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Joint Removal of Random and Fixed-Pattern Noise
through Spatiotemporal Video Filtering

Matteo Maggioni, Enrique Sdnchez-Monge, Alessandro Foi

Abstract—We propose a framework for the denoising of
videos jointly corrupted by spatially correlated (i.e. non-white)
random noise and spatially correlated fixed-pattern noise. Qur
approach is based on motion-compensated 3-D spatiotemporal
volumes, i.e. a sequence of 2-D square patches extracted along
the motion trajectories of the noisy video. First, the spatial
and temporal correlations within each volume are leveraged to
sparsify the data in 3-D spatiotemporal transform domain, and
then the coefficients of the 3-D volume spectrum are shrunk
using an adaptive 3-D threshold array. Such array depends on
the particular motion trajectory of the volume, the individual
power spectral densities of the random and fixed-pattern noise,
and also the noise variances which are adaptively estimated in
transform domain. Experimental results on both synthetically
corrupted data and real infrared videos demonstrate a superior
suppression of the random and fixed-pattern noise from both an
objective and a subjective point of view.

Index Terms—Video denoising, spatiotemporal filtering, fixed-
pattern noise, power spectral density, adaptive transforms, ther-
mal imaging.

I. INTRODUCTION

IGITAL videos may be degraded by several spatial and
temporal corrupting factors which include but are not
limited to noise, blurring, ringing, blocking, flickering, and
other acquisition, compression or transmission artifacts. In
this work we focus on the joint presence of random and
fixed-pattern noise (FPN). The FPN typically arises in raw
images acquired by focal plane arrays (FPA), such as CMOS
sensors or thermal microbolometers, where spatial and tem-
poral nonuniformities in the response of each photodetector
generate a pattern superimposed on the image approximately
constant in time. The spatial correlation characterizing the
noise corrupting the data acquired by such sensors [1], [2],
[3] invalidates the classic AWGN assumptions of independent
and identically distributed (i.i.d.) —and hence white— noise.
The FPN removal task is prominent in the context of
long wave infrared (LWIR) thermography and hyperspectral
imaging. Existing denoising methods can be classified into
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reference-based (also known as calibration-based) or scene-
based approaches. Reference-based approaches first calibrate
the FPA using (at least) two homogeneous infrared targets,
having different and known temperatures, and then linearly
estimate the nonuniformities of the data [4], [5]. However,
since the FPN slowly drifts in time, the normal operations of
the camera need to be periodically interrupted to update the
estimate which has become obsolete. Differently, scene-based
approaches are able compensate the noise directly from the
acquired data, by modeling the statistical nature of the FPN;
this is typically achieved by leveraging nonlocal self-similarity
and/or the temporal redundancy present along the direction of
motion [6], [7], [8], [9], [10], [11].

We propose a scene-based denoising framework for the
joint removal of random and fixed-pattern noise based on
a novel observation model featuring two spatially correlated
(non-white) noise components. Our framework, which we
denote as RF3D, is based on motion-compensated 3-D spa-
tiotemporal volumes characterized by local spatial and tem-
poral correlation, and on a filter designed to sparsify such
volumes in 3-D spatiotemporal transform domain leveraging
the redundancy of the data in a fashion similar to [12], [13],
[14], [15]. Particularly, the 3-D spectrum of the volume is
filtered through a shrinkage operator based on a threshold array
calculated from the motion trajectory of the volume and both
from the individual power spectral densities (PSD) and the
noise variances of the two noise components. The PSDs are
assumed to be known, whereas the noise standard deviations
are adaptively estimated from the noisy data. We also propose
an enhancement of RF3D, denoted E-RF3D, in which the
realization of the FPN is first progressively estimated using the
data already filtered, and then subtracted from the subsequent
noisy frames.

To demonstrate the effectiveness of our approach, we evalu-
ate the denoising performance of the proposed method and the
current state of the art in video and volumetric data denoising
[13], [15] using videos corrupted by synthetically generated
noise and also real LWIR therm sequences acquired with a
FLIR Tau 320 microbolometer camera. We implement RF3D
(and E-RF3D) as a two-stage filter: in each stage use the same
multi-scale motion estimator to build the 3-D volumes but
a different shrinkage operator for the filtering. Specifically,
we use a hard-thresholding operator in the first stage and an
empirical Wiener filter in the second. Let us remark that the
proposed framework can be also generalized to other filtering
strategies based on a separable spatiotemporal patch-based
model.

The remainder of the paper is organized as follows. In



Section II we formalize the observation model, and in Section
IIT we analyze the class of spatiotemporal transform-domain
filters. Section IV gives a description of the proposed denois-
ing framework, whereas Section V discusses the modification
required to implement the enhanced fixed-pattern suppression
scheme. The experimental evaluation and the conclusions are
eventually given in Section VI and Section VII, respectively.

II. OBSERVATION MODEL

We consider an observation model characterized by two
spatially correlated noise components having distinctive PSDs
defined with respect to the corresponding spatial frequencies.
Formally, we denote a noisy video z : X xT'— R as

z (Xa t) =Y (Xa t) + TIRND (X7 t) + TIFPN (X, t) ) (1)

where (x,t) € X x T is a voxel of spatial coordinate x €
X C 7% and temporal coordinate t € T C Z, y: X xT — R
is the unknown noise-free video, and ngpy : X X T — R
and 7rnp : X X T'— R denote a realization of the FPN and
zero-mean random noise, respectively.

In particular, we model nrnp and 7gpy as colored Gaussian
noise whose variance can be defined as

var{ T (o (1)) (€) b = oo (6.0

— o O T (€)@
Var{TzD (UFPN('at)> €3) } = ofp (€,1)

= sipn (1) Ween (€), (3

where Top is a 2-D transform, such as the DCT, operating
on N x N blocks, & belongs to the Top domain =, o3y, and
ogpy are the time-variant PSDs of the random and fixed-pattern
noise defined with respect to 7,p; the time-variant PSDs can
be separated into their normalized time-invariant counterparts
WUrnDp, Yrpn : 2 — R and the corresponding time-variant
scaling factors ¢2np, ey @ ' — R. We observe that the
PSDs Wgrnp and Wgpy are known and fixed; moreover the
random noise component 7rnp i independent with respect to
t, whereas the fixed-pattern noise component ngpn is roughly
constant in time, that is

%nFPN (X, t) ~ O (4)

The model (1) is much more flexible than the standard i.i.d.
AWGN model commonly used in image and video denoising.
In this paper we successfully use (1) to describe the raw output
of a LWIR microbolometer array thermal camera; specifically,
Fig. 1 and Fig. 2 show the PSDs of the random and fixed-
pattern noise of video acquired by a FLIR Tau 320 camera.
The power spectral densities in the figures are defined with
respect to the global 2-D Fourier transform and the 8 x 8 2-
D block DCT, respectively. As can be clearly seen from the
figures, the two noise components are not white and instead
are characterized by individual and nonuniform PSDs.
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Fig. 1.

Normalized root power spectral densities of the random (left) and
fixed-pattern (right) noise components computed with respect to the global
2-D Fourier transform. The DC coefficient is located in the center (0,0) of
the grid.

o A

Fig. 2. Power spectral densities of the random (left) and fixed-pattern (right)
noise components calculated with respect to the 2-D block DCT of size 8 x 8.
The DC coefficient is located in the top corner.

III. SPATIOTEMPORAL FILTERING

In this section we generally analyze the class of spatiotem-
poral video filters, and, in particular, those characteristics of
spatiotemporal filtering that are essential to the proposed noise
removal framework.

