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Abstract—This paper presents the evaluation results of the
methods submitted to Challenge US: Biometric Measurements
from Fetal Ultrasound Images, a segmentation challenge held
at the IEEE International Symposium on Biomedical Imaging
2012. The challenge was set to compare and evaluate current
fetal ultrasound image segmentation methods. It consisted of
automatically segmenting fetal anatomical structures to mea-
sure standard obstetric biometric parameters, from 2D fetal
ultrasound images taken on fetuses at different gestational ages
(21 weeks, 28 weeks, and 33 weeks) and with varying image
quality to reflect data encountered in real clinical environments.
Four independent sub-challenges were proposed, according to the
objects of interest measured in clinical practice: abdomen, head,
femur, and whole fetus. Five teams participated in the head sub-
challenge and two teams in the femur sub-challenge, including
one team who tackled both. Nobody attempted the abdomen and
whole fetus sub-challenges. The challenge goals were two-fold and
the participants were asked to submit the segmentation results
as well as the measurements derived from the segmented objects.
Extensive quantitative (region-based, distance-based, and Bland-

S. Rueda is with the Institute of Biomedical Engineering, Department of
Engineering Science, University of Oxford, Oxford, United Kingdom.
∗ Corresponding author. E-mail: sylvia.rueda@eng.ox.ac.uk
S. Fathima, M. Yaqub, B. Rahmatullah, R. V. Stebbing, J. E. McManigle,

and J. A. Noble are with the Institute of Biomedical Engineering, Department
of Engineering Science, University of Oxford, Oxford, U.K.
C. L. Knight and A. T. Papageorghiou are with the Nuffield Department of

Obstetrics & Gynaecology, University of Oxford, Oxford, U.K.
A. Foi, M. Maggioni, A. Pepe, and J. Tohka are with the Department of

Signal Processing, Tampere University of Technology, P.O. Box 553 33101,
Finland.
A. Ciurte is with the Department of Computer Science, Technical University

of Cluj-Napoca, Romania.
M. Bach Cuadra is with the Department of Radiology, Centre Hospitalier

Universitaire Vaudois and University of Lausanne, Center for Biomedical
Imaging (CIBM), , and the Signal Processing Laboratory 5 (LTS5), Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
X. Bresson is with the Computer Science Department, City University of

Hong Kong, Hong Kong.
C. Sun is with the CSIRO Computational Informatics, Locked Bag 17,

North Ryde, NSW 1670, Australia.
G. V. Ponomarev, M. S. Gelfand, and M. D. Kazanov are with the Research

and Training Center on Bioinformatics, Institute for Information Transmission
Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia.
C-W. Wang, H-C. Chen, C-W. Peng, C-M. Hung, are with the Graduate

Institute of Biomedical Engineering, National Taiwan University of Science
and Technology, Taipei, Taiwan.
Copyright (c) 2013 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
Manuscript received November 30, 2012; revised July 24, 2013.

Altman measurements) and qualitative evaluation was performed
to compare the results from a representative selection of current
methods submitted to the challenge. Several experts (3 for the
head sub-challenge and 2 for the femur sub-challenge), with
different degrees of expertise, manually delineated the objects
of interest to define the ground truth used within the evaluation
framework. For the head sub-challenge, several groups produced
results that could be potentially used in clinical settings, with
comparable performance to manual delineations. The femur sub-
challenge had inferior performance to the head sub-challenge due
to the fact that it is a harder segmentation problem and that the
techniques presented relied more on the femur’s appearance.

Index Terms—Fetal biometry, segmentation, ultrasound, chal-
lenge, evaluation, image quality.

I. INTRODUCTION

ULTRASOUND (US) imaging is the modality of choice
in many clinical applications due to its non-invasive

nature, reduced cost, and real-time acquisition, compared to
other imaging modalities, such as Computed Tomography
(CT) or Magnetic Resonance Imaging (MRI). However, US
images are patient-specific, operator-dependent, and machine
specific, which makes image appearance tightly linked to pa-
tient characteristics, the expertise of the clinician acquiring the
images, and the machine used. Besides, due to the properties of
image formation intrinsic to US images, they can be affected
by signal dropouts, artefacts, missing boundaries, attenuation,
shadows, and speckle, making US one of the most challenging
modalities to work with. Depending on the orientation of the
transducer, the image obtained might not have the expected
anatomical significance and can be distorted or incomplete.
Protocols are defined to acquire the best possible images while
retaining the characteristics of the object of interest (e.g. shape
and anatomy).
2D fetal US biometrics have been extensively used to

establish (or confirm) the gestational age of the fetus, esti-
mate its size and weight, and identify growth patterns and
abnormalities [1]. Typically, fetal size is estimated by using
2D US measurements of head, abdomen, and femur, at around
20 weeks gestational age [2]. These measurements, and any
at later gestations, are then compared with population-based
growth charts to identify normal or abnormal growth. In an
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attempt to reduce intra- and inter-observer variability, and
create more accurate and reproducible measurements [3][4],
automatic methods for fetal biometric measurements have been
investigated recently. Furthermore, automated fetal biometry
has been shown to improve the work flow efficiency by reduc-
ing the examination time and the number of steps necessary
for standard fetal measurements [5]. This would also benefit
less experienced users.
It is worth noting that automated analysis of US images

is hard, and methods developed for MRI and CT do not
necessarily work on US images. Furthermore, general methods
for US image segmentation do not exist, and the segmentation
strategies are application dependent [6]. The automatic seg-
mentation methods previously developed in the fetal imaging
field focused on using segmentation as an intermediate pro-
cessing step for estimating standard biometric measurements.
Most of the methods attempted to segment the fetal femur
[7][8][9][10], the fetal head [11][12][13][14][15][16], or both
[17][18][19]. The methods were based on morphological op-
erators, active contour models, Hough transform, deformable
models, or machine learning approaches. Low level features
and textures were frequently used to find the femur and the
skull, because these have a brighter response (Figs. 1(a)-
1(b)). However, the task of segmenting the abdomen is more
challenging and only few works have attempted it up-to-date
[14][20][21]. General methods retrieving all standard fetal
biometric measurements used in antenatal clinical practice
are limited [22][23][4][24]. Carneiro et al. [22] used a dis-
criminative constrained probabilistic boosting tree classifier
to segment structures of interest and to reproduce standard
biometric measurements for all three objects of interest (head,
abdomen, and femur) in fetal US images. They developed and
patented a commercial system, called Auto OB [4], which is
integrated into Siemens software and that can detect, apart
from head, abdomen, and femur biometric measurements, the
humerus length (HL) and the crown-rump length (CRL). This
is the only system for fetal biometry that has been translated
into clinical practice.
Among the different objects of interest, the simplest seg-

mentation and detection appears to be the head (Fig. 1(a)),
because it presents clear boundaries and texture similarities
among individuals. The fetal femur (Fig. 1(b)) can lack inter-
nal texture, which can make its accurate delineation difficult,
but most of the time strong edges are present in most of their
contour except in the extremities. The abdomen (Fig. 1(c))
and the whole fetus (Fig. 1(d)) segmentations are the hardest
because they lack clear boundaries and have inconsistencies
in the internal structures among individuals. Furthermore, the
healthy fetal body changes its shape across gestation, as a
result of growth, and the different organs that surround the
object of interest create high pose and shape variability for
the same structure.
This paper presents the evaluation and comparison of the

representative selection of current methods presented during
Challenge US: Biometric Measurements from Fetal Ultrasound
Images1, a segmentation challenge held in conjunction and

1http://www.ibme.ox.ac.uk/challengeus2012

(a) Fetal head (28 weeks) (b) Fetal femur (28 weeks)

(c) Fetal abdomen (28 weeks) (d) Whole fetus (13 weeks)

Fig. 1. Ultrasound images of (a) the fetal head, (b) the fetal femur, (c) the
fetal abdomen, and (d) the whole fetus.

