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Abstract�The shape-adaptive DCT (SA-DCT) transform can
be computed on a support of arbitrary shape, but retains a
computational complexity comparable to that of the usual separa-
ble block-DCT (B-DCT). Despite the near-optimal decorrelation
and energy compaction properties, application of the SA-DCT
has been rather limited, targeted nearly exclusively to video
compression.
In this paper we present a novel approach to image Þltering

based on the SA-DCT. We use the SA-DCT in conjunction with
the Anisotropic Local Polynomial Approximation (LPA) - Inter-
section of ConÞdence Intervals (ICI) technique, which deÞnes the
shape of the transform�s support in a pointwise adaptive manner.
The thresholded or attenuated SA-DCT coefÞcients are used to
reconstruct a local estimate of the signal within the adaptive-
shape support. Since supports corresponding to different points
are in general overlapping, the local estimates are averaged
together using adaptive weights that depend on the region�s
statistics.
This approach can be used for various image processing tasks.

In this paper we consider in particular image denoising and
image deblocking and deringing from block-DCT compression.
A special structural constraint in luminance-chrominance space
is also proposed to enable an accurate Þltering of color images.
Simulation experiments show a state-of-the-art quality of the
Þnal estimate, both in terms of objective criteria and visual
appearance. Thanks to the adaptive support, reconstructed edges
are clean, and no unpleasant ringing artifacts are introduced by
the Þtted transform.

Index Terms�shape-adaptive, DCT, denoising, deblocking,
deringing, anisotropic.

I. INTRODUCTION

The two-dimensional separable block-DCT (B-DCT), com-
puted on a square or rectangular support, is a well established
and very efÞcient transform in order to achieve a sparse repre-
sentation of image blocks. For natural images, its decorrelating
performance is close to that of the optimum Karhunen-Loève
transform. Thus, the B-DCT has been successfully used as the
key element in many compression and denoising applications.
However, in presence of singularities or edges such near-
optimality fails. Because of the lack of sparsity, edges cannot
be coded or restored effectively, and ringing artifacts arising
from the Gibbs phenomenon become visible.
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In the last decade, signiÞcant research has been made to-
wards the development of region-oriented, or shape-adaptive,
transforms. The main intention is to construct a system
(frame, basis, etc.) that can efÞciently be used for the analysis
and synthesis of arbitrarily shaped image segments, where the
data exhibit some uniform behavior.
Initially, Gilge [19], [20] considered the orthonormalization

of a (Þxed) set of generators restricted to the arbitrarily
shaped region of interest. These generators could be a basis of
polynomials or � for example � a B-DCT basis, thus yielding
a �shape-adapted� DCT transform. Orthonormalization can be
performed by the standard Gram-Schmidt procedure and the
obtained orthonormal basis is supported on the region. Because
the region-adapted basis needs to be recalculated for each
differently shaped region and because the basis elements are
typically non-separable, the overall method presents a rather
high computational cost. While even today it is considered
as one of the best solutions to the region-oriented transforms
problem, Gilge�s approach is clearly unsuitable for real-time
applications, and faster transforms were sought.
A more computationally attractive approach, namely the

shape-adaptive DCT (SA-DCT), has been proposed by Sikora
et al. [47], [49]. The SA-DCT is computed by cascaded ap-
plication of one-dimensional varying-length DCT transforms
Þrst on the columns and then on the rows that constitute
the considered region, as shown in Figure 1. Thus, the SA-
DCT does not require costly matrix inversions or iterative
orthogonalizations and can be interpreted as a direct gener-
alization of the classical 2D B-DCT transform. In particular,
the SA-DCT and the B-DCT (which is separable) have the
same computational complexity and in the special case of
a square the two transforms exactly coincide. Therefore, the
SA-DCT has received considerable interest from the MPEG
community, eventually becoming part of the MPEG-4 standard
[32], [36]. The recent availability of low-power SA-DCT
hardware platforms (e.g. [5],[30],[31]) makes this transform
an appealing choice for many image- and video-processing
tasks.
The SA-DCT has been shown [47], [48], [4], [27] to

