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ABSTRACT
A new inverse halftoning algorithm for restoring a continu-
ous tone image from a given error diffusion halftone image
is presented. The algorithm is based on a novel anisotropic
deconvolution strategy [14, 15]. The linear model of error
diffusion halftoning proposed by Kite et al. [19] is exploited.
It approximates error diffusion as the sum of the convolution
of the original grayscale image with a speciÞc kernel and col-
ored random noise. Under this model the inverse halftoning
can be therefore formulated as a special deconvolution prob-
lem.
The deconvolution is performed following the RI-RWI

(regularized inverse-regularizedWiener inverse) scheme [14]
and exploiting the recently introduced anisotropic LPA-ICI
estimator [15]. This adaptive varying scale estimator, based
on the directional local polynomial approximation (LPA)
technique and the intersection of conÞdence intervals (ICI)
scale selection algorithm, allows near optimal edge adapta-
tion. As a result, the reconstructed continuous tone image
presents smooth areas faithful to the unknown original and
yet preserves all the details found in the halftone. Conven-
tional inverse-halftoning algorithms often produce estimates
that are either oversmooth (loss of details) or still noisy.
Simulation experiments conÞrm the state-of-the-art per-

formance of the proposed algorithm, both visually and in
mean-squared-error sense.

1. INTRODUCTION

In the last two decades the color-depth of digital images,
graphic cards, computer displays and digital cameras has
steadily increased. The current standard for consumer de-
vices is 8 or more bits for each color channel. In particular,
for grayscale images this is equivalent to 256 or more differ-
ent intensity values. Since the human eye is usually not able
to distinguish between so close adjacent shades of gray, such
grayscale images are often called continuous tone images.
Coarser palettes are nowadays considered only for lossy im-
age/video compression applications.
Despite this progress, many output and rendition devices

are still unable to reproduce these continuous tone shades and
can provide only a binary (black-and-white) output. Typical
examples of such devices are ofÞce and industrial printers
but also low-cost displays for mobile devices.
Digital halftoning is the rendition process of a continu-

ous tone into a binary image. Although the naive approach
where shades lighter or darker than a 50% gray level are
thresholded, respectively, to white or black, is the simplest
to implement, it is almost never used because of its visu-
ally poor result on photographic images. Taking into account
the characteristics of the human visual system, which acts as

low-pass Þlter, halftones are generated in such a way that the
difference between the halftoned binary image and the orig-
inal grayscale image is compacted into the high frequency
end of the Fourier spectrum.
Halftoning techniques include ordered dithering or

screening (dispersed-dot and clustered-dot), error diffusion,
blue-noise dithering [29], and direct binary search [1]. The
latter is known to provide the highest quality halftones. How-
ever the most widely used methods, because of their com-
putational efÞciency, are order dithering and error diffusion.
Figure 1 illustrates the halftoning process.
Halftoned images may look good printed on paper. How-

ever, due to their high frequency characteristics they can-
not be used in many situations. For example, scanning and
reprinting an high-resolution halftone would result in a poor
quality output (see, for example, the left column of Figure 9).
Halftones, when displayed on a computer screen (which has
a resolution signiÞcantly inferior to that of printer) present
evident aliasing artifacts. Further processing, such as resiz-
ing or contrast enhancement, can severely degrade the image
quality. Moreover, standard compression techniques are not
able to process halftones efÞciently. The development of ap-
plications such as high-quality digital archive of old news-
papers or scientiÞc journals can thus still be considered as
challenging tasks. In all these cases it would be desirable
to process, whenever available, the original grayscale image
rather than the black and white halftone.
Inverse halftoning is the reconstruction process of a con-