with the support of the IEEE International Symposium on
Biomedical Imaging (ISBI) 2012. The challenge consisted of
four independent sub-challenges according to the objects of
interest measured in clinical practice on 2D fetal ultrasound
images: abdomen, head, femur, and whole fetus (Fig. 1). The
images were selected at three different gestational ages (21
weeks, 28 weeks, and 33 weeks) and with varying image
quality to represent real clinical environments. The gestational
ages were selected from 20 weeks onwards, as this is represen-
tative of a real clinical setting for this particular application.
Several experts, with different degrees of expertise, manually
delineated the objects of interest to define the ground truth,
which was used within the segmentation framework. Exten-
sive quantitative and qualitative evaluation was performed to
assess the performance of the methods with respect to manual
delineations.
Apart from the segmentation results, participants were asked

to estimate biometric measurements derived from the seg-
mented objects, which are the values used clinically for fetal
growth assessment. The evaluation of the segmentation results
and derived measurements were performed separately, since
a segmentation result can be poor and still lead to good
measurements. One key aspect missing in most US strategies is
the ability to incorporate image quality within the comparison,
to understand which methods are more susceptible to changes
in appearance. We have deliberately included analysis on
data of different degrees of difficulty to better understand
degradation of methods with quality.
Five teams participated in the head sub-challenge and two

teams in the femur sub-challenge, including one team who
tackled both. Nobody attempted the abdomen and the whole
fetus sub-challenges. This is to our knowledge the first seg-
mentation challenge undertaken in the fetal US imaging field,
and thus provides both a reference publication from which to
gauge how well a representative selection of current methods
work today and may encourage others to work in this area.
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In Section 2, we introduce the challenge aims, the de-
scription of image data sets used within the challenge, and
the description of the fetal biometric measurements for the
structures of interest. Section 3 presents the evaluation met-
rics used to compare the segmentation results and derived
measurements. Section 4 introduces the ground truth and its
reproducibility study. Section 5 summarises the methodologies
presented to the challenge. Quantitative and qualitative results
are described in Section 6. A discussion and conclusions are
given in Sections 7 and 8, respectively.

II. CHALLENGE US: BIOMETRIC MEASUREMENTS FROM
FETAL ULTRASOUND IMAGES

A. Organisation
The challenge was set up to automatically segment anatom-

ical structures to measure standard obstetric biometric pa-
rameters, from 2D fetal ultrasound images, taken on fetuses
at different gestational ages (21 weeks, 28 weeks, and 33
weeks). The segmentation challenge was formed by 4 sub-
challenges, named fetal head, fetal abdomen, fetal femur, and
whole fetus. The participation was open to those wanting
to attempt one or several of these sub-challenges, presenting
different degrees of difficulty. General solutions applicable to
all 4 sub-challenges had more value if the performance was
good. Only methods based on automatic or semi-automatic
segmentation techniques were considered. The challenge was
open to teams from academia and industry. Published methods
were allowed to be submitted. The results from each team
were automatically compared to the ground truth, obtained
from expert manual segmentations and measurements. The
challenge goals were two-fold, since segmented objects and
derived clinical measurements were both considered to assess
the quality of the methods. Two months were given to develop
the methods and submit the results.

B. Description of Image Data Sets
All the images from this study were acquired by trained

clinicians using the same mid-range ultrasound machine
Philips HD9 and following the protocols defined by the
INTERGROWTH-21st study [25]. Most of the images were
acquired with a 7-3 MHz transducer. In case of later gestations
or mothers having a high body mass index, the 5-2 MHz
transducer was preferred. The images were in DICOM format,
anonymised, and automatically cropped (to remove the header)
to a size of 756 × 546 pixels before distribution. Spatial
resolution (in mm) varied among the images.
Fetal head, abdomen, and femur sub-challenges had a total

of 90 images each in anonymised DICOM format and the
whole fetus sub-challenge a total of 14 images, as these
were not routinely acquired on site. Three different gestational
ages were considered at 21, 28, and 33 weeks with a total
of 30 images per gestational age for each of the structures
considered. The gestational ages to include in this challenge
have been carefully selected after clinical advice, providing
a good representation of the challenges encountered across
gestation. Furthermore, for each gestational age, three groups
of different qualities were obtained. These were graded as low,

medium, and high quality and were selected as objectively
as possible to create real image data sets as used in clinical
practice. The reader is referred to Appendix A for details on
the image scoring criteria used within this framework.

C. Participation in the Challenge
A total of 6 teams submitted results to the challenge. Five

teams participated in the fetal head sub-challenge:
Foi et al. [26], Head contour extraction from the fetal
ultrasound images by difference of Gaussians revolved
along elliptical paths. (Finland)
Ciurte et al. [27], A semi-supervised patch-based ap-
proach for segmentation of fetal ultrasound imaging.
(Switzerland)
Stebbing and McManigle [28], A boundary fragment
model for head segmentation in fetal ultrasound. (U.K.)
Sun [29], Automatic fetal head measurements from ultra-
sound images using circular shortest paths. (Australia)
Ponomarev et al. [30], A multilevel thresholding com-
bined with edge detection and shape-based recognition
for segmentation of fetal ultrasound images. (Russia)

Two teams participated in the femur sub-challenge:
Ponomarev et al. [30], A multilevel thresholding com-
bined with edge detection and shape-based recognition
for segmentation of fetal ultrasound images. (Russia)
Wang et al. [31], Automatic femur segmentation and
length measurement from fetal ultrasound images. (Tai-
wan)

Only the method by Ponomarev et al. [30] attempted to
solve both sub-challenges simultaneously. No attempts were
made on abdomen and whole fetus segmentations. This could
be due to the fact that these two sub-challenges were harder
because the images tend to have fuzzy boundaries and present
inconsistencies in the internal structures among individuals.
Another possible explanation would be the limited amount of
time the teams had to develop a new method. In the rest of
the paper, we will only focus on the head and femur sub-
challenges.

D. Standard Fetal Biometry

(a) (b)

Fig. 2. (a) Fetal Head Biometric Measurements: Head Circumference (HC),
Biparietal Diameter (BPD), and Occipito-Frontal Diameter (OFD). (b) Fetal
Femur Biometric Measurement: Femur Length (FL).

Three standard fetal biometric measurements of the head
were considered: Biparietal Diameter (BPD), Occipito-Frontal
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Diameter (OFD), and Head Circumference (HC), as shown
in Fig. 2(a). Several ways of measuring BPD and OFD exist
(e.g. outer-to-outer, inner-to-outer). In this paper, BPD and
OFD are defined as in the INTERGROWTH-21st study [25].
These measures are shown in Fig. 2(a). The HC parameter is
derived from BPD and OFD parameters as HC = π(BPD +
OFD)/2. Another standard measure for fetal biometry consists
of measuring the femur length (FL). The FL is measured from
the outer edges of the bone, without taking into account the
trochanter of the femur as shown in Fig. 2(b).

E. Submission of Results
The results submitted depended on the sub-challenge at-

tempted, as summarised in Table I. For the fetal head, due to

TABLE I
RESULTS REQUIRED FOR EACH SUB-CHALLENGE.

Sub-Challenge Segmented
Object

Ellipses from
Measurements

Biometric
Measurements

Head
√

BPD, OFD, HC
Femur

√
FL

the huge difficulty in manually delineating the actual objects
in a variety of ultrasound images, the binary image resulting
from the ellipse fitted object was used as the result. The value
for the binary image pixels on the contour and inside of the
ellipses needed to be equal to 1 (foreground) and the rest equal
to 0 (background).
For the fetal femur, the whole segmented structure needed

to be obtained as part of the segmentation challenge. Recent
clinical evidence [32] [33] has shown that other femoral
characteristics, apart from the femur length, are important
to assess fetal bone growth and development. Automatic and
accurate tools for whole femur bone segmentation, although
limited, have shown great potential [34] [35] and are able
to perform more complex measurements for a better fetal
bone development assessment. This is the clinical motivation
for incorporating whole femur bone segmentation into this
challenge.
From the segmented objects, the biometric measurements

could be derived and needed to be presented as part of the
results, with the binary images. The measurements needed to
be reported in mm, using the DICOM information providing
the resolution of each image.

III. EVALUATION METRICS

The evaluation metrics chosen attempt to assess the quality
of the segmentation as well as the measurements. Three
different criteria were considered. First, region-based metrics
were selected to assess the precision, specificity, sensitivity,
and Dice similarity. Then, distance-based metrics were used
to quantify the local variability existing between the proposed
methods and manual delineations. Finally, Bland-Altman plots
were used to compare against clinical measurements, to show
the agreement between the proposed methods and the experts.
These metrics are defined in the following.

