assumed that the signal can be represented sparsely with respect to a
different relevant basis (e.g., wavelets);

@ The algorithms rely on convex optimization with a penalty expressed by the
£o or £1 norms which is exploited to enable the assumed sparsity;

@ |t results in parametric modeling of the solution and in problems that are
then solved by mathematical programming algorithms.

Candes, E., J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information”, IEEE Trans. Inf.
Theory, vol. 52, no. 2, 2006.
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Compressive sensing (CS): our approach

@ We replace the traditional parametric modeling used in CS by a
nonparametric one.

@ The nonparametric modeling is implemented by the use of spatially adaptive
filters.
The logic behind of this approach is as follows.

@ The regularization imposed by the £g or £1 norms (or by more general
criteria) is essentially only as a tool for design of some nonlinear filtering.

@ Let us replace this implicit regularization by explicit filtering, exploiting
spatially adaptive filters sensitive to image features and details.

@ Then, CS signal reconstruction is realized by a recursive algorithm based on
spatially adaptive image denoising.
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Examples: observations

Sample domain Q) for the FFT spectrum: 22 radial lines, 11 radial lines,
90 degrees limited-angle with 61 radial lines.
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Examples: reconstructions

Clockwise from top-left: back-projection estimates for 22 radial lines, 11 radial lines, 61 radial lines with limited-angle (90
degrees), and original phantom (unknown and shown here only as a reference). For all three experiments, the estimates obtained

after convergence of the algorithm coincide with the original image.
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Observation model

Let y and 6 = 7 {y} be, respectively, the image intensity and its 2-D transform.

If all elements of the spectrum 0 are given then the signal can be recovered by
inverting the transform, y = 7_1{9}.

In CS problems only a small portion of the spectrum is available, which makes the
reconstruction of y an ill-posed problem.
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Observation model (cont)

Introduce a sampling operator as the characteristic function S = X (with values
0 or 1) of the available portion Q) of the spectrum.

Thus, the pointwise products S.x 6 and (1 — S).%0 produce a decomposition of
the spectrum in two complementary parts

91 = 5*9, 92 = (1—5) .*9,
with the equation
0=0,+6, =S50+ (1—S) .%0.

Here, 81 and 6, are the observed (known) and the unobserved (unknown) part of
0, respectively.
The goal is reconstruct y (or equivalently 85) from the available data 6.

K. Egiazarian et al., "Compressed sensing image reconstruction via recursive
spatially adaptive filtering ," ICIP, 2007.
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Recursive algorithm

5(k)

Given an estimate 0, * of 83, we define the estimate 9(k) of 0 as
o™ = g, + 0.

The algorithm is as follows:

o) =l oY - s) +T (@ (T 1(91+9§" 1>))>+

+(1-8) ] k=12, 0 =0

Each iteration (k > 1) comprises of the following steps:

@ Image-domain estimate filtering

o7 (n24))

@ Excitation by random 77, .
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The recursive algorithm can be treated as the Robbins-Monro stochastic
approximation procedure for the equation

Do— (1—S) +T (@ (T 1 (61+0,)))=0.

The noise 77, serves as a generator of the spectrum 05 features and for
acceleration of the convergence.
If @ = /| then any 0, satisfies this equation.
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Compressed sensing for image Upsampling (Resizing)

We do not know which blurring and decimation operators have been used to
obtain the given image.

Instead, we assume that the blurring kernel is the low-pass analysis filter of a
wavelet transform.

Hence, we seek for a high-resolution image whose wavelet approximation
coefficients in the lower resolution subband decomposition coincide to the pixel
values of the given low-resolution image.

A high-resolution image is reconstructed by alternating two procedures: spatially
adaptive filtering and projection on the observation-constrained subspace.