tinuous tone image from its binary halftone, as illustrated in
Figure 1. It is clear, from the above discussion, that inverse
halftoning should mimick the human visual system. Thus,
all inverse halftoning techniques perform some sort of low-
pass Þltering. A Þxed-kernel low-pass Þltering is simple to
implement, nevertheless very seldom yields satisfactory re-
sults. In the recent years inverse halftoning has gained re-
newed interest and several new adaptive methods have been
proposed [32]. They include thresholding in transform do-
main [25, 26], projection onto convex sets (POCS) [9, 2],
MAP projection [31], anisotropic diffusion [20] and look-up
tables (LUT) based on learning/training [23, 24, 16].
In this paper, we present a novel inverse halftoning tech-

nique combining a linear model for error diffusion [20]
and the recently proposed anisotropic deconvolution scheme
based on the regularized inverse-regularized Wiener inverse
(RI-RWI) LPA-ICI [14, 15]. We assume that the error dif-
fusion kernel is known. In particular, we show simulation
results obtained for the Floyd-Steinberg [6] and Jarvis et al.
[10] error diffusion kernels.
Just as for the traditional image deblurring problem [15],

also for inverse halfotoning the anisotropic LPA-ICI based
deconvolution yields state-of-the-art performance through a
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Figure 1: An illustration of halftoning and inverse halftoning. Detail of the Lena image: original (left), Jarvis error diffusion
halftone (center), and LPA-ICI estimate (PSNR=33.0dB) (right).

two stage, non-iterative, Þltering procedure where blur and
noise are simultaneously removed. The anisotropy of the
proposed estimator allows to restore accurately edges and de-
tails, producing a result quite faithful to the original.
The paper is organized as follows:

• Error diffusion halftoning;
• Linear model for error diffusion;
• Deconvolution;
• Anisotropic LPA-ICI Þltering;
• Inverse halftoning via anisotropic LPA-ICI deconvolu-
tion;

• Simulation results.
2. ERROR DIFFUSION

Roughly speaking, the error diffusion halftoning works by
raster-scanning the continuous tone image and recursively
distributing, or �diffusing�, the quantization errors due to bi-
narization on the neighboring pixels.
Let y be the original continuous tone image, x the pixel

coordinate and z the halftoned image (to be generated); after
setting the initial conditions [6]

ỹ1 = y,
x1 = (1,1) (start from top-left pixel),

error diffusion is precisely deÞned by the following iterative
procedure:

z (xn) = [ỹn (xn)]0,1;
en = ỹn (xn)− z (xn);
ỹn+1 (xn+ x) = ỹn (xn+ x)+enhed (x) ∀x;
xn+1 = successor(xn);

where hed is a weight kernel, [ · ]0,1 is the binarization (or
rounding) operation (i.e. [ỹ]0,1 = 1 iff ỹ ≥ 1

2 , otherwise
[ỹ]0,1 = 0) and �successor� denotes the next pixel to be pro-
cessed in raster-scanning.
In other words, at every step, the error diffusion algo-

rithm
binarizes the current pixel (i.e. rounding to {0,1});
computes the quantization error;
diffuses error on neighboring pixels using weights from hed;
moves to the next pixel (in raster-scanning);

.

The kernel hed is called the error Þlter. Examples of error Þl-
ters are shown in Figure 2. Observe that the weights are non-
zero only for those pixels that have not been already scanned.
It means that the diffusion never goes backwards with respect
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Figure 2: Error Þlters hed for the Floyd-Steinberg [6] (left)
and Jarvis [10] error diffusions. The black dot indicates the
center of the kernel.

to the scanning direction and after a pixel has been binarized
its value is not modiÞed by future iterations. The algorithm
ends when the bottom-right pixel has been processed. The
diffusion of the quantization error guarantees that the local
averages of the halftoned z are close to the corresponding
local averages of the continuous tone y.
Although the iterative nature of the procedure restricts

its computational speed, on the other hand the simplicity of
the iteration step, the negligible memory footprint, and the
excellent rendition quality made error diffusion one of the
most established halftoning techniques.
Several modiÞcations to the above procedure (such as

different pixel-scan ordering or threshold modulation) are
possible [29].