provide a compression efÞciency comparable to those of more
computationally complex transforms, such as [20]. The good
decorrelation and energy compaction properties on which this
efÞciency depends are also the primary characteristics sought
for any transform-domain denoising algorithm. In this sense,
the SA-DCT features a remarkable potential not only for
video compression applications, but also for image and video
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denoising.
However, this potential has been apparently ignored by the

image denoising and restoration community. While this indif-
ference may seem rather surprising, there are sound reasons
that can justify it.
The use of a transform with a shape-adaptive support in-

volves actually two separate problems: not only the transform
should adapt to the shape (i.e. a shape-adaptive transform), but
the shape itself must adapt to the image features (i.e. an image-
adaptive shape). The Þrst problem has found a very satisfactory
solution in the SA-DCT transform. How to deal with the
second problem depends on the considered application.
The shape-adaptive coding of noise-free video objects al-

ways assumes that the boundary of these objects is known.
This information can be obtained either from a-priori knowl-
edge (e.g. motion estimation, chroma keying, layered struc-
ture), or it can be estimated from the data with one of the many
automated segmentation algorithms suitable for this purpose
(e.g. [37]). On the contrary, obtaining an accurate and robust
segmentation of noisy data constitutes an extremely more
complex task than the region-oriented coding itself. Unlike in
video coding, such a segmentation cannot be reasonably as-
sumed to be known a-priori. It must be noted that conventional
segmentation (or local-segmentation) techniques which are
employed for video processing are not suitable for degraded
(noisy, blurred, highly compressed, etc.) data. This very aspect
may be identiÞed as the principal reason why the SA-DCT had
not been used for the restoration of noisy images.
In our approach, we use the SA-DCT in conjunction with

the Anisotropic Local Polynomial Approximation (LPA) -
Intersection of ConÞdence Intervals (ICI) [26], [24], [21], [18],
a technique purposely designed to work accurately with noisy
data. By comparing varying-scale directional kernel estimates,
this technique adaptively selects, for each point in the image,
a set of directional adaptive-scales. The length of the support
(i.e. the window size) of the corresponding adaptive-scale
kernels deÞne the shape of the transform�s support in a
pointwise-adaptive manner. Examples of such neighborhoods
are shown in Figures 2, 4, 5, and 13.
For each one of these neighborhoods a SA-DCT is per-

formed. The hard-thresholded SA-DCT coefÞcients are used
to reconstruct a local estimate of the signal within the adaptive-
shape support. By using the adaptive neighborhoods as support
for the SA-DCT, we ensure that data are represented sparsely
in the transform domain, allowing to effectively separate signal
from noise using hard-thresholding.
Since supports corresponding to different points are in

general overlapping (and thus generate an overcomplete rep-
resentation of the signal), the local estimates are averaged
together using adaptive weights that depend on the local
estimates� statistics. In this way we obtain an adaptive estimate
of the whole image.
Once this global estimate is produced, it can be used as

reference estimate for an empirical Wiener Þlter in SA-DCT
domain. Following the same adaptive averaging procedure
as for hard-thresholding, we arrive to the Þnal Anisotropic
LPA-ICI-driven SA-DCT estimate. We term our approach
�Pointwise SA-DCT Þltering�.

Fig. 1. Illustration of the shape-adaptive DCT transform and its inverse.
Transformation is computed by cascaded application of one-dimensional
varying-length DCT transforms, along the columns and along the rows.

In this paper we present this novel approach for the de-
noising of grayscale as well as of color images. Extension
to color images is based on a luminance-chrominance color-
transformation and exploits the structural information obtained
from the luminance channel to drive the shape-adaptation for
the chrominance channels. Such adaptation strategy enables
accurate preservation and reconstruction of image details and
structures and yields estimates with a very good visual qual-
ity. Additionally, we discuss and analyze its application to
deblocking and deringing of block-DCT compressed images.
Particular emphasis is given to the deblocking of highly-
compressed color images.
Since the SA-DCT is implemented as standard in modern

MPEG hardware, the proposed techniques can be integrated
within existing video platforms as a pre- or post-processing
Þlter.