The Block Matching and 3D filtering (BM3D) technique is used to suppress
ringing, and reconstruct missing wavelet detail coefficients.
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Image Resizing with BM3D Examples

Upsampling with m-stage algorithm: Cameraman, 4 times
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Upsampling with m-stage algorithm:Lighthouse, 8 times.
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Image Resizing with BM3D Examples

¢ 1L Sucnh a ITamewc
is to understand t
y. Whereas no g
DOG), difference

/ 11 SucCh a rramewo
s to understand t

y. Whereas no g
DOG), difference |

Upsampling of fragments of the images with m-stage algorithm: Text, 4 times.
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Image and Video Super-Resolution with BM3D

The classical SR approach is based on three steps:

@ 1) registration of the LR images to a HR coordinate grid,
@ 2) warping of the LR images onto that grid by interpolation,

@ 3) fusion of the warped images into the final HR image.
An additional deblurring step is sometimes considered to compensate the
blur existing in the LR frames.

@ The novel algorithm is developed generalizing VBM3D.m for
super-resolution imaging.

Danielyan, A., A. Foi, V. Katkovnik, and K. Egiazarian, "Image and video superresolution via
spatially adaptive filtering,"in Proc. 2008 Int. Workshop on Local and Non-Local Approximation
in Image Processing, LNLA 2008, Lausanne, Switzerland, 2008.

Danielyan, A., A. Foi, V. Katkovnik, and K. Egiazarian, “Spatially adaptive filtering as
regularization in inverse imaging: compressive sensing, upsampling, and super-resolution”, in

Super-Resolution Imaging (P. Milanfar, ed.) CRC Press / Taylor & Francis, 2010.
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Image and Video Super-Resolution with BM3D

Preliminaries

o Let {Tm}:‘n/lzo be a family of orthonormal transforms of increasing sizes

xh X ¥, xh < xP L x¥ < XY, such that for any pair m,m’ with
X" xv,
m m

the whole 7,-spectrum

m < m’, up to a scaling factor B =

hyv 1
XmXm

can be considered as a smaller portion of the 7,,/-spectrum.
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Image and Video Super-Resolution with BM3D

Preliminaries

@ Let {Tm}:\nﬂzo be a family of orthonormal transforms of increasing sizes

X x x¥, xh < XSH_I, Xy, < Xy .1, such that for any pair m,m’ with

h
. X
m < m’, up to a scaling factor ﬁm m = ):"'X”’ the whole 7,,-spectrum
! m”~m

can be considered as a smaller portion of the 7,,,-spectrum.

@ This means that the supports (), of the 7,,-transform coefficients form a
nested sequence of subsets of (A, i.e. Qg C -+ C Oy, where Oy is a
complete set of the coefficients.
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Image and Video Super-Resolution with BM3D

Preliminaries

@ Let {Tm}:\nﬂ:o be a family of orthonormal transforms of increasing sizes

X x x¥, xh < XSH_I, Xy, < Xy .1, such that for any pair m,m’ with

h
. X
m < m’, up to a scaling factor ﬁm m = ):"'X’" the whole 7,,-spectrum
! m”~m

can be considered as a smaller portion of the 7,,,-spectrum.

@ This means that the supports (), of the 7p,-transform coefficients form a
nested sequence of subsets of (Y, i.e. Qg C -+ C Qpy, where Oy is a
complete set of the coefficients.

@ The examples of such {Tm}f\:zo families are DCT and DFT transforms of
different sizes, discrete wavelet transforms associated to one common scaling
function, as well as block-wise DCT, DFT and WT.

Sets (),,, are commonly referred to as lower-resolution, low-frequency, or
coarser-scale subbands of the 7j-spectrum.
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Image and Video Super-Resolution: nested spectrum sets

|

(a) DFT (b) Block DCT

]
= [ @

Nested support subsets.