3. LINEARMODEL OF ERROR DIFFUSION

In [18] Kite et al. propose the following linear model as an
approximation of error diffusion halftoning. Let Y and Z be
the Fourier transforms of y and z, respectively. Then

Z = PY +Qη, (1)
where η is white gaussian noise (with standard deviation σ ),

P = K gain

1+ %K gain−1&H ed , Q = 1−H ed
1+ %K gain−1&H ed ,

H ed is the frequency response of the error Þlter hed and K gain
is a gain constant. K gain is found [18, 19] to be essentially
independent on y and depends instead only on the used er-
ror Þlter: for example, K gain = 2.0 and K gain = 4.5 for the
Floyd-Steinberg and Jarvis error Þlters respectively.
Since typical H ed is a low-pass, Q is an high-pass Þlter

(see Figure 3). This is consistent with the fact that error dif-
fusion halftoned images differ from the continuous tone orig-
inal mostly for the high frequency components of the spec-
trum.
The model (1) has been proved to be quite accurate [19],



Figure 3: Absolute value of P (left) and Q (right) corre-
sponding to the Floyd-Steinberg error Þlter.

and it has been already exploited in a number of algorithms
(e.g. [21], [25], [26]).

3.1 Convolutional model
In the spatial domain, multiplications are replaced by convo-
lutions and (1) becomes

z = p~ y+q~η (2)
where p and q are the impulse responses of P and Q respec-
tively.
According to this model, the inverse halftoning process

can be formulated as a deconvolution problem, where p is
the point-spread function and the observations z are contam-
inated by the colored noise q~η (blue noise).

4. DECONVOLUTION

An unbiased solution of a deconvolution problem of the form
(2) can be obtained in a straightforward manner by Þrst in-
verting the convolution operator P and then removing the
noise P−1Qη. However, it is now standard to approach such
inverse problems by the method of regularization, in which
one applies, rather than the inversion, a regularized inverse
operator [4]. A special common point of most methods start-
ing from the frequency domain equation (1) is that some ba-
sis functions are used to approximate the object function y in
the form of series with coefÞcients deÞned from the observa-
tions. These functions may be Fourier harmonics, eigenfunc-
tions of the convolution operator in SVDmethods or wavelets
in wavelet multiresolution decompositions. There exist a lot
of deconvolution techniques based on this sort of approaches.
Basically different ideas and methods arise from the

pointwise nonparametric estimation approach [5]. These
methods mostly do not assume any underlying global para-
metric model of the object and do not use the global para-
metric series for object approximation. It is assumed only
that the object is composed from piecewise regular elements
and every point of the object allows a good local approxi-
mation. The main goal of estimation is to build a pointwise
approximation using the observations from a neighborhood.
There is a number of proposals for nonparametric smooth-
ing of non-blurred noisy images which allow for preserving
the sharp edge structure as well as the edge detection and
reconstruction. Actually, these methods are based on kernel
smoothing with a special choice of the kernels. Spatial point-
wise adaptation is now commonly considered as a crucial
element of the nonparametric estimation. These adaptation
methods, even for an originally linear method, are Þnalized
in nonlinear estimators [7, 12, 22, 27]. The recently proposed
LPA-ICI deconvolution [8, 13, 14, 15] exploits the nonpara-
metric smoothing for a deconvolution algorithm where the

regularized inversion of the convolution operation and the Þl-
tering of the noise are performed simultaneously in an adap-
tive fashion.
The anisotropic version of the LPA-ICI estimator [15] is

a powerful tool to further improve the adaptivity of the non-
parametric approach. We brießy review the basic facts of this
estimator in the following section.

5. ANISOTROPIC LPA-ICI

5.1 Directional LPA
A collection of compactly supported directional LPA kernels'
gh,θk

(
h∈H,k=1,...,K is designed. Each kernel is character-

ized by a direction θk and a scale parameter h. We denote
by ŷh,θk (x) the estimate obtained by Þltering with the ker-
nel gh,θk . The directionality of the kernels arises from two
independent facts:
• the vanishing moment conditions and the accurate poly-
nomial reproducing properties (which characterize the
LPA) are satisiÞed for each kernel gh,θk in the corre-
sponding directions θk ;

• the support (i.e. the windowing function) of the kernels
gh,θk is asymmetrical and oriented along the direction θk .