A. Related Work

Natural signals tend to exhibit high auto correlation and
repeated patterns at different location within the data [16],
thus significant interest has been given to image denoising
and compression methods which leverage redundancy and self-
similarity [17], [18], [19], [20], [21]. For example, in [18]
each pixel estimate is obtained by averaging all pixels in
the image within an adaptive convex combination, whereas in
[12] self-similar patches are first stacked together in a higher
dimensional structure called “group”, and then jointly filtered
in transform domain. Highly correlated data can be sparsely
represented with respect to a suitable basis in transform
domain [22], [23], where the energy of the noise-free signal
can be effectively separated from that of the noise through
coefficient shrinkage. Thus, self-similarity and sparsity are the
foundations of modern image [18], [12], video [13], [20], [14],
and volumetric data [24], [15] denoising filters.

For the case of video processing, self-similarity can be
naturally found along the temporal dimension. In [25], [26],
[14] it has been shown that natural videos exhibit a strong
temporal smoothness, whereas the nonlocal spatial redundancy
only provides a marginal contribution to the filtering quality
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Fig. 3. Separable 73p DCT transform applied to the 3-D volume illustrated
in the top-left position. The magnitude of each 3-D element is proportional
to its opacity. Whenever the temporal 7p transform is applied, we highlight
the 2-D temporal DC plane with a yellow background. Note that 7;p-spectra
is sparse outside the temporal DC plane, and 7;p-spectra becomes sparser
as we move away from the spatial DC coefficients (top-right corner of each
block). Consequently, the energy of 73p-spectrum is concentrated around the
spatial DC of the temporal DC plane.

[14]. Methods that do not explicitly account motion informa-
tion have also been investigated [27], [28], [29], [30], but
motion artifacts might occur around the moving features of
the sequence if the temporal nonstationarities are not correctly
compensated. Typical approaches employ a motion estimation
technique to first compensate the data and then apply the
filtering along the estimated motion direction [31], [32], [14].
A proper motion estimation technique is required to overcome
the imperfections of the motion model, computational con-
straints, temporal discontinuities (e.g., occlusions in the scene),
and the presence of the noise [33].

In this work, we focus on spatiotemporal video filters,
so that the peculiar correlations present in the spatial and
temporal dimension can be leveraged to minimize filtering
artifacts in the estimate [34].

B. Filtering in Transform Domain

The spatiotemporal volume is a sequence of 2-D blocks
following a motion trajectory of the video, and thus, in a
fashion comparable to the “group” in [12], is characterized
by local spatial correlation within each block and temporal
correlation along its third dimension. As in [12], [13], [14],
[15], the filtering is formalized as a coefficient shrinkage
in spatiotemporal transform domain after a separable linear
transform is applied on the data to separate the meaningful
part of the signal from the noise. We use an orthonormal 3-
D transform 73p composed by a 2-D spatial transform 7;p
applied to each patch in the volume followed by a 1-D
temporal transform 71p applied along the third dimension.

The 7ip transform should be comprised of a DC (direct
current) coefficient representing the mean of the data, and a
number of AC (alternating current) coefficients representing
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Fig. 4. Flowchart of random and fixed-pattern joint noise removal framework
RF3D and the enhanced E-RF3D. A complete overview of RF3D is given in
Section IV, while the modifications required to implement E-RF3D, illustrated
as dashed lines, are described in Section V.

the local changes within the data. The 2-D temporal DC
plane obtained after the application of the 1-D temporal
transforms along the third dimension of the volume is of
particular interest, as it encodes the features shared among
the blocks, and thus can be used to capture the FPN present
in the spatiotemporal volume. Fig. 3 provides a schematic
representation of the 3-D spectrum obtained after applying a
Tip, T2p, and T3p DCT transforms on a typical spatiotemporal
3-D volume. The magnitude of each spectrum coefficient is
directly proportional to its opacity, thus coefficients close to
zero are almost transparent. The 2-D temporal DC plane in
Tip-spectra and T3p-spectrum is highlighted with a yellow
background, whereas the spatial DC coefficients in 7;p-spectra
are located at the top-right corner of each 2-D spectrum. Thus,
the 3-D DC coefficient of the T3p-spectrum is located at the
top-right corner of the temporal DC plane. Note how the data is
differently sparsified in the different spectrum: in 7ip-spectra
the energy is concentrated in the temporal DC plane, in T;p-
spectra the energy is concentrated around each spatial DC
coefficients, and consequently in J3p-spectrum the energy is
concentrated around the spatial DC of the temporal DC plane.
The PSDs of the noise in (1) are defined with respect to
the 2-D spatial transform 7,p. For example, in Fig. 2 we
show the root PSDs of the random and fixed-pattern noise,
obtained from a 2-D DCT of size 8 x 8. These PSDs provide
the variances of the two noise components within each 2-D
block coefficients before the application of the 1-D temporal
transform to the spatiotemporal volume. The analogies with
the corresponding PSDs defined with respect to the 2-D
Fourier transform can be appreciated by referring to Fig. 1.

IV. JOINT NOISE REMOVAL FRAMEWORK

In this section, we describe the proposed RF3D framework
for the joint removal of random and fixed-pattern noise. The
RF3D works as follows: first a 3-D spatiotemporal volume is
built for a specific position in the video (Section IV-A), and
then the noise standard deviations are estimated from a set of
frames (Section IV-B). Finally, the 3-D volume is filtered in



spatiotemporal transform domain (Section IV-C) using adap-
tive shrinkage coefficients (Section IV-D). A flowchart of the
framework is illustrated in Fig. 4. This generic algorithm and
its various applications are the object of a patent application
[35].

The model (1) is simplified by (2) and (3), where we
assume that the PSDs of nrnp and nppn are fixed modulo
normalization with the corresponding scaling factors g2y, and
GZpn- As a result, the PSDs do not need to be periodically
estimated, but can be treated as known parameters. During the
filtering, such parameters are scaled with the scaling factors
to obtain the actual PSDs of the noise components corrupting
the video. Further, we assume that the time-variant scaling
factors of (2) and (3) vary slowly with time, so that they
can be treated as constant within the local temporal extent of
each spatiotemporal volume. Formally, we define the following
conditions on the partial derivatives of ¢gnp and ppn With
respect to time:

3, 3}
57 SRND (t) =0, 9PN (t) =~ 0. (3)

A. Spatiotemporal Volumes

The proposed framework is based on motion-compensated
3-D spatiotemporal volumes composed by a sequence of 2-D
blocks following a motion trajectory of the video [12], [13],
[14]. Let B(x,t) be a 2-D N x N block extracted from the
noisy video z, whose top-right corner is located at the 3-D
coordinate (x,t). Formally, a motion trajectory corresponding
to a (reference) block B(xpr,tr) is a sequence of coordinates
defined as

ht
Plxrtn) = {Geit) ) ©
where x; is the spatial location of the block within the frame
at time t; with i = h—, ..., hT, and each voxel is consecutive
in time with respect to the precedent, i.e. ;41 —t; = 1 V4.
Note that in (6) we do not restrict the reference coordinate
(xR,tR) to occupy a predefined position in the sequence, thus
the trajectory can be grown backward and/or forward in time,
ie. tp- < tp < tp+. Finally, we call H = t,+ — t,- the
temporal extent of the volume.
Assuming that the trajectory for any given reference block
B(xpg,tr) is known, we can easily define the corresponding
motion-compensated 3-D spatiotemporal volume as

V(XR,tR) = {B(Xi,ti) : (Xi7ti) S F(XR,tR)}. (7

The trajectories can be either known a-priori, or built in-loop,
e.g., by concatenating motion vectors along time. However,
let us stress that the motion estimation technique needs to be
tolerant to noise [33], [29], [32], [14].