(c) DWT, DCT
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Image and Video Super-Resolution: basic operators

@ For m < m’ the three operators are defined:
the restriction operator ]Q , that, from a given T v-spectrum, extracts a

smaller portion defined on (),,, which can be considered as the

Tm-spectrum of a smaller image;
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Image and Video Super-Resolution: basic operators

@ For m < m’ the three operators are defined:

the restriction operator ’Qm " that, from a given 7,,/-spectrum, extracts a
smaller portion defined on Qm, which can be considered as the
T m-spectrum of a smaller image;

@ the zero-padding operator U, , that expands a T m-spectrum defined on
Q) to the 7,,-spectrum defined on the superset ),y DO (), by
introducing zeros in the complementary Q,/ \ Qp;
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Image and Video Super-Resolution: basic operators

@ For m < m’ the three operators are defined:
the restriction operator ]Q , that, from a given T ,-spectrum, extracts a
m,m

smaller portion defined on (),, which can be considered as the
T m-spectrum of a smaller image;

@ the zero-padding operator U, p that expands a T m-spectrum defined on
O, to the 7,-spectrum defined on the superset ),y O O, by
introducing zeros in the complementary Qv \ Qp;

@ the projection operator P#,m’ that zeroes all coefficients of 7,,-spectrum

on Op,.
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Image and Video Super-Resolution: basic operators

@ For m < m’ the three operators are defined:
the restriction operator ]Q , that, from a given T ,-spectrum, extracts a
m,m

smaller portion defined on (),, which can be considered as the
T m-spectrum of a smaller image;

@ the zero-padding operator Uy, . that expands a 7p,-spectrum defined on
O, to the 7,-spectrum defined on the superset ),y O O, by
introducing zeros in the complementary Qv \ Qp;

@ the projection operator P,Jn‘vm, that zeroes all coefficients of 7,,/-spectrum
on Q).

@ Note that U, (A)\Qm = A for any 7 ,-spectrum A, and
B = P;m, (B) +Up, (B|Qm) for any 7,-spectrum B.
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Observation model and superresolution as compressed

sensing problem

Let a sequence of low-resolution images be given {y|ow ,}5:1 of the sizes

X(')‘ X Xy, and assume each yjo,  being obtained from the subband of the

corresponding Ty spectra of original higher-resolution images { yh; r}f):l of size

x,r\‘/, X xy; as follows:

Yiow r = %_1 <,B()_j/] Y (yhi r)‘Qo,M> '

where the scaling factor ﬁO,M ensures that the means of yi , and yjow » are equal
to each other.

. . R R
The superresolution problem is to reconstruct {yhi ,},:1 from {y|oW r}r:l.

For R = 1, the observation model corresponds to the image upsampling problem.
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Algorithm

;

yr,OZ Yiowr» ' = 1,..., R,

form=1: M

~(0 . R

9O =Tk Unm-1m (Bry 1 Tt Grm 1)), r=1,..., R,

for k=1": kﬁna|
Z/{O,m (ABO,m% (YIow r)) +

s, (Tl ) D) )

Katkovnik and Foi (TUT)
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Flowchart of the algorithm

(G . ' 0

{’*UH/

310,

A
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Experiments: Image and Video Super-Resolution

In all these experiments, the LR image is obtained from the HR one by first
blurring using a 3 X 3 uniform kernel, shifted and then decimating by factor 3.
It gives a set of nine shifted sampled LR versions of HR blurred image.

The comparison is done vs: M. Protter, M. Elad, H. Takeda, and P. Milanfar,
"Generalizing the Non-Local-Means to Super-Resolution Reconstruction", IEEE
TIP, Vol. 18, No. 1, Jan. 2009.
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Image and Video Super-Resolution with BM3D: Examples

fae——_ J—

Nearest nelghbor Super—resolved Upsampled

]

Ground truth Ground truth (blurred)
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Image and Video Super-Resolution with BM3D Examples:

Suzie

Nearest neighbor

Ground truth Ground truth (blurred)
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Super-resolution results fo 23rd frame of Foreman

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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Super-resolution results for the 23rd frame of Suzie

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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Super-resolution results for the 23rd frame of Miss America

Clockwise from top left: pixel-replicated low resolution image; original image (ground truth);

super-resolved by proposed algorithm, super-resolved by Protter et al. algorithm.
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PSNR Results

n':?;;:)tr Protter et al. | Proposed
PSNR PSNR PSNR
Foreman 29.0 32.9 35.0
Suzie 30.3 33.0 34.2
Miss America 32.0 34.74 37.0