The elements of the collection
'
gh,θk

(
h∈H,k=1,...,K can

be grouped either by scale (for a Þxed scale h,
{suppgh,θk }k=1,...,K is a covering of the ball of radius h)
or, as in Figures 4-5, by direction (for a Þxed direction θk ,{gh,θk }h∈H is a family of varying scale directional kernels).
In our approach we follow the latter taxonomy and optimize
the scale h independently for each direction θk in such a way
that the noise will be suppressed as much as possible pro-
vided that the speciÞc features of the object y(x) are pre-
served in ŷh,θk (x).
The ICI rule [7] is used in order to achieve this goal in a

pointwise, data-driven, manner (see e.g. [11],[12]).

5.2 ICI optimal scale selection algorithm
Throughout this section the direction is Þxed, thus, for sim-
plicity, we omit the index θk in notation.
Given an ordered set of varying scale kernel estimates'

ŷh j (x)
(J
j=1 with decreasing standard deviations σ ŷh1 >· · ·> σ ŷh J we determine a sequence of conÞdence intervals
D j =

)
ŷh j (x)−)σ ŷh j , ŷh j (x)+)σ ŷh j

*
(3)

where ) > 0 is a threshold parameter. The ICI rule can be
stated as follows:
Consider the interesection of conÞdence intervals I j =+ j
i=1Di and let j∗ be the largest of the indexes j for whichI j is non-empty, I j∗ /=∅ and I j∗+1 =∅. Then the optimal

scale h∗ is deÞned as h∗ = h j∗ and the optimal scale kernel
estimate is therefore ŷh∗ (x).
Theoretical analysis produced in [7] shows that this adap-

tive scale gives the best possible pointwise mean-squared er-
ror. Roughly speaking, ICI selects the coarsest scale estimate
that is statistically compatible with all Þner scales. In prac-
tice this means that adaptively, for every pixel, ICI allows
the maximum degree of smoothing, stopping before over-
smoothing begins.
Optimal values of ) in (3) can be derived from some

heuristic and theoretical considerations (e.g. [11],[12],[28]).



Figure 4: Varying scale LPA kernels (top) and the absolute value of their Fourier transforms (bottom); m = [1,0], θ = 0.

Figure 5: Varying scale LPA kernels (top) and the absolute value of their Fourier transforms (bottom); m = [1,0], θ = 7π/4.

However, pragmatically this sort of results is of small practi-
cal use. In this paper we prefer to treat the threshold ) as a
Þxed design parameter of the inverse halftoning algorithm.

Remark: This optimal scale selection method requires
the knowledge of the estimate and its variance only and
is equally applicable to both introduced algorithms RI and
RWI. The fast implementation of the considered algorithms
is based on the calculation of the estimates ŷh,θk (x) for all x
and h ∈ H using the convolution procedure in the frequency
domain and then ICI based selection of the best estimate for
each x . This is done separately for each direction θk , as a
result we obtain the pointwise adaptive scales h∗ = h∗(x,θk)
depending on θk , k = 1, . . . ,K .
5.3 Anisotropic estimator
Once the optimal scale estimates ŷh∗,θk (x) have been se-
lected, the introduced anisotropic estimator has the following
generic form
ŷ(x)=

,
kλk(x)ŷh∗,θk (x), λk(x)≥0, -kλk(x)=1. (4)

Formula (4) summarizes our basic intentions. We introduce
the directional estimates ŷh,θk (x), optimize the scale param-
eter for each of the directions and then fuse these optimal di-
rectional estimates into the Þnal one ŷ(x) using the weights
λk(x).
The anisotropy of the fused estimator (4) is a direct

consequence of both the asymmetrical directionality of the
LPA kernels and the ICI optimal scale selection that is
performed independently for each direction. The result-
ing fused estimator (4) is thus equivalent to a pointwise
adaptive kernel estimator where the support of the kernel
adapts to the anisotropy of the image. Figure 6 illustrates
this concept showing sequentially: an ideal local estima-
tion neighborhood U∗x , a sectorial covering of the unit ball,
and the sectorial approximation of U∗x using the adaptive