A. Region-Based Metrics

Region-based evaluation metrics, as defined in [36], were
selected as a way of assessing precision and accuracy of differ-
ent segmentation methods. Due to the difficulty of establishing
true segmentations, segmentation results were compared to
manual delineations of the structures, performed by several
operators twice on each image. The results per image were
averaged to obtain the overall performance for a particular
expert and for all experts. In the following, let OM

SR denote
the segmentation results for a method M and OGT the ground
truth delineated by the experts. All region-based metrics are
given as percentages.
1) Precision: The precision P assesses the reproducibility

of each segmentation method. P characterises the common
amount of tissue in both OM

SR and OGT as a fraction of the
total amount of tissue in the union of OM

SR and OGT as

P =
|OM

SR ∩OGT|
|OM

SR ∪OGT|
. (1)

2) Accuracy: True positive (TP) and true negative (TN)
measures are calculated to assess the accuracy of each method
[36]. TP is the fraction of the total amount of tissue in the true
delineation that was covered by the method and represents the
delineation sensitivity. It is defined as

TP =
|OM

SR ∩OGT|
|OGT|

. (2)

TN is the fraction of the total amount of tissue in the reference
region U that does not belong to the object and was excluded
from the method. It represents the delineation specificity and
is defined as

TN =
|(OM

SR ∪OGT)c|
|(OGT)c|

, (3)

where (·)c denotes the absolute complement of a set for a fixed
reference region U . The greater the TN values, the better the
delineation accuracy of a method.
3) Dice Similarity: Dice similarity D gives an indication

of the mutual overlap between OM
SR and OGT. D is defined as

D =
2|OGT ∩OM

SR|
|OGT|+ |OM

SR|
. (4)

B. Distance-Based Metrics

Along with area overlap measures defined previously,
distance-based metrics, as described in [37], are incorporated
into the evaluation to provide different ways of assessing the
errors of the different segmentation methods. These measures
are given in mm.
1) Maximum Symmetric Contour Distance: Let C(OGT)

and C(OM
SR) be the contours of OGT and OM

SR, respectively.
cOGT denotes a contour element of C(OGT) and cOM

SR
a contour

element of C(OM
SR). The shortest distance of a pixel p to

C(OGT) is defined as

dE(p, C(OGT)) = min
cOGT∈C(OGT)

‖p− cOGT‖, (5)
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where ‖.‖ denotes the Euclidean distance. The Maximum
Symmetric Contour Distance (MSD), also known as Hausdorff
distance [38], can then be expressed as

MSD(OGT, O
M
SR) = max

(
max

cOGT∈C(OGT)
dE(cOGT , C(OM

SR)),

max
cOM

SR
∈C(OM

SR)
dE(cOM

SR
, C(OGT))

)
. (6)

This measure is sensitive to outliers and returns the maximum
error, which represents the worst case scenario.

2) Average Symmetric Contour Distance: The Average
Symmetric Contour Distance (ASD) corresponds to the av-
erage of all distances between OGT and OM

SR defined as

ASD(OGT, O
M
SR) =

1

|C(OGT)| + |C(OM
SR)|

( ∑

cOGT∈C(OGT)

dE(cOGT , C(O
M
SR))

+
∑

c
OM
SR

∈C(OM
SR)

dE(cOM
SR

, C(OGT))

)
, (7)

where | · | denotes the length of the contour. A perfect
segmentation would return a value of 0mm.

3) Root Mean Square Symmetric Contour Distance: The
Root Mean Square Symmetric Contour Distance (RMSD) is
defined as

RMSD(OGT, O
M
SR) =

√
1

|C(OGT)| + |C(OM
SR)|

×

√√√√
∑

cOGT∈C(OGT)

d2
E(cOGT , C(O

M
SR)) +

∑

c
OM
SR

∈C(OM
SR)

d2
E(cOM

SR
, C(OGT)). (8)

The RMSD is similar to the ASD but large distance differences
between contours will return a greater value, penalising large
deviations from the ground truth.

C. Bland-Altman Plots
Bland-Altman plots [39][40] assess the agreement between

two sets of measurements. In this study, Bland-Altman plots
are used to compare the measurements derived from the
segmentation results to the clinical measurements performed
by the different experts. This technique can also be used to
obtain the inter- and intra-observer variability measurements.

D. Efficiency
Average segmentation times, software, and hardware used

by each method are reported in the paper but none of the
methods had been implemented for efficiency so such times
are not a guide to practical deployment.

E. Failures
The failures of a method are reported individually on

each image when no overlap exists between the segmentation
result and the ground truth delineated by the experts. Failures
are excluded from the segmentation evaluation and reported
separately.

IV. GROUND TRUTH AND ITS REPRODUCIBILITY
A. Fetal Head Sub-Challenge
A total of three experts, with different degrees of expertise,

participated in defining the fetal head sub-challenge ground
truth, by fitting an ellipse to the object of interest twice on
each image, as well as performing the corresponding standard
clinical measurements (HC, BPD, OFD). The experts for the
head sub-challenge had the following level of expertise:

• Expert 1: Clinician (fetal medicine specialist) with 10
year postgraduate experience in fetal US scans.

• Expert 2: Clinician (obstetrician) with 2 years experience
in fetal US scans.

• Expert 3: Engineer with 1 year of experience.
The intra- and inter-observer variability was calculated inde-

pendently for each expert using the metrics defined in Section
III. The average intra-expert variability results (resulting from
comparing manual delineations) over all images are presented
in Table II. The intra-expert variability is similar for all three

TABLE II
INTRA-OBSERVER VARIABILITY OF MANUAL DELINEATIONS: FETAL

HEAD

Metric Expert 1 Expert 2 Expert 3
Precision (%) 96.54± 1.38 96.64± 1.46 96.11 ± 1.79
Sensitivity (%) 97.81± 1.38 97.93± 1.58 98.90 ± 1.46
Specificity (%) 99.24± 0.82 99.26± 0.69 98.37 ± 1.25
Dice (%) 98.24± 0.71 98.28± 0.76 98.01 ± 0.94

MSD (mm) 1.72± 0.81 1.74± 1.09 1.85± 1.10
ASD (mm) 0.69± 0.32 0.68± 0.35 0.79± 0.44
RMSD (mm) 0.85± 0.39 0.83± 0.47 0.95± 0.54

experts. Although there were minor differences reflecting the
levels of experience, these were not statistically significant.
Expert 3, who was the less experienced, obtained slightly
inferior results than the other two experts, but still very close.
The average inter-expert variability results over all images

are presented in Table III comparing the manual delineations
from different experts two by two. The results are very similar
between all combinations of experts.

TABLE III
INTER-OBSERVER VARIABILITY OF MANUAL DELINEATIONS: FETAL

HEAD
(E1: Expert 1 – E2: Expert 2 – E3: Expert3)

Metric E1 vs E2 E2 vs E3 E1 vs E3
Precision (%) 95.84± 1.39 95.45± 1.46 95.78 ± 1.48
Sensitivity (%) 97.46± 1.30 98.34± 1.31 98.08 ± 1.17
Specificity (%) 99.00± 1.01 98.28± 0.99 98.59 ± 1.11
Dice (%) 97.87± 0.73 97.66± 0.77 97.83 ± 0.78

MSD (mm) 2.11± 1.12 2.24± 1.19 2.09± 0.99
ASD (mm) 0.86± 0.39 0.93± 0.42 0.86± 0.40
RMSD (mm) 1.04± 0.49 1.13± 0.54 1.05± 0.49

The intra- and inter-expert variability of the fetal biometric
measurements can be assessed using Bland-Altman plots, as
reported in Tables IV and V, respectively. The mean values in
Table IV correspond to the bias between both measurements
for each expert. The standard deviations represent the random
error existing between measurements (reproducibility). Stan-
dard deviations in Table V represent the reproducibility of the
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measurements between experts. Both the intra- (Table IV)

TABLE IV
INTRA-OBSERVER VARIABILITY OF CLINICAL MEASUREMENTS: FETAL

HEAD

Measure Expert 1 Expert 2 Expert 3
BPD (mm) 0.31± 1.57 −0.04± 0.54 0.13 ± 0.79
OFD (mm) 0.64± 1.99 0.82 ± 1.98 −0.67± 1.98
HC (mm) 1.1± 3.14 1.23 ± 3.31 −2.53± 4.19

TABLE V
INTER-OBSERVER VARIABILITY OF CLINICAL MEASUREMENTS: FETAL

HEAD
(E1: Expert 1 – E2: Expert 2 – E3: Expert 3)

Measure E1 vs E2 E2 vs E3 E1 vs E3
BPD (mm) 0.39± 1.66 −0.47± 0.89 −0.08± 1.84
OFD (mm) −1.55± 2.36 1.09± 2.75 −0.45± 2.24
HC (mm) 0.68± 4.15 0.65± 3.76 1.33± 4.07

and inter-expert (Table V) variability have a lower standard
deviation than previously reported values [41] [42], indicating
a higher reproducibility. This is due to the fact that this study
was performed on a different clinical database to the ones used
in [41] and [42] and that the experts had different levels of
expertise. In the remaining of the paper, the reproducibility
of the biometric measurements submitted to the head sub-
challenge will be compared to those reported in Tables IV
and V.