Mean over all 30 frames
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BM3D Denoising and Alpha-Root Sharpening

Noisy i
image Inverse 3D transform — Aggregation — Filtered
and
I sharpened
Alpha-rooting i

image
Grouping by I
block-matching  Hard-thresholding

. g —— 3D transform

© Use block-matching to find the locations of the blocks in z that are similar
to the currently processed one.
@ Apply a 3D transform on the formed group;
@ Attenuate the noise by hard-thresholding the 3D transform spectrum;
@ Apply alpha rooting on the hard-thresholded 3D transform spectrum
and invert the 3D transform to produce filtered grouped blocks;

© Return the filtered blocks to their original locations in the image domain and
compute the resultant filtered image as a weighted average of these filtered
blocks.

Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, “Joint image sharpening and denoising by 3D transform-domain
collaborative filtering, " Proc. SMMSP 2007, Moscow, Russia, 2007.
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Collaborative sharpening by Alpha Rooting

Except for the alpha rooting and a modification of the aggregation weights, both
described below, the rest of the steps of the algorithm are taken without
modification from the first step of BM3D.

Given a transform spectrum of a signal, which contains a DC coefficient denoted
as 05(1, 1), the alpha rooting (Aghagolzadeh&Ersoy, 1992) is performed as

b i j l A -
0 iy = ) signfs(in) [B(L )| |ZUL|", i 0s(i) #0
95(/',1'), otherwise.

. A

o

-DC

-DC 0 DC
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Collaborative sharpening by Alpha Rooting

Aggregation weights for sharpening

Variance of sharpened coefficients (using first order approximations)

Var{Gz (i, _])} ~ w;jo? =
- (1-2) ey

The total variance of the thresholded and sharpened group YSharp
approximated as

2
E(T2

tsvar {?iﬁ;”’} =0+ ) w; jo?.
0:(i.)#0, (ij)#(1,1)

Hence, the aggregation weights are w,, = —L .
! gares g *R tsvar{Yi';;rp}
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BM3D sharpening experiments

Noisy _Ho_use, c=10
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BM3D sharpening experiments

BM3D-SH3D, a« = 1.2
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BM3D sharpening experiments

BM3D-SH3D, « = 1.4
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BM3D sharpening experiments

BM3D-SH3D, « = 1.6
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BM3D sharpening experiments

BM3D-SH3D, o« = 1.8
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BM3D sharpening experiments

i, 4 A 4 it T i e = il e R
$ a £
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BM3D sharpening experiments

Noisy Fundus o =20

ot e

i
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Part Ill: Variational BM3D Formulation. Motivation

@ Block Matching and 3-D collaborative Filtering (BM3D) algorithm (Dabov,
Foi, Katkovnik, and Egiazarian, IEEE TIP, 2007) is currently recognized as
one of the best performing denoising algorithms.

@ A family of algorithms of this type has been developed for various
applications: video, demosaicking, deblurring, super-resolution, etc.

@ All these algorithms are based on overcomplete windowed image modeling
and special nonlocal nonparametric techniques.

@ Recently, a special prior has been proposed allowing to reformulate the
multi-stage hard-thresholding BM3D denoising as global minimization of a
special energy criterion
(V. Katkovnik and K. Egiazarian, "Nonlocal image deblurring: variational
formulation with nonlocal collaborative ly-norm imaging," LNLA 20009,
Tuusula, Finland, 2009).
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Main results

@ Better understanding BM3D as an universal improved image modeling

technique.

@ Novel recursive deblurring algorithms have been developed based on this
nonlocal collaborative fy-norm prior.