In Fig. 5, we show a schematic illustration of a spatiotem-
poral volume (7). In the figure, the reference block B(xg,tr)
is shown in blue and occupies the middle position, the other
blocks of the volume are shown in grey.
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Fig. 5. Schematic illustration of a spatiotemporal volume. The blocks of the
volume are grey with the exception of the reference block “R”, which is blue.

B. Noise Estimation

The noise can be estimated leveraging the fact that the FPN
is roughly constant in time (4): thus a spatial high-pass filtering
of the video captures both random and fixed-pattern noise
components, whereas a temporal high-pass filter captures only
the random one.

The overall PSD o2 of the random and fixed-pattern noise
is simply defined as the sum of (2) and (3)

o?(&,1) = anp (1) Urap (€) + sppn (1) Tren (€), ()

being WUppn and Wrnp the only known terms of the equation.
Firstly we estimate o as the median absolute deviation
(MAD) [36], [37] of the Tp-coefficients of all the blocks
having temporal coordinates within [t;,—,¢,+] 2 ¢ as
- MAD

AL (T (Bxm) (s)) O

t— ST+

o(&:t) = 5671

because T;p also embeds some high-pass filters and both ¢rnp

and ¢ppy are slowly varying in time (5). Then, we estimate

ornp through a similar MAD on a temporal high-pass version

of the video, obtained by differentiating consecutive blocks:
rnp (€, 1) = MAD

T 0.6745  xex (ED(B(X»TH))(@

t— ST<tp4

~ T (B (x.7)) (&))
(10)

We recognize that the MAD scaled by the usual factor 0.6745
(from the inverse cumulative Gaussian distribution at 3/4) is
designed for Gaussian data. Even though in the practice the
distribution of the noise in (1) may deviate from a Gaussian,
the MAD/0.6745 is nevertheless a viable estimator for (9)
and (10) because it is not applied directly on the observed
data but on the 75p transform coefficients. Each transform
coefficient is obtained as a linear combination involving many
data samples (e.g., 64 samples when using a linear 8 x 8
Tp), a “Gaussianization” kicks in, analogous to the central
limit theorem. This makes the MAD/0.6745 an unbiased
estimator of the standard deviation of each individual subband
of transformed coefficients. In other words, we can safely use
the MAD to estimate the root-PSD.

According to (2) and (3), og\p and o2, must be re-
spectively equal to Wgrnp and Wppy modulo the non-negative
scaling factors ¢Zyp and ¢y, and as can be seen from (8)
an analogous condition applies to o2. However, up to this
point neither 62 nor 63y, are guaranteed to satisfy such
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scaling property. To find such scaling factors, we resort to
the following non-negative least-squares optimization, whose
solutions ¢2yp () and ¢y (t) are defined as

cl?ND(t) 20
§F2PN(75)ZO

arg min{ Z (\I/RND (&) sk (t)
3=

+ Wrpn (€) on(1) — 07 (6,1) ) i (&)

+ Z (\I’RND ) sinp () — Ginp (€:1) )2w§(§)}>
£eE
1n

where wi,we : 2 — R give different weights to each
coefficients fed to (9) and (10), and in practice can be used as
logical operators to select linearly independent high-frequency
coefficients in the 7,p domain.

C. Spatiotemporal Filtering

During the spatiotemporal filtering, the volume (7) is first
transformed from its voxel representation to a new domain via
a separable linear transform 7T3p, then a shrinkage operator
T such as the hard thresholding modifies the magnitude of
the spectrum coefficients to attenuate the noise. This strategy
leverages the sparsification of the 3-D volume induced by 73p
as illustrated in Fig. 3. An estimate of the noise-free volume
is eventually obtained after inverting the transform 73p on the
thresholded spectrum. The complete process can be formally
defined as

V(xp,tr) = Tip' <T(7§D(V(XR7tR)))>a (12)

which in turn generates individual estimates of each noise-
free patch in the volume. This strategy is referred to as
collaborative filtering, and a deeper analysis of its rationale
can be found in [12], [13], [19], [14].

D. Motion-Adaptive 3-D Spectrum Variances

The shrinkage operator T in (12) modulates the applied
filtering strength relying on the variances s%_, (&,9) of
the 7T3p-spectrum coefficients, where ¢ € {1,...,H} C N
indicates the coefficient position with respect to the 7ip spec-
trum, ¥ = 1 corresponding to the temporal DC. Observe that
5% ..+, constitutes a 3-D array of variances. Each 53, (€,7)
depends on the 7Tp-PSDs (8) of each block B(x;,t;) in the
volume (7) through the 7ip transform. Since both ¢rnp and
srpn are slowly varying in time, we can use their respective
estimates at the time tp for the whole volume V(xg,tR).
However, due to the FPN, the relative spatial alignment of
the blocks has an impact on the variance of the 73p spectrum
coefficients and thus needs to be taken into account for the
design of the threshold coefficients.

To understand this phenomenon, let us consider the follow-
ing two extreme cases. In one case all blocks are perfectly
overlapping, i.e. they share the same spatial position x; for
all ¢; in (7), such as when no motion is detected. Thus the

FPN component, being the same across all blocks, accumulates
through averaging in the 2-D temporal DC plane of the 3-D
volume spectrum, shown in yellow in Fig. 3. For this reason
the variances of temporal DC plane and AC coefficients are
different:

Sapin (& 1) = Ganp (tr) Prnn(€) + Hegpn (tr) Vepn (),

SiR,tR (&9) = gl%ND(tR)\IJRND(E)a
(13)

with ¥ € {2,..., H}. In the other extreme case all blocks have
different spatial positions and their relative displacement is
such that the FPN exhibits uncorrelated patterns over different
blocks. Thus, restricted to the volume, the FPN behaves just
like another random component and the variances of the
coefficients can be simply obtained as

SiR,tR (&,9) = sinp (tr) VrnD (€) + Spn Ve (€),

forall ¥ € {1,...,H}.

We stress that the variances of the 3-D spectrum coefficients
depend not only on the two PSDs and on the temporal extent
H of the spatiotemporal volume, but also on the relative spatial
alignment of the blocks within the volume, on the temporal
position of the coefficients within the 3-D spectrum, and on the
unknown covariance matrices of the overlapping blocks which
however are impracticable to compute. Nevertheless we resort
to a formulation that interpolates (13) and (14), approximating
all the intermediate cases for which any number of blocks
in the volume is aligned or partially aligned with any of the
others.

For a spatiotemporal volume of temporal extent H, let
L; < H, with 1 < h < H, be the number of blocks sharing
the same spatial coordinates as the h-th block in the volume,
and let L = maxi<p<p {Lp}, with 1 < L < H, denote
the maximum number of perfectly overlapping blocks. With
this, we approximate the variances of the 3-D spatiotemporal
coefficients by interpolating (13) and (14) with respect to L
as

(14)

xR,tR(gv ) - ngD(tR)‘I’RND(E)

2
e ©), (13)
xR tr (5 79) - él%ND(tR)\I]RND(E)
+ [1 - éEIL{_ll))} Sion(tR) WEpn(€),  (16)

with ¢ € {2,..., H}. By construction, the variances (15) and
(16) reduce to the exact formulae (13) for L = H and to
(14) for L = 1, but observe that (15) is also exact in the
configuration where L blocks are perfectly overlapping and
the other H — L are completely displaced. In order to attain
exact results in every configuration, (15) and (16) should have
taken into account the basis coefficients of the 7ip temporal
transform as well as the spatiotemporal position of the volume
coefficients. The chosen formula (16) is such that the total 7;p
noise spectrum, given by the sum of (15) with  — 1 times
(16), is the same for all values of L and is equal to H times
(14). Other approximate formulae are possible.