B. Fetal Femur Sub-Challenge
For the femur sub-challenge, two experts performed manual

delineation of the fetal femur and measured the FL twice on
each image. Delineation of the whole femur is not done in
routine clinical practice, therefore only two experts were con-
sidered in this case to account for manual tracing variability,
whereas more clinicians are experienced in biometric measure-
ments. The experts had the following level of expertise:

• Expert 1: Engineer with more than 3 years of experience
in fetal femur segmentation.

• Expert 2: Clinician (obstetrician) with 2 years experience
in fetal US scans.

Intra- and inter-expert variability are presented in Table VI.
Both experts present similar results for all the metrics used.

TABLE VI
INTRA- AND INTER-OBSERVER VARIABILITY OF MANUAL

DELINEATIONS: FEMUR

(E1: Expert 1 – E2: Expert 2)

Intra-Observer Variability Inter-Observer
Variability

Metric E1 E2 E1 vs E2
Precision (%) 79.55± 5.25 77.52 ± 5.57 73.52± 5.78
Sensitivity (%) 88.48± 6.45 86.90 ± 6.59 78.38± 7.35
Specificity (%) 99.69± 0.21 99.71 ± 0.18 99.82± 0.14
Dice (%) 88.51± 3.32 87.22 ± 3.56 84.55± 3.92

MSD (mm) 1.53± 0.62 1.57± 0.95 1.93± 0.79
ASD (mm) 0.32± 0.10 0.31± 0.10 0.41± 0.10
RMSD (mm) 0.43± 0.14 0.42± 0.16 0.55± 0.16

The results are inferior to those presented for the head, because
the accurate delineation of the structures is more challenging
and subjected to higher variability due to the fuzzy boundaries
and presence of artefacts.
The intra- and inter-expert variability of the fetal biometric

measurements can be assessed using Bland-Altman plots,
as reported in Table VII. Similarly to the fetal head sub-

TABLE VII
INTRA AND INTER-OBSERVER VARIABILITY OF CLINICAL

MEASUREMENTS: FEMUR LENGTH

(E1: Expert 1 – E2: Expert 2)

Intra-Observer Variability Inter-Observer
Measure E1 E2 E1 vs E2
FL (mm) −0.08± 1.04 −0.2± 1.12 −1.27± 1.47

challenge, the intra- and inter-expert variability (Table VII)
show a higher reproducibility than those reported in [41] [42].
The FL measurements submitted to the femur sub-challenge
will be assessed based on Table VII.

V. METHODS

This section summarises the methods that were submitted
to the different sub-challenges. For more details, we refer the
reader to the individual papers.

A. Fetal Head Sub-Challenge
Five very different methods were submitted to the fetal head

sub-challenge. Foi et al.’s method [26] used signal processing
operations combined with an optimisation framework. The
methods of Ciurte et al. [27] and Sun [29] used graph-based
approaches. Stebbing and McManigle [28] used a machine
learning approach based on a boundary fragment model re-
sulting from a training step. Ponomarev et al.’s method [30]
defined multiple thresholds combined with edge detection
and shape-based recognition and then fitted an ellipse to
the resulting binary image. A summary of each method is
presented in the following.
1) Head Contour Extraction by Difference of Gaussians

Revolved Along Elliptical Paths: Foi et al. [26] proposed a
fully automatic method based on fitting an ellipse to each
US image by modelling the fetal head contour. This was

(a) (b)

Fig. 3. (a) Surface modelling the fetal skull by revolving a difference of
Gaussians along the elliptical path. Negative parts of the surface are not
visible, hidden by the US image. (b) Example on a 21 week fetus using the
proposed approach. The central ellipse is the fitted ellipse. The outer ellipse
is used for OFD and BPD measurements.

achieved by minimizing a cost function with respect to the
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parameters of the ellipse, by using a global multi-scale multi-
start Nelder-Mead algorithm [43]. The images are first pre-
processed to fill in the black background outside the scanned
area by extrapolating the image inside the scanned area using
a constrained iterative low-pass filter in the Discrete Cosine
Transform (DCT) domain. Then, image contrast and intensity
are regularised by leveraging DCT-domain smoothing in order
to provide smoothly varying local normalisation of intensities.
For a given ellipse, the surface that models the skull of the
fetus is obtained by revolving a difference of Gaussians along
the elliptical path, as shown in Fig. 3(a). The cost function
can then be defined as the product of the image and the
surface integrated over the image domain. The cost function is
minimised globally using a multiscale multistart Nelder-Mead
algorithm. The convergence of the optimization algorithm is
accelerated by using a coarse-to-fine multi-scale approach,
starting the process at a lower resolution and using the result to
initialise higher resolutions. The final biometric measurements
are derived from the major and minor axes after obtaining
outer-to-outer measures of the skull. Fig. 3(b) shows the fitted
ellipse and the inner and outer ellipses after incorporating the
skull thickness. The method did not require any tuning of
parameters.
2) Semi-Supervised Patch-Based Approach: Ciurte et al.

[27] proposed a semi-supervised patch-based segmentation
approach based on a previous work [44]. Each US image is
represented by a graph of image patches (Fig. 4). A continuous
min-cut partition [45] of the graph and a fast minimization
scheme solve the segmentation problem. The method is semi-

Fig. 4. Block diagram of the Patch-based Continuous Min-Cut (P-CMC)
segmentation for fetal ultrasound images. Fetus of 28 weeks of gestational
age. x and y correspond to two different pixels in the image (nodes of the
graph). a is the size of the searching window and b represents the patch size.
w(x,y) is the similarity measure between pixels x and y.

supervised, and therefore initial labels have to be defined on
each image, to act as soft priors. In general, the labels are
defined by doing a few clicks on the image, resulting in an
initial polygonal shape. The automatisation of the initialisation
was performed by setting two concentric elliptic labels at the
middle of the image, as shown in Fig. 4. This assumes that the
head is always at the centre of the image, which is not true
in all cases. Otherwise, manual initialisation was necessary.
This was the case for around half of the images in the data

set. The segmentation returns a binary object with irregular
contour (red contour in Fig. 4), which is used in a second
step to determine its corresponding elliptical binary object.
For this purpose, the axis of elongation [46] of the resulting
object (or axis of least second order moment) is computed.
The elongation axis corresponds to the OFD measurement,
and the BPD can be computed perpendicularly to it, for the
same centre of mass. An example of the resulting ellipse is
given in Fig. 4 (green contour). The parameter setting was
constant for all tests (a = 5, b = 3, scaling factor σ = 0.004,
and regularisation term β = 0.001).
3) A Boundary Fragment Model for Random Forest Edge

Classification: Stebbing and McManigle [28] proposed an
automatic method, based on a boundary fragment model,
constructed using a machine learning approach, extending pre-
vious work [47]. The method relies only on edge information,
derived from feature asymmetry [48]. From the edges, the
position and orientation of edge pixels can be retrieved. A

(a) Original image. (b) Final edge classification.