@ Simulation experiments demonstrate a very good performance of this novel
deblurring algorithm.
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Variational Formulation

@ Suppose we have independent random observation pairs {z;, x; },
zi =y +¢,

where y; = y(X,-) is a signal of interest, x; € R?, and g = E(X,') is an
additive noise, &; ~ N (0, 02).
The denoising problem is to reconstruct y(x,-) from {z,'}:

@ Variational approach

y=argmin |ly —z|[3/0% +A- pen(y),

fidelity penalty

@ Heuristic (or semi-heuristic) approach as an alternative to the variational
one.

@ Examples: local and nonlocal nonparametric regression methods, BM3D, etc.
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Conventional penalties

@ Quadratic penalties (Tikhonov A.N. and V.Y. Arsenin, 1977)
pen(y /|y|2dx pen(y / |Ly|?dx.
These penalties mean that the solution is penalized with respect to:
min [ |yPdx =y =0, min [ [|9y|3dx — Vy® =
myin/ ILy|[?dx — Ly® = 0;
@ Total variation ( Rudin, Osher, and Fatemi, 1992).
pen(y) = [ 1IVy|ladx — Vy° =

where Ay is a vector-gradient of y. This penalty allows discontinuous
solutions and preserve edges while filtering out high-frequency oscillations.
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Conventional penalties (cont.)

Complexity penalty is formulated usually for spectrum representations of the
image as 0 = 7 {y}, where 7 stands for orthonormal or overcomplete
transforms. This penalty is calculated as

pen(6) = (6]lo,

where the lp-norm gives a number of active spectrum elements different from zero.
It enables penalization with respect to ||6||o = 1;

Nonlocal penalization with respect to a desirable image (Kindermann, Osher, and
Jones, 2005)

TRUE v 2
pen(y) = /g <‘y (h)2 y ()| > w(|x — v|)dxdv,

where w > 0 is a window, and g is a differentiable function, g(O) =0.
It gives min, pen(y) = y? = y TRUE
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Block-wise imaging: windowing

@ Let the signals be defined on the regular 2-D grid X.

Consider a windowing C = {X;, r = 1,..., N5} of X with Ns blocks
(uniform windows, patches) X, C X such that
UM X, = X.

Each x € X belongs to at least one subset X, .
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Block-wise imaging: windowing

@ Let the signals be defined on the regular 2-D grid X.

Consider a windowing C = {X;, r = 1,..., N5} of X with Ns blocks
(uniform windows, patches) X, C X such that
UM X, = X

Each x € X belongs to at least one subset X, .

@ The noise-free data Y and the noisy data Z windowed on X, are arranged
in blocks denoted as Y, and Z,, respectively.

The blocks are overlapping and therefore some of the elements may belong
to more than one block.
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Block-wise imaging: transform domain representations

@ We use transforms (orthonormal series) of pixels in the blocks.
The transform, denoted as ’T,QD, is applied for each window X,
independently as

0, =T (Y,), [ =D,Y,D] | r=1...N,

where 0, is the spectrum of Y.
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Block-wise imaging: transform domain representations

@ We use transforms (orthonormal series) of pixels in the blocks.
The transform, denoted as TrZD, is applied for each window X,
independently as

0, =T (Y,), [ :DrY,D,T] r=1,... N,

where 60, is the spectrum of Y.

—1
@ The inverse 7,”° ~ of 7;° defines the signal from the spectrum as
—1
Y, =77 (0,), [ :D,Tero,} r=1,...,N,.
The noisy spectrum of the noisy signal is defined as

b, =T (Z,), [:D,Z,Df} r=1,...,N,.
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Group-wise collaborative penalty

It is assumed that there is a similarity between some of the blocks and the similar
blocks are clustered in "groups".
Initially, the penalty for the r-th group can be defined as

Pe”r({ej}je;(, ' {ﬁfvj}jeK,) = Z ||9j - l9r,j||%> +/\r||{l9r,j}j€Kr||0r
ieK,
where
K= {j: IV, = V|3 < h}

Here, {ﬂ’vj}jeK is a set of the models for all j-th blocks included in the r-th
group, and {ej}jeK, are the corresponding noise-free block spectra in this group.
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Group-wise collaborative penalty (cont.)