V. ENHANCED FIXED-PATTERN SUPPRESSION

In this section, we discuss the enhanced noise removal
framework E-RF3D. Leveraging the fact that the fixed-pattern
noise component varies slowly with time (4), it is possible to
exploit its actual realization, i.e. the fixed pattern (FP), in a
progressive fashion. In particular, the FP is first estimated from
the noise that has been removed during previous filtering, and
then subtracted from the following noisy frames to ease the
denoising task (Section V-A). Consequently, the PSDs and the
noise standard deviation of the data after the subtraction of the
FP are updated (Section V-B). The modifications required to
implement E-RF3D are illustrated as dashed lines in Fig. 4.

A. Fixed-Pattern Estimation

According to (1) and assuming that ¢ is a good estimate of
y, the noise realization at any position (x,?) € X x T can be
estimated as

—g(xt). A7)

Since the FPN component nppy is assumed to be time-
invariant within any short temporal extent (4), an estimate
firpn (X, t) of the FP can be simply obtained by averaging the
noise residuals (17) of the previous M (t) € N frames as

feen (X, ) + Mrap (X, t) = 2(x, t)

t—1

1
o>

T=t—M(t)—1

iieen(x, ) = (s 7) = 9x,7). (18)
for every position x € X and time ¢ € T'. Furthermore, if we
assume that our estimate of the video is perfect, i.e. §y = v,
then

19)

fepn (X, ) = neen (X, t) + Trap (X, 1),

where 7rnp 1S an average random component which has the
same distribution and spatial correlation of nrnp/+/M (t). In
this case, (18) is unbiased:

E{ﬁFpN (x, t)} = neen (X, ).

The number of frames M (t) in (18) can be adjusted in
different manners. In this work, we empirically set M(t) to
be approximately proportional to ¢axp () /% (t). Thus, M (t)
adapts conveniently to the current noise characteristics by bal-
ancing the accuracy of (18) with respect to its variance, which
is proportional to ¢2yp(t)/M(t). Note that the estimation of
the FP is performed continuously during denoising in order to
adapt to possible changes (drift) in the FP component.

Since g is never perfectly identical to y, (17) may contain
structures belonging to the noise-free signal. This is partic-
ularly problematic whenever the video is stationary, because
the static image content may accumulate into the FP (18).
To counteract the consequent risks of fading and/or ghosting
in the denoised signal, we select only those frames where
motion is present. In particular, we use the displacement of the
blocks between consecutive frames, since this information is
readily available from (6): if the absolute mean displacement
exceeds a certain threshold, we reckon that there is enough
motion between the frames which can thus be used for the FP
estimation.
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Fig. 6. Mixture of power spectral densities Wgpnpew (20) describing the
updated FPN component after the fixed-pattern subtraction. The power spectral
densities are computed with respect to the 2-D DCT transform 7,p of size
8 x 8 and three different values for .

B. Noise Estimation with Mixed Power Spectral Density

We observe from (19) that the FP estimate (18) is still
corrupted by an average random component distributed as
nrap// M (t). Thus, after subtraction of 7jgpn(:,t) from
z(+,t), a new estimation of the standard deviation and the PSD
of the updated FPN component becomes necessary.

Firstly, we model the PSD of the updated FPN WgpNpew as
a convex combination of the original PSDs Wgrnp and Wppy

emnen (€:1) = 7P (&) + (1= 1(1) ) Teen (€), (20)

where the parameter v € [0, 1] determines the contributions of
the original PSDs. In Fig. 6 we present few PSDs combinations
obtained with different values of 7: obviously, at the extreme
values v = 1 and v = 0 (20) reduces to the original Wrnp
and Ugpy, respectively.

Secondly, similar to (11), we estimate the scaling factors
of the mixed PSDs as the solutions ¢2p (t), $Znpmix (t)s and
$Enpmix (1) of the non-negative least-squares problem

arg min

gl%ND(t)ZO
Shonmis (1) >0
Sinpmic (1) =0

{ Z (\I/RND (E) gl%ND(t) + \IIFPN (E) ggPNmix(t)
£€E

+ Urnp (&) Sanpmix (1) — 67

(€1)) wie)

+ Z (‘I’RND ) sitnp () — Ginp (€:1) )2705(5)},

geE
(21)

where ¢ and Ggrnp are obtained from the MAD of the high-
frequency coefficients scaled by the weights wi,ws : = — R
as in (9) and (11). The optimization (21) aims to find the
best non-negative solutions in the least-squares sense for the
updated scaling factors using their definition (2) and (3). Note
that the updated {ppnnew (f) can be simply obtained from (21)
as

gI?PNnew(t) - glgPlex( ) + ngDmix (t)

Lastly, we compute the updated PSD (20) using a parameter
~ defined as

'y(t) = — él%NDmixA(t) )
SPonmix (1) + SEnpmix (1)
Note also that the updated Wgpnpew and {ppnnew are used for
computing the adaptive threshold array (15)—(16) in place of
Wepn and Sppn, respectively.
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Fig. 7. Frames from the noise-free sequences Foreman (left) and Miss America
(right).

VI. EXPERIMENTS

We compare the filtering results of RF3D and E-RF3D
against those obtained using the same spatiotemporal filter but
with different a-priori assumptions on the observation model:

e WR: data corrupted by one additive white random noise
component and no FPN component. In this case, {gnp
reduces to a weighted average of (9) and (10) over Z,
because in the non-negative least-squares minimization
(11) we assume ¢gpy = 0 and Yrnp(€) = 1 forall € € E.

e CR: data corrupted by one additive colored random noise
component and no FPN component. The PSD of such
noise is assumed equal to

CﬁND WrnD + §F2pN Wepn

Sinp T Seen ’
thus treating the FPN as another random component.
Again, ¢gnp reduces to a weighted average of (9) and
(10) over Z, because we assume ¢gpy = 0.

o WRWF: data corrupted by two additive white noise
components, namely random and fixed-pattern noise, with
PSDs assumed as Urnp (&) = Uppn(€) = 1 forall € € E.
Under this assumption, Sgnp and Sgpy are given by (11).

Each of these simplified —and rough— assumptions reduce
RF3D to an elementary algorithm that is unable to deal
with the specific features of the actual noise model at hand.
In particular, under the WR and CR assumptions, the FPN
component is ignored and thus the filter is not able to account
for the possible accumulation of FPN in the DC plane of the 3-
D spectrum, which may hence remain unfiltered. Conversely,
WRWF does model both the RND and FPN but ignores the
spatial correlations that exist in the two noise components;
thus filtering faces a particularly serious compromise between
preservation of details and attenuation of noise. Additionally,
we test the denoising performances of the state of the art in
video and volumetric data denoising, namely V-BM3D [13]
and BM4D [15], which are however designed for AWGN or,
equivalently, for the WR assumption with i.i.d. Gaussian noise
having standard deviation oawgn.

In our experiments both synthetically corrupted sequences
and real LWIR thermography data are considered. The objec-
tive denoising quality is measured by the peak signal-to-noise
ratio (PSNR) of the estimate 3

Lo X7
101log; : 5
erX,tGT (y(X, t) - y(xa t))

where I,,x is the maximum intensity value (peak) of the
signal, y is the noise-free data, and | X |, |T| are the cardinality
of X and T, respectively. The data is hereafter considered to
be in the range [0,255], i.e. Imax = 255. We consider the
standard sequences Foreman, Coastguard, Miss America, and
Flower Garden corrupted as in (1) with different combinations
of cenp and ¢ppn. In Fig. 7, we show two noise-free frames
of Foreman and Miss America.