Fig. 5. (a) Original image with edge fragments overlaid (yellow segments).
(b) Edge map derived from feature asymmetry with final edge classification
overlaid (blue: inner boundary; red: outer boundary).

boundary fragment model (Fig. 5(a)) is then used to determine
the centroid and scale of the skull by using a boosted classifier
[49], which allows to identify the optimal centroid and scale
of the fetal skull by using a mean-shift method. The same
boundary fragment model is then used in a Random Forest
framework to differentiate between inner, outer edges, and
background (Fig. 5(b)). An iterative dual ellipse fitting step is
used to find the best inner and outer skull ellipses (Fig. 6) to
derive the biometric measurements. The training samples were

(a) (b)

Fig. 6. Ellipse fitting step. (a) A dual ellipse fitted to inner (blue) and outer
(red) contours. (b) Final result used for biometric measurements (red: outer
contour).

obtained from a set of images different from the challenge data
set. Half of the training set was used to build the boundary
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fragment model and the other half was used to train the
detection and delineation classifiers. The training data was split
in half randomly, only once. The parameters used within the
random forest framework were set empirically. Those needed
to create the boundary fragment model were selected in line
with [49]. Most of these parameters have little impact on the
final performance and can be set within a wide range.
4) Circular Shortest Paths: Sun [29] proposed an automatic

method based on a graph-based approach called circular
shortest paths (CSP), developed in previous work [50]. The
method is divided into three main steps: circular shortest path
extraction, robust ellipse fitting, and finding the outer edge
of the skull. The CSP algorithm ensures a closed boundary
by forcing the starting and ending points of a shortest path
to meet. The summation of pixel values along the object
boundary is maximised to obtain the optimal path. The CSP
algorithm is run up to three times. The third time will only be
in the rare cases where BPD and OFD values are greater than
a threshold. For each iteration, the image is converted to polar
coordinates, a CSP is found, and an ellipse is fitted. The robust
ellipse fitting relies only on the 50% brightest pixels on the
circular shortest path, which are most likely to belong to the
skull. When the CSP is run for the third time, the ellipse centre
is selected and the side of the ellipse which best fits the data is
used to constraint the location and scale of the ellipse. Within
the new constrained region, the CSP is run again and the new
ellipse is found. The outer edge of the skull is then retrieved

(a) (b)

Fig. 7. (a) Closed contour (green) resulting from the CSP algorithm. (b)
Final fitted ellipse overlaid to the original image.

by calculating the image gradient in the radial direction in the
neighbourhood of the fitted ellipse boundary, pointing towards
the outside of the skull, and finding an edge. The resulting edge
offset can then be added to the fitted ellipse to find the outer
edge of the skull to derive the biometric measurements. An
example is given in Fig. 7. The parameter settings involved
defining an image centre, which was initially used for CSP
finding; using the top 50% brightest pixels along the resulting
CSP to fit the ellipse; and fixing the upper limits of BPD and
OFD values to 90 and 105, respectively, for the third CSP
pass. The parameter setting was constant for all tests.
5) A Multilevel Thresholding Combined With Edge Detec-

tion and Shape-Based Recognition: Ponomarev et al. [30] used
a multilevel thresholding approach to segment the fetal skull
combined with edge detection and shape-based recognition.
This approach makes use of the difference in intensities
between the bone and the image background, and assumes that
hard tissue (bone) appears brighter than the surrounding ob-

jects in the US images. The methodology is based on multiple
intensity level thresholds. For each binary image obtained, the
connected components are retrieved and a measure of thinness
and elongation is calculated. The candidate objects are found
after applying empirically chosen thresholds. A size constraint
was also applied to remove small objects. The objects resulting
from the multi-thresholding were grouped into a cluster from
which mean edge contrast was calculated to estimate the best
object intensity representation. The result for each cluster was
transformed into a binary image as shown in Fig. 8. The

(a) (b) (c)

Fig. 8. (a) Original image. (b) Preliminary segmented objects. (c) Inscribed
head ellipse.

binary image contains spurious objects due to other structures
appearing in the images. Ellipses are then fitted considering
all possible combinations using a scoring function, created to
study the contrast around the ellipse contour, which should
normally correspond to the skull. All the thresholds used
within this approach were empirically chosen and fixed for
all experiments. This method was also applied to the femur
sub-challenge. The adaptations to this other object are defined
in Section V-B.

B. Fetal Femur Sub-Challenge
Two teams participated in this sub-challenge. Both methods

relied on appearance and edge information extracted directly
from intensity values.
1) A Multilevel Thresholding Combined With Edge Detec-

tion and Shape-Based Recognition: Ponomarev et al. [30]
attempted the segmentation of the femur, by adapting the
previously described method (Section V-A5) as follows. After
obtaining the binary image grouping the cluster values into
one unique value, the method needs to guarantee that only one
object is detected as femur. The authors expected the femur

(a) (b) (c)

Fig. 9. (a) Original image. (b) Preliminary segmented objects. (c) Recognised
femur object.

bone to have high brightness, large size, contrasted edges, and
a central location within the image. These properties were
used as features to train a linear Support Vector Machine
(SVM) classifier. This was obtained using exhaustive search
with 10-fold cross-validation. The whole dataset was divided
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into 10 parts of equal size. For each iteration, the method
was trained on the concatenated set of nine parts and tested
on the remaining part. The segmented objects were manually
classified into positive and negative classes to train the SVM
classifier. This resulted in a scoring function, encoding the
recognition model. The femur length was then calculated
as the longest distance between any pair of pixels for the
selected binary object. An example can be seen in Fig. 9.
The parameters required for this method are the coefficients
used within the SVM approach. These were adjusted using a
cross-validation strategy from the training set.
2) Morphology-Based Approach : Wang et al. [31] de-

veloped a fully automatic method, based on morphology, to
extract the fetal femur bone from the ultrasound images. They
proposed two methods for segmenting the femur, one based
on entropy and one based on edge detection. The first one
was used as the main approach, and the second method was
only used when the main approach failed, as an alternative
approach.
For the main approach, after the images were initially fil-

tered by a median filter, entropy-based segmentation identified
possible pixel candidates within the images, as shown in
Fig. 10(b). To obtain the final segmented femurs, first the

(a) (b) (c)

Fig. 10. Entropy-based segmentation method. (a) Original image. (b) Result
after entropy-based segmentation. (c) Final selected femur.

image complement followed by a morphological dilation were
performed for each image. Then, slim and long connected
objects can be automatically selected as the final segmented
femurs (Fig. 10(c)) by combining the information of density
and height-to-width ratio for each segmented object. The
density is calculated as the number of segmented pixels over
the area of the bounding box for that particular object. The
best object is obtained by considering the morphology and
layout of the detected objects.

(a) (b) (c)

Fig. 11. Edge-based segmentation method. (a) Original image. (b) Result
after horizontal edges and stretching. (c) Selected femur.

The alternative segmentation approach obtains the hori-
zontal edges and the stretched edges using filters as a pre-
processing step. The final step consists of seeking for the
longest and slim objects in the resulting edge images. An
example is given in Fig. 11.

For both methods, the femur length is derived from the
segmentation results by using the width and height of the
bounding rectangle of the segmented femur object. Two pa-
rameters are used within this method: the density of an object
and the height to width ratio of an object. These were held
constant over all tests.

VI. EXPERIMENTAL RESULTS
In this section, the qualitative and quantitative evaluation for

fetal head and fetal femur sub-challenges is presented. All the
proposed methods are evaluated against the ground truth on
the 90 fetal US images acquired across gestation as described
in Section II-B.