Figure 6: a) an ideal estimation neighborhood U∗x , b) unit
ball covered by sectors, c) sectorial approximation of U∗x .

scales h∗(x,θk) deÞning the length of the corresponding sec-
tors. The union of the asymmetrical supports of the direc-
tional kernels gh∗(x,θk ),θk ,

.
k suppgh∗(x,θk),θk , can be there-

fore considered as an approximation of the best local vicinity
of x in which the estimation model Þts the data [15].

6. INVERSE HALFTONING

6.1 Adaptive deconvolution algorithm
Analogously to the previous sections, capital letters are used
for the discrete Fourier transform of the corresponding func-
tions. We denote by P the complex conjugate of P . The
considered technique is based on the following regularized
inversion (RI) and regularized Wiener inversion (RWI) esti-
mates, using the directional LPA kernels gh,θk :

Ŷ
RI
h,θk =

PGh,θk
|P|2+|Q|2 ε21

Z , (RI) (5)

Ŷ
RWI
h,θk =

P|Y |2Gh,θk
|PY |2+ ε22 |Q|2σ 2

Z . (RWI) (6)

The adaptive procedure assumes that the estimates
{ŷRIh,θk }h∈H are calculated according to (5) for a set of
scales H and the ICI rule selects the best scales for each
direction and for each pixel. In this way we obtain the



Figure 7: Directional LPA-ICI regularized Wiener inverse al-
gorithm. In the Þrst line of the ßowchart the RI estimates are
calculated for a set of scales and directions, the ICI is used to
obtain the pointwise optimal scale directional estimates that
are then fused into the ŷRIh∗ estimate. In the second line the
RWI estimates are calculated using ŷRIh∗ as a reference signal
in Wiener Þltering, again ICI and fusing are performed to
obtain the Þnal ŷRWIh∗ estimate.

directional varying scale adaptive estimates ŷRIh∗(x,θk ),θk ,
k = 1, . . . ,K , which are fused in the Þnal one ŷRIh∗ according
to (4)

ŷRIh∗ (x) =
,

k λ
RI
k(x)ŷ

RI
h∗(x,θk ),θk(x), (7)

λRIk(x) = σ RI−2k (x)/
,

iσ
RI−2
i (x),

where σ RIk is the standard deviation of the optimal scale esti-
mate ŷRIh∗(x,θk),θk .
The fused ŷRIh∗ serves as the reference signal in the RWI

procedure (see Figure 7). The adaptive RWI algorithm is
similar and gives the ICI adaptive varying scales estimates
ŷRWIh∗(x,θk ),θk for each direction and x . Then, the Þnal estimate
ŷRWIh∗ is obtained by fusing these directional ones again simi-
larly to (7):

ŷRWIh∗ (x) =
,

kλ
RWI
k (x)ŷ

RWI
h∗(x,θk),θk(x), (8)

λRWIk (x) = σ RWI−2k (x)/
,

iσ
RWI−2
i (x).

The Þnal estimate of y of the proposed inverse halfton-
ing algorithm is the output given by the RWI deconvolution
scheme (6) that uses the ICI based RI estimate as a reference
signal Y . Thus, we arrive to the two steps procedure shown
in Figure 7.