Let us treat the collection of 2-D block spectra {Gr,j}jeK, as 3-D array,
where j is the index used for the third dimension.
Applying a 1-D orthonormal transform 7 !0 with respect to j we arrive to a 3-D
group spectrum

Q) =T ({8, }jek,)-
Replace the set K, of the 2-D spectrum-approximations {ﬁﬁj}jeK, with this
joint 3-D spectrum Qz/
The fy-norm ||{l9r,j}je;<,
spectrum space defined as

1]y = Zl r(k,1) #0).

|lo in the penalty is replaced with the norm in this 3-D

This 3-D spectrum representation is used as a joint collaborative model of the
signal clustered in the r-th group:

Pe”r(Q:/:Qr) = HQX _Qng"‘)‘rHQrHO-
—_———— ——

Accuracy Complexity
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Global penalty in spectrum domain

Let us go further and introduce the global penalty as the weighted mean of the
group-wise penalties

PEN({Q:/},{Qr}) =Y g pen (Q), Q) =
r

Y (110F =B +A0l0)

r

with the group weights g, calculated as

/190
& = =,
Y 1/11Q0] o

where the spectrum (), is an estimate for the spectrums Q:/ in the r-th group,
and ||Q)|]o is the fo-norm penalty for this estimate.

In the global penalty the group-wise ones are weighed with the weights inversely
proportional to the complexity of the group-wise models.

This rule perfectly corresponds to the idea of sparse image modeling with a
low-complexity model as the main goal.
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Global penalty in signal domain

In the signal/image domain the global penalty can be represented using the
block-wise true signals Y; and the signal approximations Y ; in the following form

PEN(‘{YJ}'{Qr}) = Zgr ZK HYJ_ Yr,j|‘§+/\r‘|0r|’0> '

where

Yr,j = TzDil (9,1) ' @r = {Gr,j}jGK, = TlDil (Qr) .
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Deblurring: variational formulation

@ Suppose we have independent random observation pairs {z,-, X,-} given in
the form

zZi = (W *y)(X,') + o¢;,
where z; = z(x;) and y; = y(X;) are noisy observations and signal of

interest, respectively, & ~ N(O 1).
The deblurring problem is to reconstruct y(x;) from noisy observations

{zi}.
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Deblurring: variational formulation

@ Suppose we have independent random observation pairs {Z,-,X,-} given in
the form

zZi = (W * y)(X,') + o¢;,
where z; = z(x;) and y; = y(x;) are noisy observations and signal of
interest, respectively, &; ~ N (0, 1).
The deblurring problem is to reconstruct y(x;) from noisy observations
{Z,'}.
@ Some of the methods used:

(1) Decouple of deblurring and denoising, e.g. BM3D deblurring.
(2) Variational approach

J=|l(wxy)—2|[3/0* + A penly).

Fidelity Penalty
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Deblurring by global energy minimization

LetY, Z Y}, ?,J be the lexicographical vector representations of the
corresponding images/blocks Y, Z, Y}, SA/,,J-.

The vectors Y are projections of the vector Y, which can be defined through the
projection matrices P;,

Y, = PY.

Here P; are binary matrices with items (0,1).
Then the deblurring problem can be formulated as the variational problem:

Y = arg min J,
Y.{Q}
J = [|lZ-AY|[3/0% + A- PEN({Y;},{Q:})).

For solution we exploit a recursive alternative minimization of J on {Q),} and Y.

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 201 / 223



Minimization in spectrum domain

If Y and g are given the minimization on {{),} concerns the penalty term
PEN({Y;},{Q})) only.