A. Fetal Head Sub-Challenge
1) Failures: No failures were reported for the fetal head

sub-challenge, and all the proposed methods obtained segmen-
tation results that overlapped the manually fitted ellipses drawn
by the experts.
2) Qualitative Evaluation: Qualitative evaluation was per-

formed on the set of 90 fetal head US images acquired
across gestation. The poorest result from each of the proposed
methods participating in this challenge is shown in Fig. 12.
Note that most of the poor results correspond to images of
33 weeks fetuses, which generally have lower image quality
(e.g. increased shadowing due to increased bone density) than
earlier gestations. Similarly, the best results, displayed in Fig.
13, were generally at early gestation (21 weeks and 28 weeks),
where the image quality is normally better, presenting less
artefacts than at later gestation and with clear anatomical
definition.
3) Quantitative Evaluation: Table VIII presents the region-

based and distance-based evaluation for each proposed
method. The best results per metric are highlighted in bold.
For the region-based evaluation, Foi et al.’s method per-

formed best in terms of precision and Dice similarity. Stebbing
and McManigle’s method performed best in terms of sensitiv-
ity. Ciurte et al. obtained the best result in terms of specificity.
Overall, Foi et al.’s method had better performance followed
closely by Stebbing and McManigle’s method.
For the distance-based evaluation, smallest mean error in

terms of MSD, ASD, and RMSD is obtained by Foi et al.’s
method, closely followed by Stebbing and McManigle. How-
ever, Stebbing and McManigle’s method presents a smaller
standard deviation, showing that their segmentation is less
variable. Foi et al. also obtained similar results to the inter-
observer variability presented in Table III, producing results
comparable to manual delineation.
To study if the performance varies for the different gesta-

tional age groups, the mean and standard deviations in terms
of precision, accuracy (sensitivity and specificity), and Dice
similarity, at 21, 28, and 33 weeks are presented in Fig. 14. The
best performance in terms of mean precision (Fig. 14(a) for
all three gestational ages is by Foi et al.’s method, closely fol-
lowed by Stebbing and McManigle’s method. However, Foi et
al.’s standard deviation increases marginally across gestation.
This might be due to the higher variation in image quality at
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(a) Foi et al. 33 wks. (b) Ciurte et al. 33 wks. (c) Stebbing et al. 33 wks. (d) Sun. 21 wks. (e) Ponomarev et al. 33 wks.

Fig. 12. Poorest fetal head result for each proposed method in terms of precision. Yellow continuous lines denote the automatic methods. Dashed lines
represent manually fitted ellipses by the clinical experts (magenta: Expert 1, green: Expert 2, white: Expert 3) as defined in Section IV-A.

(a) Foi et al. 28 wks. (b) Ciurte et al. 21 wks. (c) Stebbing et al. 21 wks. (d) Sun. 28 wks. (e) Ponomarev et al. 21 wks.

Fig. 13. Best fetal head result for each proposed method in terms of precision. Yellow continuous lines denote the automatic methods. Dashed lines represent
manually fitted ellipses by the clinical experts (magenta: Expert 1, green: Expert 2, white: Expert 3) as defined in Section IV-A.

TABLE VIII
QUANTITATIVE EVALUATION OF THE METHODS FOR THE FETAL HEAD SUB-CHALLENGE

Region-Based Distance-Based
Method Precision (%) Sensitivity (%) Specificity (%) Dice (%) MSD (mm) ASD (mm) RMSD (mm)

Foi et al. [26] 95.72± 1.92 98.51± 1.20 98.28± 1.26 97.80± 1.04 2.16± 1.44 0.88± 0.53 1.08± 0.69
Ciurte et al. [27] 89.53 ± 2.81 90.19± 3.05 99.62± 0.48 94.45± 1.57 4.6± 1.64 2.10± 0.69 2.47± 0.83
Stebbing et al. [28] 94.63 ± 1.45 98.86± 1.26 97.53± 1.29 97.23± 0.77 2.59 ± 1.14 1.07± 0.39 1.29± 0.51

Sun [29] 94.15 ± 2 95.63± 2.46 99.12± 1.12 96.97± 1.07 3.02 ± 1.55 1.19± 0.54 1.48± 0.71
Ponomarev et al. [30] 87.29± 12.79 88.06± 12.88 99.48± 1.11 92.53 ± 10.22 6.87 ± 9.82 2.83± 3.83 3.55± 5.21

later gestations and the presence of stronger artefacts. Stebbing
and McManigle’s method has a small and constant standard
deviation across gestation. This is also true for the overall
precision presented in Table VIII.
In terms of sensitivity, Stebbing and McManigle and Foi et

al.’s methods perform better than the other methods according
to Fig. 14(b). They also have the smallest standard deviation,
which increases slightly at later gestations. Sun’s method has
a similar performance, with constant mean and standard devia-
tion across gestation. In terms of specificity, all methods seem
to have constant means and standard deviations according to
Fig. 14(c). The best result is given by Ciurte et al. (Table VIII).
In terms of Dice similarity, Foi et al.’s method had the best

result, followed by Stebbing and McManigle and Sun (Fig.
14(d)). This is also true overall, as shown in Table VIII. Mean
and standard deviation appear quite constant for all methods
except for Ponomarev et al.’s method.
The last aspect of the evaluation was to study the perfor-

mance in terms of clinical measurements derived from the
segmented objects. Table IX presents the mean and standard
deviation from the Bland-Altman plots in comparison to each
expert and over all experts. The best BPD results when

compared with the experts were obtained by Sun’s method,
closely followed by Foi et al.’s method. The best OFD results
were obtained by Foi et al.’s method, closely followed by
Stebbing and McManigle’s method. This means that the major
axes of the fitted ellipses, from which the OFD measurements
are derived, are probably more accurate for Foi et al.’s method
and Stebbing and McManigle’s method, whereas the minor
axis of the fitted ellipses seems to be better detected by Sun’s
method. Since the OFD measurement is greater than the BPD
measurement, this results in similar performance of the HC
measurement with respect to the OFD, as shown in Table IX.
Overall, for the fetal head sub-challenge, Foi et al.’s method

seems to perform best in terms of region-based and distance-
based metrics, as well as clinical measurements. Stebbing and
McManigle obtained similar results. Sun’s method showed
high agreement in BPD biometric measurements.

B. Fetal Femur Sub-Challenge
Qualitative and quantitative evaluation is performed in the

following for the two methods submitted to the fetal femur US
image segmentation challenge. The data set presents different
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(a) Precision. (b) Sensitivity.

(c) Specificity. (d) Dice similarity.

Fig. 14. Mean and standard deviation for the fetal head for each gestational age in terms of (a) precision; (b) sensitivity; (c) specificity; and (d) Dice
similarity.

TABLE IX
BLAND-ALTMAN PLOTS (FETAL HEAD SUB-CHALLENGE): BPD, OFD, AND HC

Method Expert 1 (mm) Expert 2 (mm) Expert 3 (mm) All experts (mm)
Foi et al. [26] −0.94± 1.29 −1.15± 0.99 −0.77± 1.11 −0.95± 1.00
Ciurte et al. [27] 2.99± 1.30 2.78 ± 1.28 3.17± 1.32 2.98± 1.19

Stebbing and McManigle [28] −1.64± 1.22 −1.85± 0.94 −1.46± 1.04 −1.65± 0.93
Sun [29] 0.59± 1.37 0.38± 1.26 0.77± 1.43 0.58± 1.24

BP
D

Ponomarev et al. [30] 4.69± 9.92 4.48 ± 9.92 4.86± 9.94 4.67± 9.91

Foi et al. [26] −1.59± 2.79 −0.13± 3.10 −0.48± 2.46 −0.73± 2.52
Ciurte et al. [27] 3.36± 3.27 4.81 ± 3.52 4.46± 3.12 4.21± 3.07

Stebbing and McManigle [28] −1.81± 3.01 −0.36± 3.65 −0.71± 2.77 −0.96± 2.92
Sun [29] 0.59± 3.66 2.05 ± 4.04 1.69± 3.67 1.45± 3.59O

FD

Ponomarev et al. [30] 4.49± 7.58 5.95 ± 8.23 5.60± 7.17 5.34± 7.57

Foi et al. [26] −1.92± 3.76 −2.67± 4.04 −1.44± 3.52 −2.01± 3.29
Ciurte et al. [27] 12.02 ± 5.60 11.27± 5.51 12.51 ± 5.78 11.93± 5.32

Stebbing and McManigle [28] −3.37± 4.44 −4.12± 4.77 −2.88± 4.14 −3.46± 4.06
Sun [29] 3.92± 6.29 3.17 ± 6.05 4.40± 5.47 3.83± 5.66

H
C

Ponomarev et al. [30] 16.47± 24.95 15.72 ± 25.03 16.96± 24.85 16.39 ± 24.88

qualities, with some images especially challenging, but all of
them used in clinical practice.
1) Failures: Ponomarev et al.’s method had a total of 2

failures on different images, shown in Fig. 15. Wang et al.’s

(a) 33 weeks fetus. (b) 33 weeks fetus.