The paper is organized as follows. We begin with the
considered observation model and notation. In Section III we
recall the main points of the Anisotropic LPA-ICI technique.
Various aspects and details of the shape-adaptive DCT trans-
form are given in Section IV. The proposed Pointwise SA-
DCT denoising algorithm is then introduced in Section V,
which constitutes the core of the paper. The application to
deblocking and deringing is given in Section VI, where we
relate the quantization table with the value of the variance to be
used for the Þltering. In Section VII we present the extension
of the proposed methods to color image Þltering, describing
the employed color-space transformations and the structural
constraints which are imposed on the chrominances. The last
section is devoted to results and discussions: we provide
a comprehensive collection of experiments and comparisons
which demonstrate the advanced performance of the proposed
algorithms.

II. OBSERVATION MODEL AND NOTATION

We consider noisy observations z of the form
z (x) = y (x) + η (x) , x ∈ X , (1)

where y is the original image, η (x) ∼ N ¡
0, σ2

¢
is indepen-

dent Gaussian white noise, x is a spatial variable belonging
to the image domain X ⊂ Z2. At the beginning we restrict
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Fig. 2. Anisotropic LPA-ICI. From left to right: sectorial structure of the
anisotropic neighborhood achieved by combining a number of adaptive-scale
directional windows; some of these windows selected by the ICI for the noisy
Lena and Cameraman images.

ourself to grayscale images (and thus scalar functions), while
later (from Section VII) we consider also color images.
Given a function f : X → R, a subset U ⊂ X, and a

function g : U → R, we denote by f|U : U → R the restriction
of f on U , f|U (x) = f (x) ∀x ∈ U , and by g|X : X → R
the zero-extension of g to X,

¡
g|X

¢
|U = g and g|X (x) = 0

∀x ∈ X \ U . The characteristic (indicator) function of U is
deÞned as χU = 1|U|X . We denote by |U | the cardinality (i.e.
the number of its elements) of U . The symbol �~� stands for
the convolution operation.

III. ANISOTROPIC LPA-ICI
The approach is based on the Intersection of ConÞdence

Intervals (ICI) rule, a method originally developed for point-
wise adaptive estimation of 1D signals [21], [24]. The idea has
been generalized for 2D image processing, where adaptive-
size quadrant windows have been used [25]. SigniÞcant im-
provement of this approach has been achieved on the basis of
anisotropic directional estimation [26], [17]. Multidirectional
sectorial-neighborhood estimates are calculated for every point
and the ICI rule is exploited for the adaptive selection of the
size of each sector. Thus, the estimator is anisotropic and
the shape of its support adapts to the structures present in
the image. In Figure 2 we show some examples of these
anisotropic neighborhoods for the Lena and Cameraman im-
ages. The developed anisotropic estimates are highly sensitive
with respect to change-points, and allow to reveal Þne elements
of images from noisy observations.
Let us present the Anisotropic LPA-ICI method in more

detail. For every speciÞed direction θk, k = 1, . . . ,K, a
varying-scale family of directional-LPA convolution kernels
{gh,θk}h∈H is used to obtain a corresponding set of directional
varying-scale estimates {�yh,θk}h∈H , �yh,θk = z~gh,θk , h ∈ H ,
where H ⊂ R+ is the set of scales. These estimates are
then compared according to the ICI rule, and as a result
an adaptive scale h+ (x, θk) ∈ H is deÞned for every x ∈
X and for every direction θk. The corresponding adaptive-
scale estimates �yh+(x,θk),θk (x) are then �fused� together in
an adaptive convex combination in order to yield the Þnal
anisotropic LPA-ICI estimate.
However, in this paper we are not interested in this

anisotropic estimate. Instead, we consider only the adaptive
neighborhood U+x , constructed as the union of the supports
of the directional adaptive-scale kernels gh+(x,θk),θk , U

+
x =SK

k=1 supp gh+(x,θk),θk , which we use as the support for
a shape-adaptive transform. Observe that, being convolution

kernels, the LPA kernels gh,θk are always �centered� at
the origin, therefore U+x is a neighborhood of the origin.
The actual adaptive neighborhood of x, which contains the
observations that are used for estimation, is instead �U+x =
{v ∈ X : (x− v) ∈ U+x }. The neighborhoods shown in Figure
2 are in fact examples of �U+x for a few points x ∈ X.
Let us remark that there is a substantial difference between

image segmentation, in which the image is decomposed in a
limited number (¿ |X|) of non-overlapping subsets (image
segments), and the Anisotropic LPA-ICI, which for every
x ∈ X provides an adaptive neighborhood �U+x of x. In partic-
ular, because of the nonparametric nature of the procedure,
neighborhoods corresponding to adjacent points do usually
overlap.