The remainder of this section is organized as follows. In
Section VI-A we discuss the implementation details, param-
eter settings, and computational complexity of the proposed
denoiser; in Section VI-B we present the denoising results for
synthetic data; then, in Section VI-C, we show the denoising
results of real thermography sequences to demonstrate that the
proposed model (1) can appropriately describe the output of
LWIR imagers.

A. Implementation Details

1) Motion Estimation: The proposed framework is rel-
atively independent from the particular strategies used for
the motion estimation. In our implementation, we use a
coarse-to-fine two-scale motion estimator. First the sequence is
downsampled by a factor of two; then the motion trajectories
are computed using a fast diamond search [38] where the
distance function is defined as the ¢;-norm difference of
blocks of size N x N, which thus cover an image area two
times larger than that at the original resolution. Note that
the downsampling increases the signal-to-noise ratio, and thus
makes the motion estimation less impaired by noise. Finally,
the found motion trajectories are refined on the full-resolution
video using the same search process. For the refinement we
employ a penalization term in the distance functional [14] to
promote the matching of the blocks at the position predicted
within the coarser scale.

2) Two-Stage Filtering: Similar to other algorithms [12],
[13], [14], [15], we employ two cascading stages which differ
for the particular shrinkage operator Y (12): specifically we
use a hard-thresholding operator in the first stage and an empir-
ical Wiener filter in the second. The hard-thresholding stage is
intended to provide a basic estimate which will serve as a pilot
for the Wiener-filtering stage and uses an adaptive threshold
array equal to the square root of the 3-D variances siR’tR
scaled by a constant factor A\;p [22], [12]. In both stages, the
estimates of volumes are obtained after applying the inverse 3-
D transform on their thresholded spectra, and then are returned
in their original location. Overlapping estimates are finally
aggregated through an adaptive convex combination using
(15)—(16) as in [12]. This implementation can be interpreted
either as the V-BM3D algorithm [13] with the block matching
performed only along the temporal dimension, or as the V-
BM4D algorithm [14] without the 4-D nonlocal grouping.

3) PSD Normalization: Without loss of generality, both
PSDs Wrnp and Wppy are normalized with respect to their
highest frequency coefficient. In Fig. 2, the highest frequency
coefficients are located at the bottom corner, diametrically
opposite to the DC coefficients. Observe in the figure that the
magnitude of the highest-frequency coefficients is among the



Fig. 8. Average PSNR (dB) obtained by WR (dashed line), CR (dot-dashed
line), WRWEF (dotted line), RF3D (thin solid line), and E-RF3D (thick solid
line) as a function of the threshold factor Asp. The markers denote the global
maxima.

smallest of their respective PSDs Ugnp and Wppy; thus, the
values of ¢rnp and ¢ppy constitute only a rough quantitative
indication of the actual strength of the two noise components,
whose average standard-deviation can in fact be much larger
than ¢gnp and Sepn.

4) Parameter Settings: We set the maximum temporal
extent of the spatiotemporal volumes to H = ¢+ —t,- =9
with the reference block located in the middle, the size of the
the 2-D blocks to NV x N = 8 x &, and the threshold factor to
Asp = 2.7. As transform T3p we utilize a separable 3-D DCT
of size N x N x H.

The factor A3p is crucial: a too small or too large value
may cause undersmoothing or oversmoothing of the data. In
Fig. 8 we show the average PSNR obtained by the different
methods for the denoising of the considered test videos and
noise levels as \3p varies. We exclude Miss America from such
average-value analyses because most of the sequence consists
of a large smooth stationary background and thus its PSNR
remains high even when a large Asp causes oversmoothing.
The chosen A\3p = 2.7 approximately yields the PSNR peak
for both RF3D and E-RF3D; conversely, for WR, CR, and
WRWEF the best Asp needs to be larger (4.5, 6.15, and 4.65,
respectively) to compensate the deficiencies of their assumed
observation models. Note that \3p = 2.7 is equal to that
used in ] and is also not far from the universal threshold
/2 log( NNH [22].

Both BM4D [15] and V-BM3D [13] modulate their filter-
ing strength with the standard deviation oawgn of the i.i.d.
Gaussian noise assumed to corrupt the data; however, because
of the mismatch between the AWGN model and the actual
observations (1), there is no ideal value of oawgn. We aim
to compare the proposed algorithm against the best possible
BM4D and V-BM3D results; thus, we use “oracle” oxwan
values that maximize the output PSNR individually in each
experiment. Details are given in the Appendix.

The block size 8 x 8 is widely used in many image-
processing applications because it enables the use of fast
transform implementation (e.g., DCT or FFT) and also allows
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Fig. 9. Effect of different block sizes on the PSNR performance for the
proposed method under different noise conditions. The area of the disks
represents the average PSNR over different test videos for a specific noise
level and block size, and each color represents a particular block size. The
disks in each column are ordered in decreasing PSNR value from top to
bottom; for each noise level we also report the best and worst PSNR value.

for a good data sparsification (e.g., BM3D denoising [12] or
JPEG/MPEG compression). The denoising performances of
the proposed E-RF3D using different block sizes are evaluated
in Fig. 9; the performance is measured as average PSNR
over the test sequences considered in our experiments, again
minus Miss America, using A\sp = 2.7. The area of each disk
is proportional to the average PSNR (bigger disks indicate
higher PSNR), and each color represents a particular block
size. The disks in each column are ordered in descending
PSNR value, and as one can clearly see, the best performance
is always attained by 8 x 8 blocks (blue disks) with PSNR
improvements ranging between 0.5dB and 1.5dB with respect
to the worst case. Note that also V-BM3D as well as all
others considered algorithms employ 8 x 8 blocks as basic
data structures, whereas BM4D uses cubes of size 4 x 4 x 4.

Our single-threaded MATLAB implementation' of the pro-
posed algorithm used for the reported experiments processes
a CIF-resolution sequence (i.e. 352 x 288) at approximately 1
frame per second on an Intel®) i7-2640M CPU at 2.80-GHz.

B. Synthetic Data

The synthetic noisy sequences are generated according to
the observation model (1) with the PSDs defined in (2) and
(3) and shown in Fig. 2; crnp and ggpn are both simulated to
remain constant in time. In order to present the best possible
performances, every compared method use the optimized value
of A3p discussed in Section VI-A4.

1) Joint Random and Fixed-Pattern Noise Removal: The
PSNR denoising results under static and drifting FP are
reported in Table I and Table II, respectively. Table II only
includes E-RF3D because the other methods only exploit the
PSD of the FPN, and not the actual realization FP, and thus
are unaffected by the drift. In fact, the PSNR of such methods
under static or drifting FP only differ by £0.1dB. Observe
that a drift in the FP complicates the estimation (18), and thus
the results of E-RF3D reported in Table II are not always as
good as those obtained in case of static FP.

Referring to the PSNR results in Table I, RF3D and E-RF3D
consistently outperform the results obtained under the less

'MATLAB code downloadable at http://www.cs.tut.fi/~foi/GCF-BM3D/.
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TABLE I
PSNR (DB) DENOISING PERFORMANCE OF V-BM3D [13], BM4D [15], AND THE PROPOSED RF3D AND E-RF3D APPLIED TO DATA CORRUPTED BY
SYNTHETIC NOISE AS IN (1) HAVING DIFFERENT COMBINATIONS OF GgpN AND GgRNp. THE SAME DATA IS ALSO FILTERED ASSUMING WHITE RANDOM
NOISE (WR), COLORED RANDOM NOISE (CR), OR WHITE RANDOM AND WHITE FIXED-PATTERN NOISE (WRWF). THE FP IS STATIC IN TIME.