Fig. 15. (a-b) Failures of Ponomarev et al.’s method in terms of precision for
the fetal femur. Yellow continuous lines: automatic methods. Dashed lines:
manual delineations (magenta: Expert 1, green: Expert 2).

method had a total of 4 failures over the 90 images in the fetal
femur dataset. The failures are presented in Fig. 16.

Two of them were due to the method not finding any
result on the images. In both cases, the methods found other
elongated objects in the images (e.g. other bones, adipose
tissue layer, placental tissue) instead of the femur bone. This is
because the methods are based on intensities, and the detected
incorrect objects had high intensity values while having an
elongated shape.

TABLE X
BLAND-ALTMAN PLOTS (FETAL FEMUR SUB-CHALLENGE): FL

Method E1 (mm) E2 (mm) Both (mm)
Ponomarev

1.80 ± 10.98 3.15± 10.91 2.48± 10.93et al. [30]
Wang et al. [31] 1.04± 9.35 2.41± 9.46 1.72± 9.39

2) Quantitative Evaluation: The evaluation with respect to
the measurements is presented in Table X and shows that the
best results are obtained by Wang et al.’s method. Table XI
presents the region-based and distance-based evaluation for
each proposed method. The best results are highlighted in
bold. In terms of region-based metrics, Ponomarev et al.’s
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(a) 21 weeks fetus. (b) 33 weeks fetus. (c) 21 weeks fetus. (d) 33 weeks fetus.

Fig. 16. (a-d) Failures of Wang et al.’s method in terms of precision for the fetal femur. Yellow continuous lines: automatic methods. Dashed lines: manual
delineations (Magenta: Expert 1, Green: Expert 2).

TABLE XI
QUANTITATIVE EVALUATION OF THE METHODS FOR THE FETAL FEMUR SUB-CHALLENGE

Region-Based Distance-Based
Method Precision (%) Sensitivity (%) Specificity (%) Dice (%) MSD (mm) ASD (mm) RMSD (mm)
Ponomarev

65.44± 16.98 72.79± 19.40 99.70± 0.39 77.40± 15.35 6.39± 9.53 1.23 ± 2.3 2.04± 3.76et al. [30]
Wang et al. [31] 60.56 ± 15.88 69.84 ± 20.36 99.66 ± 0.37 73.95± 14.56 6.02± 7.29 1.04± 1.29 1.77± 2.41

method seems to have a higher performance, whereas Wang
et al.’s method obtains better results in terms of the distance-
based evaluation. However, unlike the fetal head challenge, the
measurement results are inferior to those obtained manually
between experts (cf. Table VI) with much higher variability.

(a) Poorest result from Wang et
al. (21 weeks fetus)

(b) Best result from Wang et al. (28
weeks fetus)

(c) Poorest result from Ponomarev et
al. (33 weeks fetus)

(d) Best result from Ponomarev et al.
(21 weeks fetus)

Fig. 17. Poorest and best fetal femur results for each proposed method in
terms of precision. Yellow continuous lines: automatic methods. Dashed lines:
manual delineations (magenta: Expert 1, green: Expert 2).

3) Qualitative Evaluation: Qualitative evaluation was per-
formed on the fetal femur data set of 90 ultrasound images
acquired at three different gestational ages (21, 28, and 33
weeks). The poorest and best results obtained from each
method are shown in Fig. 17. Notice how the poorest results
(Fig. 17(a) and Fig. 17(c)) are only segmenting the brightest
part of the femur. This is due to the high inhomogeneities
existing within the femur. The best results (Figs. 17(b) and
17(d)) perform similarly to manual delineations.

C. Efficiency
Since the algorithms have been programmed using different

software, computers, and programming languages, the study of
efficiency cannot thoroughly be performed. Even if efficiency
was not one of the aims of this challenge, and that some
methods are more expensive computationally than others, we
report on the times and specifications used in the presented
implementations as shown in Table XII. After the challenge,
some of the teams optimised their code and were able to reduce
these times considerably.

VII. DISCUSSION
A. Fetal Head Sub-Challenge
The five methods submitted to the fetal head sub-challenge

are very different and focus on either image appearance or
edge information. The methods of Ciurte et al. [27] and

TABLE XII
COMPUTER SPECIFICATIONS AND EFFICIENCY.

Method Time per image Computer Specifications OS Software

Foi et al. [26] 5 min PC Intel Core 2 Duo 2.6GHz, 8GB Windows 7 Matlab(Laptop, one core) 64-bit
Ciurte et al. [27] 196s PC Intel Core 2 Duo 2.66GHz, 2GB Windows 7 Matlab

Stebbing and McManigle [28] 100s-150s Intel Pentium Core 2 Duo 3.40GHz Linux Python
(one core) Fedora 13 C++

Sun [29] 1.5s PC Intel Core 2 Duo 3GHz, 2GB Linux C

Ponomarev et al. [30] 19.6s (Head) MacBook Pro, 2.53 GHz Mac OS X C++24.2s (Femur) Intel Core i5
Wang et al. [31] 2.28s Laptop Intel Core i7 2.8GHz, 8GB Windows 7 C#
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Sun [29] used graph-based approaches. Foi et al.’s method
[26] was based on signal processing combined with an op-
timisation framework. Stebbing and McManigle [28] used a
machine learning approach based on a boundary fragment
model resulting from a training step. Four out of five methods
obtained constant results across gestation (cf. Figs. 14(a),
14(b), 14(c), and 14(d)) except Ponomarev et al.’s method
[30], which got variable means and standard deviations for
the three gestational age groups, the poorest results being at
33 weeks, where the images have in general lower quality
and present more artefacts. Since Ponomarev et al.’s method
uses the appearance of the object of interest to define the
multiple thresholds, and then fits an ellipse to the resulting
binary image, it is to be expected that the results are more
linked to the image quality than the other methods, which
relied less on the appearance of the object of interest.
Foi et al.’s method obtained the best results overall, achiev-

ing a mean and standard deviation close to the ground truth
values for both region-based and distance-based metrics (Table
VIII), showing a performance as good as the inter-observer
variability (Table III).
Stebbing and McManigle’s method obtained results close to

Foi et al.’s method, and most of the time had smaller constant
standard deviations across gestational ages, which indicates
that their method was slightly more consistent.
Sun’s method produced results ranked third overall by using

a graph-based approach. His method seems also robust across
gestational age groups with a high mean and small standard
deviation. He obtained the best results for BPD measurements
compared to the ground truth (Table IX). Considering that the
BPD value is derived from the small axis of the fitted ellipse,
this suggests that his method fitted the ellipses better in the
small axis direction.
Ciurte et al.’s method obtained slightly worse results than

Foi et al., Stebbing and McManigle, and Sun’s methods. It
was noted during the workshop that their method was finding
the inner contour of the skull instead of the outer contour,
which could be the cause of the difference between the other
methods. This behaviour can be appreciated in Figs. 12(b) and
13(b). The other methods were finding the outer edge. Ciurte et
al.’s method had constant mean and standard deviation across
gestational age groups (cf. Figs.14(a), 14(b), 14(c), and 14(d)),
with a consistent performance for different image qualities. It
may be that, if their method was modified to detect the outer
contours of the skull, the results would have improved and may
have been comparable to the other methods that performed
better.
In terms of reproducibility of clinical measurements (Table

IX), only the method by Ponomarev et al. had a much higher
standard deviation than the inter-expert variability presented
in Table V in all cases. This shows that this method had
a much lower reproducibility than manual delineations. For
the BPD measurement, all the other methods had lower
standard deviation than the inter-expert variability. For the
OFD measurement, only the method by Foi et al. had a
reproducibility within the range reported in Table V. The other
methods had a slightly higher standard deviation, but close to
the ground truth values, except for Ponomarev et al.’s method.

For the HC measurement, only the methods by Foi et al.
and Stebbing and McManigle had a reproducibility close to
manual segmentations. The other methods, except the one by
Ponomarev et al., obtained values within the range reported in
previous reproducibility studies [41] [42].

