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INTRODUCTION

We propose an image denoising method that exploits:

² nonlocal image-modeling (concept originating from [Buades2005]),
² shape-adaptive ltering (proposed in [Foi2007]), and
² principal component analysis (PCA).

Noise is attenuated by shrinkage in a transform domain; its effectiveness depends
on the ability of the transform to sparsely represent true-image data. In our
previous works [Dabov2007,2008] we have addressed the problem of increas-
ing the sparsity by employing non-local modeling by grouping similar image
patches in 3-D groups and by using adaptive-shape neighborhoods [Dabov2008]
instead of rectangular ones. In this work, we extend these methods by exploiting
data-adaptive Principal Component Analysis (PCA) on adaptive-shape neigh-
borhoods as part of the employed 3-D transform.

PROPOSED METHOD

The proposed method (illustrated in Figure 1) works as follows. An input noisy
image is processed in a raster scan, where at each pixel the following is done.

1. Group together square image blocks that are similar to the block centered
at the current pixel.

2. Obtain the anisotropic neighborhood at the current pixel using 8-directional
LPA-ICI [Foi2007]. Apply its shape on each of the grouped blocks, pro-
ducing a group of adaptive-shape neighborhoods.

3. Use this group as training data for computing Shape-Adaptive PCA. That
is, a PCA basis is obtained by eigenvalue decomposition of the empirical
second-moment matrix estimated from the group of similar adaptive-shape
neighborhoods. As principal components (PC), we keep only the eigen-
vectors whose corresponding eigenvalues are greater than a threshold pro-
portional to the noise variance. The overall 3-D transform is a separable
composition of the PCA (applied on each image patch) and a xed orthog-
onal 1-D transform in the third dimension.

4. Apply the 3-D transform on a group of adaptive-shape neighborhoods.
5. Attenuate noise by hard-thresholding or empirical Wiener ltering.
6. Apply the inverse 3-D transform to obtain ltered neighborhoods, which

are then returned to their original locations and aggregated in case of over-
lapping.

We propose to do the above steps in three iterations, where hard-thresholding is
used in the rst two iterations and empirical Wiener ltering is used in the third.
Additionally, in the second and in the third iterations, the search for similar
blocks and the PCA computation are performed on the estimated images from
the preceding iterations.

Fig. 1. Flowchart of the proposed method.

CONCLUSIONS AND FUTURE WORK

² State-of-the-art results in terms of both denoising and detail preservation.
² Relatively high complexity (due to application of PCA locally).
² Future work involves parameter optimization and application of the eigen-

values in the shrinkage itself (rather than trimming the number of PCs
based on the eigenvalue magnitudes)

Fig. 2. Illustration of the PCs (listed by decreasing eigenvalue magnitude) for
two adaptive-shape neighborhoods. The green overlay shows the grouped simi-
lar neighborhoods.

Fig. 3. Fragments of noisy (st. dev. 25) and denoised images.
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Fig. 4. PSNR comparison with other methods.