Video Foreman Coastguard Miss America Flower Garden
Resolution 352 x 288 176 x 144 360 x 288 352 x 240
Frames 300 300 150 150
SFPN Filter SRND
5 [ 10 [ 15 T 20 [ 5 [ 10 J 15 2 [ 5 [ 10 [ 15 2 [ 5 [ 10 ] 1520
V-BM3D | 33.89 | 33.20 | 32.11 | 30.88 || 32.11 | 31.47 | 30.59 | 29.58 || 37.22 | 36.99 | 36.58 | 35.75 || 32.25 | 30.09 | 28.25 | 26.73
BM4D 33.18 | 32.72 | 31.84 | 30.83 || 32.27 | 31.66 | 30.77 | 29.86 || 35.64 | 36.11 | 36.10 | 35.45 || 31.37 | 29.18 | 27.29 | 25.75
WR 34.41 | 3326 | 31.94 | 30.80 || 32.27 | 31.26 | 30.18 | 29.16 || 35.85 | 37.30 | 37.04 | 36.20 || 27.02 | 25.83 | 24.65 | 23.58
5 CR 3442 | 32.73 | 31.22 | 30.03 || 32.03 | 30.90 | 29.77 | 28.75 || 3791 | 37.65 | 36.92 | 36.08 || 26.55 | 25.27 | 24.09 | 23.04
WRWF 35.32 | 33.71 | 3232 | 31.15 || 33.45 | 31.96 | 30.79 | 29.76 || 37.68 | 37.32 | 36.98 | 36.10 || 31.36 | 29.19 | 27.35 | 25.87
RF3D 36.14 | 34.52 | 33.16 | 32.00 || 34.02 | 32.75 | 31.65 | 30.68 || 38.14 | 37.39 | 37.10 | 36.48 || 32.23 | 30.04 | 28.26 | 26.87
E-RF3D | 38.52 | 3544 | 33.53 | 32.15 || 35.74 | 33.83 | 32.22 | 31.03 || 38.80 | 38.17 | 37.38 | 36.54 || 33.12 | 30.42 | 28.44 | 26.92
V-BM3D | 29.87 | 29.77 | 29.67 | 29.50 || 28.35 | 28.27 | 28.14 | 27.96 || 34.83 | 34.75 | 34.62 | 34.46 || 28.04 | 27.41 | 26.61 | 25.73
BM4D 29.12 | 29.12 | 29.11 | 29.02 || 27.70 | 27.68 | 27.67 | 27.57 || 34.36 | 34.31 | 34.12 | 33.80 || 26.52 | 25.99 | 25.29 | 24.49
WR 29.40 | 29.84 | 30.03 | 29.89 || 28.09 | 28.25 | 28.21 | 27.99 || 29.03 | 30.55 | 32.25 | 33.97 || 25.46 | 24.78 | 23.95 | 23.12
10 CR 30.72 | 30.58 | 30.00 | 29.30 28.77 | 28.68 | 28.32 | 27.83 32.01 | 33.92 | 34.81 | 34.90 25.20 | 24.39 | 23.47 | 22.61
WRWF 31.92 | 31.33 | 30.68 | 30.09 || 29.95 | 29.26 | 28.68 | 28.20 || 34.82 | 34.55 | 34.35 | 3430 || 27.94 | 27.02 | 25.96 | 24.95
RF3D 33.01 | 32.34 | 31.55 | 30.81 || 30.55 | 30.04 | 29.47 | 28.97 || 36.30 | 35.79 | 35.28 | 34.76 || 28.64 | 27.80 | 26.82 | 25.89
E-RF3D | 37.10 | 34.78 | 33.12 | 31.82 || 33.01 | 32.17 | 31.22 | 30.34 || 36.74 | 36.45 | 35.87 | 35.61 || 30.76 | 29.27 | 27.81 | 26.43
V-BM3D | 27.83 | 27.81 | 27.77 | 27.72 || 26.23 | 26.20 | 26.16 | 26.10 || 32.94 | 3291 | 32.84 | 32.75 || 25.01 | 2479 | 24.51 | 24.13
BM4D 26.54 | 26.55 | 26.59 | 26.67 || 25.18 | 25.19 | 25.21 | 25.26 || 32.52 | 32.47 | 32.37 | 3220 || 23.19 | 23.05 | 22.81 | 22.51
WR 25.62 | 26.18 | 26.79 | 27.31 || 24.62 | 25.02 | 2543 | 25.73 || 25.07 | 25.97 | 27.18 | 28.51 || 23.75 | 23.41 | 22.92 | 22.38
15 | CR 27.46 | 27.96 | 28.15 | 28.02 || 25.80 | 26.20 | 26.41 | 2640 || 27.77 | 29.39 | 31.08 | 32.15 || 23.75 | 23.28 | 22.66 | 22.00
WRWF 29.68 | 29.34 | 28.98 | 28.64 || 27.77 | 27.36 | 2697 | 26.64 || 32.44 | 32.28 | 32.16 | 32.06 || 25.40 | 24.95 | 24.36 | 23.73
RF3D 31.06 | 30.64 | 30.13 | 29.59 || 28.58 | 28.27 | 27.89 | 27.51 || 34.32 | 34.02 | 33.71 | 33.35 || 26.05 | 25.69 | 25.20 | 24.65
E-RF3D | 3524 | 33.93 | 32.56 | 31.42 || 30.84 | 30.70 | 30.19 | 29.44 || 34.84 | 34.61 | 34.24 | 33.91 || 29.07 | 27.99 | 26.99 | 25.99
V-BM3D | 26.50 | 26.50 | 26.48 | 26.46 || 24.83 | 24.83 | 24.80 | 24.78 || 31.46 | 31.45 | 31.40 | 31.33 || 22.72 | 22.63 | 22.50 | 22.32
BM4D 2624 | 2623 | 26.18 | 26.12 || 23.34 | 23.35 | 23.40 | 23.42 || 30.93 | 30.91 | 30.84 | 30.73 || 20.76 | 20.72 | 20.64 | 20.53
WR 2273 | 23.16 | 23.81 | 24.47 21.96 | 2231 | 22.79 | 23.27 2237 | 22.92 | 2375 | 2475 22.11 | 2195 | 21.71 | 21.39
20 | CR 24.81 | 2540 | 26.02 | 26.37 || 23.34 | 23.82 | 24.36 | 24.74 || 2491 | 26.00 | 27.49 | 2891 || 22.42 | 22.14 | 21.74 | 21.27
WRWF 28.15 | 27.87 | 27.59 | 27.35 || 26.19 | 2593 | 25.65 | 25.41 || 30.55 | 30.43 | 30.35 | 30.29 || 23.53 | 23.26 | 22.90 | 22.49
RF3D 29.78 | 29.45 | 29.02 | 28.60 || 27.23 | 27.02 | 26.73 | 26.44 || 32.74 | 32.52 | 32.31 | 32.07 || 24.20 | 24.01 | 23.74 | 23.42
E-RF3D | 33.77 | 32.98 | 31.93 | 30.93 || 29.98 | 30.03 | 29.40 | 28.86 || 32.74 | 32.52 | 32.31 | 32.07 || 27.60 | 26.94 | 26.17 | 25.43
TABLE 11

PSNR (DB) DENOISING PERFORMANCE OF E-RF3D APPLIED TO DATA CORRUPTED BY SYNTHETIC NOISE AS IN (1) HAVING DIFFERENT COMBINATIONS
OF GgpN AND ¢rND. THE FP PRESENTS A DRIFT IN TIME. IN THIS CONDITION V-BM3D, BM4D WR, CR, WRWF, AND RF3D OBTAIN RESULTS
COMPARABLE (£0.1DB) TO THE ONES REPORTED IN TABLE I, AND THUS ARE NOT SHOWN.