B. Fetal Femur Sub-Challenge
Fetal femur segmentation is the harder of the two sub-

challenges. The complete segmentation of the femur needs
to take into account the huge inhomogeneities existing in
the object of interest. The two methods participating in this
challenge relied on appearance and edge information extracted
directly from intensity values. This makes the methods rely
on the image quality and in some cases miss certain parts
of the femur bone during the segmentation process. It also
makes the methods more prone to finding other objects that
are not the femur bone but have similar appearance to it, hence
producing failures on some of the images. This challenge
would require a more advanced modelling of the femur bone,
incorporating morphological measures of normal fetal femur
across gestational ages. The overall mean values in terms of
precision, sensitivity, and Dice similarity, were lower than
those obtained manually (Table XI). The overall standard
deviations of both methods ranged around 16% − 17% for
precision, 19% − 20% for sensitivity, and 14% − 15% for
Dice similarity, indicating a high variability with respect to the
ground truth. Manual segmentations presented a standard de-
viation around 5% for precision, 6% sensitivity, and 3% Dice
similarity for intra-expert variability (Table VI). Considering
the inter-expert variability, precision had a standard deviation
around 6%, sensitivity around 7%, and Dice similarity around
4%.
This sub-challenge proves the necessity of using both region

and distance-based metrics for segmentation evaluation. Pono-
marev et al.’s method [30] obtained better results in terms of
precision, specificity, sensitivity, and Dice similarity, whereas
Wang et al.’s method [31] achieved better results in terms
of MSD, ASD, and RMSD values (Table XI). Ponomarev
et al.’s method had higher overlap with respect to manual
segmentations than Wang et al.’s method, and slightly higher
distance-based errors. This could also be due to the fact that
Wang et al.’s method had two more failures than Ponomarev
et al.’s method, and the evaluation results were reported
only in the images where there were no failures. Therefore,
Ponomarev et al.’s had slightly higher MSD, ASD, ans RMSD,
but these were calculated on two more images than in Wang et
al.’s method. In terms of the actual FL measurement, Wang et
al.’s method obtained better results for both mean and standard
deviation (Table X). However, in terms of reproducibility of
the FL measurement (cf. Table X), none of the methods
obtained a standard deviation within the values reported in
Table VII, which means that they had low reproducibility
compared to manual delineations.
Another discrepancy to note was that some of Wang et al.’s

segmentation results only found the brightest part of the bone,
resulting in an incomplete segmentation result, but a good FL
measurement could still be observed (e.g. Fig. 17(a)). When
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the femur’s appearance had homogeneous intensity values,
both methods seemed to perform well, agreeing with manual
delineations (e.g. Figs.17(b) and 17(d)).

C. General Observations
Signal processing methods, graph-based methods, and ma-

chine learning methods seemed to achieve a good perfor-
mance, since they considered the images as a whole. Some of
these also take into account the relationship between different
regions of the images simultaneously. On the contrary, inten-
sity and gradient-based methods have a lower performance,
since they rely more on the appearance of the objects of
interest, which present high variability.

D. How to Move the Fetal US Image Segmentation Field
Forward?
From the 4 sub-challenges proposed, only the head and

femur challenges were attempted. The abdomen and whole
fetus segmentations are extremely challenging due to the lack
of strong object boundaries and the similar appearance of
surrounding objects. General frameworks that could solve all
4 sub-challenges simultaneously are yet to be developed. As
argued in [6], successful US image segmentation methods are
normally application dependent.
One of the main difficulties of working with US images

is that they have a variable appearance and it is difficult
to obtain quantitative measures of quality to provide more
insight on the performance of different methods with respect to
image quality in an objective manner. We need better tools of
quantitatively assessing US image quality, to be able to study
method’s performance in depth, relating the performance to
the quality of the image. This can be extrapolated to other
imaging modalities, but it is especially important in a modality
like US. This is a problem that is not solved yet and needs
further investigation.

VIII. CONCLUSIONS
This paper presented a thorough qualitative and quantita-

tive segmentation evaluation of the representative selection
of current methods submitted to Challenge US: Biometric
Measurements from Fetal Ultrasound Images, held at ISBI
2012. The images were selected to incorporate the different
qualities, reflective of a real antenatal clinical environment.
Three different gestational ages were assessed to incorporate
image variability across gestation. Several experts manually
delineated the objects of interest to define the ground truth,
which was used within the evaluation framework. A total of
5 teams submitted their results to the fetal head sub-challenge
and 2 teams to the fetal femur sub-challenge, including one
team who attempted both.
The results for the fetal head sub-challenge show that a very

good performance can be achieved and that it is comparable
to manual delineations. Several groups produced results that
could be potentially used in clinical settings. The fetal femur
sub-challenge consisted of solving a very hard segmentation
problem, since the object of interest has strong appearance

changes within the object. Furthermore, other elongated ob-
jects are present around the femur bone, causing methods to
fail in certain situations. The performance of the femur sub-
challenge was inferior to the head sub-challenge, because the
task was more complex and the techniques used relied more
on the femur’s appearance.
Further investigation is necessary to provide better quanti-

tative tools for assessing US image quality, which in turn will
assist in developing a better understanding of how images cope
with the image quality variability.
On release of the data, anticipated autumn 2014, the web-

site (http://www.ibme.ox.ac.uk/challengeus2012) will provide
a mechanism to upload new segmentation results and compare
them to previous methods.

APPENDIX A
IMAGE QUALITY SCORING CRITERIA

In the following, we present the scoring criteria used for se-
lecting images of different qualities within each sub-challenge.
The scoring criteria is based on a score-based method for qual-
ity control [51][52][53]. The aim was to select as many good,
medium, and high quality images within each gestational age
group as objectively as possible. Considerations of image qual-
ity are not independent of the gestational ages considered, as
they describe quality variation of cross-sectional data (data in
a certain gestational age window), which capture a wide range
of image quality factors. The scoring criteria was different for
each sub-challenge and was performed by experts on each type
of images, taking into account the image characteristics. In the

(a) 21 weeks - Low
quality

(b) 21 weeks - Medium
quality

(c) 21 weeks - High
quality

(d) 28 weeks - Low
quality

(e) 28 weeks - Medium
quality

(f) 28 weeks - High
quality

(g) 33 weeks - Low
quality

(h) 33 weeks - Medium
quality

(i) 33 weeks - High
quality

Fig. 18. Ultrasound images of the head at (a-c) 21 weeks of gestation, (d-f)
28 weeks of gestation, and (g-i) 33 weeks of gestation.

case of fetal ultrasound images, the fetal anatomy varies during
pregnancy, as well as soft tissue properties and composition.
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The quality of the images diminishes with gestational age as
shown in Figs. 18-19 for the head and femur, respectively.
This is due to the increase of the body mass index of the
mother towards the end of pregnancy, the increase in fetal
bone density and fetal size, the reduced amniotic fluid present
in older fetuses, and the changes of tissue texture, which create
different speckle patterns at different gestational ages.
The scoring criteria used to classify the fetal head images

(Fig. 18) between low, medium, and high score is:
Low: Skull is not symmetrical or elliptical in shape. Skull
boundary is barely visible. Internal anatomy is difficult
to discern with an overall lack of contrast in the image.
Medium: The fetal skull should be roughly elliptical
in shape. Skull boundary visible but not less than 60%
encirclement. Rough internal anatomy visible (lateral
ventricles, cerebral falx, cavum septum pellucidum, tha-
lamus). Average contrasted image.
High: Fetal skull should be roughly symmetrical and
elliptical in shape. Skull boundary should be visible
with more than 60% encircled cranial area. Internal
anatomy (lateral ventricles, cerebral falx, cavum septum
pellucidum, thalamus, and cortical boundary) visible and
discernible. High contrasted image.

The scoring criteria used to classify the fetal femur images
(Fig. 19) considered:

• The sharpness of the border of the femur from all
directions.

• How easy it is to find femur end points (distal and
proximal).

• The difference between the femur and its surrounding
tissues. Better femur images need to have bright femur
and relatively dark surrounding.

• The continuity of the femur. Some femurs are not fully
visible because of the scan signal direction and shadow-
ing so these are low quality.

We can observe that more artefacts appear in the images
towards the end of pregnancy as a result of the fetus becoming
bigger and compressed within the womb, with less space to
move. The bone density in the fetus increases too, creating
shadows and splaying in the ultrasound images. These shad-
ows appear in the skull in the head, in the ribs and spine in the
abdomen, and in the femur in the leg, respectively. Changes
in size, shape, pose, and composition are also important,
especially in the abdomen that is a soft body region in
comparison to the bony structures of head and femur.
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