With a fixed g, the minimization is reduced to scalar calculations independent for
each element of (),:

O, (k1) = arg)r(réi]lrg (Qr(k N —x)2+A-1(x # O)) :
This solution is the hard-thresholding of Q) (k, I) calculated as
O,k 1) = QY (k1) -1 (1OY (k)] = VA, ).
When f),(k, /) are found the signal estimates are calculated as

{0 jYjek, =T 1 (Q), Vo =T> 1 (b))
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Minimization in signal domain

Consider minimization of J on Y provided {Q,}r are given as {Qf}r'

The spectrums Q)’ depend on Y and this dependence should be taken into
considerations:

r

J=1Z-AY[3/0" +p Y e | L HP,-Y—V,,J-H%JrA,HQ,IIO) :
jeK

Differentiation on Y gives after some manipulations the estimate of Y:

Y=0"1. (ATZ/02+H DI Pf%-) ,

rojek

D=ATA/P+u-Y g Y PP
T ek,

Note, that the matrices PjTPj and W =13, 8 Yjekh PjTPJ- are diagonal.
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Matrix DEB-NEM algorithm

Recursive calculations based on the above matrix formulas result in the
following algorithm:
1: Initialization: ¥(© and g/¥ = 1.

2: Forevery t =0,1, ...

@ Calculate the windowed signals \A/r(t), the groupings

V= v - vOI3 < h)

and the spectra égtj) = Trzo (\A/j(t)) . J E K,h, for all groups r;

@ Calculate the group-wise "noisy" spectrums Q,wt), the 3D spectrum

thresholded estimates Q(t) and the windowed signal estimates Y( ),

rj
o Calculate the compIeX|ty HQ HO of the group models and the weights
(1) _ /10 Ho .
/100l
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Matrix DEB-NEM algorithm (cont.)

t+1)

Update the signal estimate y( using

v(tJrl) — q)fl . ATZ/(T2+]/l . Zgr(t) Z PJT?[(”t) ,
r jGK,(t)
©:ATA/U2+,”Zgr(t) Z PJTPJv
ek

r

Continue until convergence.
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"Ideal" collaborative penalty

Minimization on {Q),} yields

min PEN({OY }.{0,}) =

min Yo | X 110F — 0,13+ A0, ]l | = b
{Qf}r r jGK,h

Minimization on Y yields

min PEN({ Y} {00}) = Y,
-1
=YL& L PP (L& L P/Yr|.
ro jekt ro jekt

Yo =T2 1 (0:)), {0rj}jexs =T (QF).
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Smoothed Y?° images obtained for different A,.
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Links between NEM and BM3D for denoising

@ The basic hard-thresholding thresholding BM3D algorithm can be
interpreted as an alternative minimizer of the global penalty.

o Let Q)/ in the global penalty be replaced by the noisy O, and this global
penalty be minimized on {Qr}:

in PEN({OF} . {Q}) =

min g | X 1107 ~ Q1B+ A0l | = O
{Q’}rr JEKrh
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Links between BM3D penalty and BM3D algorithm for

denoising (cont)

Minimization on Y gives the BM3D aggregation.
The vectorized representation of the signals gives the estimate of Y in the form

Y= CD_I Zgr Z PJTYr,j,
rojekh
1
O = PP, g = —5——,

rojekh

which is identical to used in BM3D for aggregation of the estimates obtained by
the hard-thresholding.
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Frequency-domain deblurring algorithm

First, we rewrite the equation for Y as a set of the linear equations

(ATA/02+;¢- W) Y=ATZ/%+u-Y g Y P/Y,;
r JEK,

and solve these equations with respect to Y using the recursive procedure

v(k-ﬁ-l) = V(k) — ak[(ATA/O'z—{—y : W)Y(k) — ATZ/O’z—]/l . ?],
where

Y=Yg& Y PV ; k=1 .L

rojek:
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Frequency domain algorithm (cont.)

With above assumptions the vectorization of the convolution is valid
u=Ay, A=w®w,

where w is a blur PSF and & stands for the Kronecker product.
Assuming that the blur is shift invariant circular, A is a structured Toeplitz matrix
and the discrete Fourier transform (DFT) can be used for the matrix calculations:

AT . Z =col(FYF{w}" - F{Z}}),

ATA . ?(k): COl(f_l{LF{W}lz . f{Y(k)}})
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Frequency domain algorithm (cont.)