Video Foreman Coastguard Miss America Flower Garden
Resolution 352 x 288 176 x 144 360 x 288 352 x 240
Frames 300 300 150 150
. SRND
Filter
RN 5 [ 10 [ 15 [ 20 | 5 [ 10 [ 15 [ 2 [[ 5 [ 10 ] 15 ] 20 [ 5 [ 10 [ 15 | 20
5 | E-RF3D | 37.87 | 35.10 | 33.32 | 32.00 || 3530 | 33.43 | 31.95 | 30.80 || 38.02 | 37.89 | 37.28 | 36.52 || 32.88 | 30.30 | 2835 | 26.90
10 | E-RF3D | 3561 | 3407 | 32.61 | 3143 || 3197 [ 31.40 | 3053 | 29.69 || 36.37 | 36.11 | 35.77 | 35.34 || 3046 | 28.95 | 27.58 | 2632
15 | ERF3D | 3328 | 32.76 | 31.75 | 30.76 || 29.70 | 29.67 | 29.18 | 28.59 || 34.36 | 34.29 | 3420 | 33.79 || 2857 | 27.58 | 26.64 | 25.71
20 | E-RF3D | 3131 | 31.26 | 3074 | 30.04 | 2829 | 2833 | 28.10 | 27.65 || 32.73 | 32.55 | 3233 | 32.09 | 2687 | 2647 | 2575 | 24.97

accurate WR, CR, and WRWF assumptions with a substantial
PSNR improvement in almost every experiment. Similarly, the
state-of-the-art V-BM3D and BM4D filters (which we remark
are designed for AWGN) are outperformed by the RF3D
and E-RF3D methods. This demonstrates the importance of
correctly modeling and appropriately filtering the two different
components of the noise. It is interesting to notice that when-
ever cppy is large enough (> 10), the PSNR of WR and CR
increase as Grnp increases. This apparent counterintuitive be-

havior is explained by the fact that neither WR nor CR model
the FPN component, which may accumulate in the temporal
DC plane of the 3-D volume spectrum. Such accumulation is
particularly significant when motion is absent, as shown by
(13), and corresponds to DC-plane coefficients having much
larger noise variance than the rest of the spectrum. WR and
CR make no distinction between DC-plane coefficients and
AC coefficients, thus an increase of the RND noise component
results in a higher filtering strength, which partly compensates
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Fig. 10. Frame-by-Frame PSNR (dB) output of the videos Foreman and Miss America corrupted by synthetic noise having cnp = sppn = 15 with either
static FP (top row) or drifting FP (bottom row). We show the results of V-BM3D (+), BM4D (¢), WR (O), CR (o), WRWF (x), RF3D (v), and E-RF3D

(2).

their model deficiency. The sequence Flower Garden is an
exception: being a fast moving scene there is no accumulation
of FPN and thus the PSNR naturally decreases with the
increase of ¢gnp. An additional remark about Table I regards
the results of RF3D and E-RF3D for Miss America under
high levels of ¢rpn: since the sequence presents little motion,
E-RF3D is challenged to get a reliable estimate of the FP
under strong FPN, and thus it is not able to provide the same
performance gain as that of the other cases. As a matter of
fact RF3D and E-RF3D provide the same PSNR results at
crpn = 20.

Fig. 10 shows the frame-by-frame PSNR of Foreman and
Miss America corrupted by random and fixed-pattern noise
having ¢rnp = sppn = 15. Miss America and the first half of
Foreman have low motion activity, whereas the second half
of Foreman exhibits a high motion activity because of a fast
transition in the scene. In good accord with the numerical
results of Table I and Table II, E-RF3D (A) always outperform
the results obtained under WR (0O0), CR (o), and WRWF (x)
assumptions, as well as those of V-BM3D (4) and BM4D
(0). RF3D (v) is in few cases marginally inferior to V-BM3D
(+). The advantage of the enhanced fixed-pattern suppression
is clearly visible in all experiments, with the immediate and
substantial PSNR improvement after the first estimate of the
FP is subtracted (around the 10th frame in Foreman and
between the 50th and the 75th frame in Miss America).

In Fig. 11, we show a denoised frame from Foreman and
Miss America corrupted by synthetic noise having rnp =
srpn = 15, as well as the FP estimate obtained by E-RF3D.
The noise-free data is shown in Fig. 7. Under the WR and
CR assumptions the filter is unable to properly remove the
FPN component, whose residual artifacts can be easily spotted
within the denoised frames. In the WRWF results, we notice
a good suppression of the random noise, but the structures
of the FPN are still clearly visible. Conversely, RF3D and E-

RF3D generate more visually pleasant images, as the artifacts
of the FPN are dramatically reduced and many high-frequency
features, such as the hair and facial features of Foreman or the
wrinkles in the clothes of Miss America, are nicely preserved.
The results obtained by the V-BM3D and BM4D algorithms
are separately presented in Fig. 12: as one can clearly see, the
visual quality is significantly inferior those of RF3D and E-
RF3D because of the remaining artifacts due to the FPN and
the excessive loss of details.

2) Separate Random and Fixed-Pattern Noise Removal:
The proposed filter is designed to jointly remove the random
and fixed-pattern noise components, but for this set of exper-
iments we modify it such that the two noise components are
suppressed one at a time in two cascading passes. In other
words the modified filter is applied twice on the observed
data, first suppressing the random noise and then the FPN,
or viceversa. From Fig. 13 it can be seen that whenever the
FPN is suppressed before the random noise, the visual quality
of the denoised videos is comparable or even slightly better
to that obtained by the joint denoising strategy (at the obvious
expense of a doubled computational load). The improvement
is due to the assumption of zero random noise made in the
first pass: if gnp = O the number M of frames required for
the FP estimation is small and thus the FP estimate can be
obtained faster. Conversely, the reversed schema, implemented
by suppressing the FPN after the random noise, is not as
effective. In fact, as can be seen from the cheek of Foreman in
Fig. 13, the corresponding denoising results exhibit significant
FP artifacts.

3) Additive White Gaussian Noise Removal: In the final set
of experiments using synthetic noise, we evaluate the proposed
method against sequences corrupted solely by i.i.d. additive
(white) Gaussian random noise with standard deviation oawgn,
which is assumed to be known. The proposed RF3D operates
according to the WR assumption with gnp = oawgn. The
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Foreman Miss America

Fig. 11. From top to bottom: denoising results of WR, CR, WRWE, RF3D, E-RF3D, and the FP estimate obtained from E-RF3D for Foreman and Miss
America corrupted by synthetic noise having ¢rnp = sppy = 15.
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Miss America

Fig. 12. From top to bottom: denoising results of V-BM3D (Foreman 27.77 dB, Miss America 32.84 dB) and BM4D (Foreman 26.59 dB, Miss America
32.37 dB). The synthetic correlated noise is characterized by srnp = sppn = 15.

L~

Foreman

Miss America

Fig. 13. Denoising results for Foreman and Miss America corrupted by synthetic correlated noise having sgnp = sppn = 15 using E-RF3D to separately
remove the two noise components. Top: first suppression of random noise and then FPN (Foreman 31.23dB, Miss America 33.37dB); bottom first suppression
of the FPN and then random noise (Foreman 32.02dB, Miss America 34.29dB). For comparison, as can be seen in Table I, E-RF3D with joint-noise suppression

provides 32.56dB for Foreman and 34.24dB for Miss America.