6.2 Remarks

The ICI adaptive scales h∗ (·,θk) represent the distribution of
image features across the direction θk , as shown in Figure 8
(in the Þgure, darker color corresponds to smaller scales).
The weights λRIk and λ

RWI
k in (7)-(8) are data-driven adaptive

as the variances depend on the adaptive scales h∗(x,θk).
The variances of the estimates ŷRIh,θk and ŷ

RWI
h,θk are ob-

tained, respectively, as

σ RI2h,θk = σ 2

n1n2

///// PGh,θk Q
|P|2+|Q|2 ε21

/////
2

2

,

σ RWI2h,θk = σ 2

n1n2

///// P|Y |2Gh,θk Q
|PY |2+ ε22 |Q|2σ 2

/////
2

2

,

where n1n2 is the size of the input image z, 1·12 denotes the

Figure 8: Peppers (detail): original image (top left), Jarvis
error diffusion halftone (top right), optimal scales h∗ (·,π/4)
(center left), h∗ (·,0) (center right), h∗ (·,π/2) (bottom left),
and LPA-ICI estimate (PSNR=31.6dB) (bottom right). The
arrows indicate the orientation of the kernels.

l2-norm, and σ 2 is the variance of the noise η in formula (1),
which is assumed to be equal to 1.

6.3 Complexity
Concerning the algorithm complexity we note that the algo-
rithm is fast as it is based on fast convolution operations. The
calculation of the estimate ŷh j ,θk for a given scale h j is a lin-
ear convolution requiring Nconv ∼ n logn where n is the size
of the signal. This procedure is repeated J · K times, where
K is a number of directions in the estimator (4) and J is the
number of the used scales h j .

7. SIMULATION RESULTS

Directional LPA kernels were designed on asymmetri-
cal windows oriented along eight directions, {θk}8k=1 ={0,π/4,π/2, . . . ,7/4π}, with orders m = [1,0] and m =
[0,0] for the RI and RWI Þlters respectively. A set of 6 and
9 scales was used for the RI and RWI respectively. Some
of these kernels are shown in Figure 4 and 5. The Þrst and
smallest scale is always equal to 1, i.e. the kernel is the dis-



Inverse halftoning technique Lena Peppers
Anisotropic LPA-ICI 32.4 31.6
WinHD (Neelamani et al.) [26] 32.1 31.2
Wavelet-Vaguelette (Neelamani et al.) [25] 31.9 31.0
Wavelet (Xiong et al.) [30] 31.7 30.7
Gradient (Kite et al.) [20] 31.3 31.4
Kernel (Wong) [31] 32.0 30.3
LUT (Meşe and Vaidyanathan) [24] 31.0 �
LMS-MMSE (Chang et al.) [3] 31.4 31.2
POCS-SVD (Hein and Zakhor) [9] 30.4 �
POCS-Wavelet (Bozkurt and Çetin) [2] 32.2 30.9

Table 1: PSNR (dB) performance of the proposed algorithm
and of other methods for restoration from Floyd-Steinberg
error diffusion.

crete Dirac delta function.
The regularization parameters ε1,ε2 , the LPA kernels

gh,θk and the ICI threshold ) are considered as Þxed design
parameters of the proposed inverse halftoning algorithm. For
all results and Þgures presented in this paper one unique set
of design parameters has been used.
Although little investigation has been done in the opti-

mization of these design parameters, our anisotropic LPA-
ICI inverse halftoning delivers already more than satisfac-
tory results (see Figure 9). Overall, the PSNR values in Ta-
ble 1 show that the new developed algorithm demonstrates
a good performance and outperforms some state-of-the-art
techniques. Visual inspection is also in favor of the new algo-
rithm. Figure 10 shows a fragment of the restored Lena im-
age: when compared to the wavelet based inverse halftoning
method [26], the proposed LPA-ICI procedure shows its su-
periority restoring Þner details without introducing any visi-
ble artifacts.

Remark: Recently in [16] it has been claimed that a decision tree
learning LUT algorithm can yield a PSNR of 34.75dB for the Lena
image, sensibly outperforming all previous records of other authors,
in particular that of the other LUT-based algorithm [24]. However,
we do not include this result in table 1 as it is achieved for an usually
sized 1050×1050 image. The results for the table, as well as all the
Þgures in this paper, correspond instead to the standard 512×512
images. Nevertheless, we tested our algorithm also for the �over-
sized Lena� used in [16], obtaining a PSNR of 37.75dB.
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