Then, the recursive algorithm can be implemented without variable vectorization
for variables organized as image-size matrices

Yrn) = Yo — okl FH{IF{wH - F{ Y}/ o+
e (WoYy)=F HF{w}  F{Z}}/o?—p- V],
k=1,..,L,

where

W = reshape,xm|diag{W}], ¥ = reshape,xm[Y],

and W o Y(k) means the element-wise product of two matrices.
The DEB-NEM algorithm is organized as it is presented in the previous section
with

Y () = reshapenm [V (D))

calculated according to the above recursive procedure.
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Matrix DEB-NEM algorithm: experiments

In our experiments, we use 9 X 9 uniform kernel (boxcar) blur PSF.

The noise is white zero-mean Gaussian with blurred-signal-to-nose-ratio
BSNR = 40 dB.

The parameters of the algorithm are fixed as A /0 = 10 and po = 1.
The main goal of these experiments is to check a potential of the proposed
penalty function in the deblurring problem.

Table: Initial (DEBBM3D) PSNR and ISNR values given with the index 0 and
final (DEB-NEM) after 10 iterations (in dB).

[ [ PSNRy [ISNRo] || PSNRyo [ISNRy] ||
| cameraman, 647 [ 23.02[7.18] [ 26.65 [10.81] ]
H [ [ [
[ | | |

lena, 642 30.81 [6.41] 34.35 [9.95]
barbara, 64° 25.27 [7.93] 26.27 [8.93]

Katkovnik and Foi (TUT) Nonlocal Image Filtering and Regularization ICIP 2010, Hong Kong 213 / 223



Visual improvements for cameraman

Cameraman fragment: true and blurred noisy images (left).
Cameraman fragment: initialization and 10-th iteration of DEB-NEM
reconstruction (right)

PSNR =15.84 PSNR; =23.02 PSNR | =2665

x
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Visual improvements for Lena

Lena fragment: true and blurred noisy images (left).
Lena fragment: initialization and 10-th iteration of DEB-NEM
reconstruction (right)

PSNR =24.40 PSNRD: 3081 PSNR o= 3435

x
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Frequency domain DEB-NEM: experiments

Fixed parameters: ]/1/02 =2, A=60-27, Ny =8, Np =32, Nstep =2
(for "Barbara" p/0? =8, A = ¢ -2.7).

Table: ISNR values for initial BM3D-DEB given with the index 0, for DEB-NEM
after 20 iterations (in dB), and best results by other methods.

I | ISNRy (DEBBM3D) || ISNRy | Other |
H Cameraman, 256° H‘ 8.4 H‘ 9.92 H 9.1 (Portilla) H
| Lena, 512° 7.8 || 8.91 | 8.52 (Chantas) |
H Barbara, 5122 H‘ 5.9 H‘ 6.05 H (Babacan) H
H House, 2562 H‘ 10.9 H‘ 12.8 H 10.74 (Portilla) H
| Boats, 512 || 8.5 955 | |
H Checkerboard, 2562 H‘ 23.3 H\ 48.3 H H
| Phantom, 256>  [] 12.3 [ 21.4 [ 17.86 (Oliveira) |
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Cameramen test image: true (a), blurred noisy (b), DEB-NEM reconstruction
after 20 iterations (c), DEBBM3D reconstruction (d).
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A fragment of Lena test image: true (a), blurred noisy (b), DEB-NEM
reconstruction after 20 iterations (c), DEBBM3D reconstruction (d).
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Conclusion

Currently we develop improved versions of the presented algorithm based
on variable splitting proximal operator and augmented Lagrangian
techniques.

The principal intention and result of our research is demonstrating the
power of the image modeling based on block matching and collaborative
3-D filtering.

A. Danielyan, V. Katkovnik and K. Egiazarian, “Image deblurring by augmented Lagrangian
with BM3D frame prior”, Proc. 3rd Workshop on Information Theoretic Methods in Science and
Engineering , WITMSE 2010, Tampere 2010.
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THANK YOU
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