TABLE III
PSNR (DB) DENOISING PERFORMANCE OF V-BM3D, BM4D, AND RF3D
FOR DATA CORRUPTED BY I.I.D. GAUSSIAN NOISE WITH STANDARD
DEVIATION OAWGN -

Video Foreman Coastg. Miss Am Fl. Gard
oawGN | Res. 352 x 288 | 176 x 144 | 360 x 288 | 352 x 240
Frames 300 300 150 150
V-BM3D 39.84 38.33 41.50 36.53
5 BM4D 39.77 38.87 42.02 36.09
RF3D 40.27 39.43 41.98 36.58
V-BM3D 36.55 34.82 39.64 32.15
10 BM4D 36.38 35.31 40.28 31.39
RF3D 36.88 35.77 40.19 32.06
V-BM3D 33.40 31.76 37.95 28.30
20 BM4D 33.27 32.13 38.33 27.27
RF3D 33.72 32.36 38.40 28.00
V-BM3D 29.99 28.28 35.46 24.34
40 BM4D 30.39 29.08 36.03 23.40
RF3D 30.61 29.09 36.23 24.21

rationale of these experiments is to compare RF3D against

V-BM3D and BM4D on data where the latter two methods
operate in ideal conditions; the results for different values
of oawgn are reported in Table III. From the table we can
notice that the best-performing method is not the same for
all experiments: while RF3D yields the best results in most
of the cases, it also sometimes falls behind. The gap between
the highest and lower PSNR values is at most 1.1dB, and
typically much smaller; overall, these three methods perform
comparably. Thus, the significant advantage (often several dB)
of RF3D and especially E-RF3D in the case of correlated and
fixed-pattern noise reported in Table I is a result of a correct
modeling of the observed data, and not of an intrinsically more
powerful algorithm.

C. LWIR Thermography Data

In this section we demonstrate the appropriateness of the
proposed method through the denoising of two real LWIR
thermography sequences acquired using a FLIR Tau 320
camera: the first sequence, Matteo, is characterized by high
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Laptop

Fig. 14. From top to bottom: denoising results of WR, CR, WRWE, RF3D, E-RF3D, and the FP estimate obtained from E-RF3D for LWIR thermography
sequences Matteo and Laptop acquired by a FLIR Tau 320 camera.
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Matteo

Laptop

Fig. 15. Temporal cross-section of the noisy (top row) and E-RF3D denoised (bottom row) Matteo and Laptop sequences acquired by a FLIR Tau 320 camera.
Both sequences consists of 300 frames. The artifacts of the FPN and the random noise are evident from the roughly constant streaks in time (horizontal

direction) and space (vertical direction), respectively.

motion activity, whereas the second, Laptop, contains a more
static scene’. The noise in the acquired data is characterized by
GrND A~ 2.3 and ¢gpy &~ 1.5 over a [6010, 6100] range, which
corresponds to srap 2 6.5 and ¢gpy & 4.3 for a [0, 255] range.

Objective assessments cannot be made because the ground-
truth is not available, however, referring to Fig. 14, we can
observe that under the WR, CR and WRWF assumptions
the filter is not able to remove the noise, and that the best
visual quality is obtained by the proposed RF3D and its
enhancement E-RF3D. In particular, E-RF3D provides the best
FPN suppression, which is evident from smooth areas such as
the background of Matteo, and the best detail preservation, as
can be seen from the folds in the tee-shirt of Matteo or the
grid and letters in Laptop.

In the last row of Fig. 14 we show the FP estimate
obtained from E-RF3D. As can be noticed, in the case of
the static sequence Laptop part of the signal leaks into the
residuals and is accumulated into the FP estimate. This is
explained by the difficulty of unambiguously distinguishing
the static information of the signal from the pattern of the
FPN without the aid of motion (as described in Section
V-A). In such cases the estimate of the FP (18) is likely
to be less accurate, and thus isolating the noise component
may be challenging. However, in spite of this mild leakage,
the quality of the E-RF3D estimate is clearly superior to
that of the compared methods (including RF3D), with better
preservation of details and suppression of noise. In Fig. 15,
we illustrate the effects of the random and fixed-pattern noise
from the temporal cross-section of Matteo and Laptop (i.e.
the horizontal dimension represents time, and the vertical
dimension represents a particular cross-section of each frame).
The effects of the noise structure of the FPN and RND can be
respectively noticed from the horizontal and vertical streaks
in the noisy data, whereas in the denoised counterparts these
artifacts are effectively removed while preserving the fine
(temporal) details, such as the three “claws” in the second
half of Matteo and the “waves” in Laptop.

2This paper has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. This includes the raw and filtered
LWIR sequences of Matteo and Laptop as uncompressed AVI format movie
clips. The material as GZIP Tar Archive file is 143 MB in size.

TABLE IV
MINIMUM (LEFT VALUE IN EACH CELL) AND MAXIMUM (RIGHT VALUE IN
EACH CELL) VALUES OF THE ORACLE 0 ;y,n PARAMETERS OF BM4D
AND V-BM3D FOR EACH COMBINATION OF NOISE SCALING FACTORS
SFPN AND GRND-

SRND
srpn | Filter 5 10 15 20
min max | min max | min max | min max
5 V-BM3D | 10 26 14 27 19 30 25 38
BM4D 10 28 14 29 19 33 25 41
10 V-BM3D | 16 57 19 60 23 60 27 59
BM4D 17 189 19 160 23 152 27 150
15 V-BM3D | 24 93 26 92 30 91 32 90
BM4D 25 274 27 272 30 268 32 264
20 V-BM3D | 34 124 35 123 39 120 40 120
BM4D 35 385 37 380 39 371 40 352

VII. CONCLUSION

The contribution of this work is twofold. First, we developed
an observation model for data corrupted by a combination of
two spatially correlated components, i.e. random and fixed-
pattern noise, each having its own non-flat PSD. This obser-
vation model can characterize several imaging sensors, and
is particularly successful in describing the output of LWIR
imagers. Second, we embed such observation model within
a filtering framework based on 3-D spatiotemporal volumes
built by stacking a sequence of blocks along the motion
trajectories of the video. The volumes are then sparsified
by a decorrelating 3-D transform, and then filtered in 3-D
transform domain through a shrinkage operator based on both
the PSDs of the noise components and on the relative spatial
position of the blocks in the volume. Extensive experimental
analysis demonstrates the subjective and objective (PSNR)
effectiveness of the proposed framework for the denoising
of synthetically corrupted videos, as well as the high visual
quality achieved by the filtering of real LWIR thermography
sequences. We further showed the capabilities of online FP
estimation and subtraction to improve the denoising results.

APPENDIX

The denoising results of V-BM3D and BM4D in Table I are
obtained with a default implementation of those algorithms
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[13], [15] and an “oracle” value o wqy Of the assumed noise
standard deviation. In particular, for each video and for each
separate combination of ¢rnp and cgpy under either static or
drifting FPN, we have optimized o yygy such that it yields the
maximum PSNR value in each individual experiment. Due to
length limitation and for the sake of illustration simplicity,
in Table IV we report only the minimum and maximum of
such optimum ojygy Values for all combination of noise
scaling factors. As can be clearly seen, the difference between
the maximum and minimum values notably increases with
srpNs thus indicating the impossibility of compensating the
mismatch in the observation model by a simple tuning of the
filter’s parameters. Also, note how the maximum values tend
to be very large in order to compensate the accumulated FPN
in the volume spectra as quantified in (13).
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