IV. SHAPE-ADAPTIVE DCT TRANSFORM

The SA-DCT [47], [49] is computed by cascaded appli-
cation of one dimensional varying-length DCT transforms
Þrst on the columns and then on the rows that constitute
the considered region. Several improvements over its original
deÞnition have been proposed. We exploit the most signiÞcant
[27], which concern the normalization of the transform and the
subtraction of the mean and which have a fundamental impact
on the use of the SA-DCT for image Þltering. Additionally,
an alternative scheme for the coefÞcients� alignment is also
utilized.

A. Orthonormal Shape-Adaptive DCT
The normalization of the SA-DCT is obtained by normal-

ization of the individual one-dimensional transforms that are
used for transforming the columns and rows. In terms of their
basis elements, they are deÞned as:
ψ1D-DCT
L,m (n) = cm cos

³
πm(2n+1)

2L

´
, m,n= 0, . . . , L−1, (2)

c0 =
p
1/L, cm =

p
2/L, m> 0. (3)

Here L stands for the length of the column or row to be
transformed. The normalization in (2) is indeed the most
natural choice, since in this way all the transforms used are
orthonormal and the corresponding matrices belong to the
orthogonal group. Therefore, the SA-DCT � which can be
obtained by composing two orthogonal matrices � is itself
an orthonormal transform. A different normalization of the
1D transforms would produce, on an arbitrary shape, a 2D
transform that is non-orthogonal (for example as in [47], [49],
where c0 =

√
2/L and cm = 2/L for m > 0).

Let us denote by TU : U → VU the orthonormal SA-
DCT transform obtained for a region U ⊂ X, where U =
{f : U → R} and VU = {ϕ : VU → R} are function spaces
and VU ⊂ Z2 indicates the domain of the transform coefÞ-
cients. Let T−1U : VU → U be the inverse transform of TU .
We indicate the thresholding (or quantization) operator as Υ.
Thus, the SA-DCT-domain processing of the observations z
on a region U can be written as �yU = T−1U

¡
Υ
¡
TU
¡
z|U
¢¢¢

,
�yU : U → R. From the orthonormality of T and the model (1)
follows that TU

¡
z|U
¢
= TU

¡
y|U
¢
+ η̄, where η̄ = TU (η|U) is

again Gaussian white noise with variance σ2 and zero mean.
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mean subtraction

−−→
SA-DCT

−−→
hard-thresholding

−−→
inverse SA-DCT

−−→
mean addition

−−→

Fig. 3. Hard-thresholding in SA-DCT domain. The image data on an arbitrarily shaped region is subtracted of its mean. The zero-mean data is then
transformed and thresholded. After inverse transformation, the mean is added back.

B. Mean subtraction

There is, however, an adverse consequence of the normal-
ization (2). Even if the signal restricted to the shape z|U
is constant, the reconstructed �yU is usually non-constant. In
[27] this behavior is termed as �mean weighting defect�, and
it is proposed there to attenuate its impact by applying the
orthonormal SA-DCT on the zero-mean data which is obtained
by subtracting from the initial data z its mean. After the
inversion, the mean is added back to the reconstructed signal
�yU : U → R:

�yU = T
−1
U

¡
Υ
¡
TU
¡
z|U −mU (z)

¢¢¢
+mU (z) , (4)

where mU (z) =
1
|U |
P
x∈U z (x) is the mean of z on U .

Although this operation � which is termed �DC separa-
tion� � is not fully justiÞed from the approximation theory
standpoint (because mU (z) is calculated from the noisy data,
and by subtracting it the noise in the coefÞcients is no
longer white), it produces visually superior results without
affecting to the objective restoration performance. The DC
separation (together with a special compensation called �∆DC
correction�) are also considered in MPEG-4 [36].

C. CoefÞcient alignment

To further improve the efÞciency of the SA-DCT, it has been
proposed to align the coefÞcients obtained after the Þrst 1D
transformation along the rows in such a way as to maximize
their vertical correlation before applying the second transform
along the columns. Different strategies, based on different
models of the underlying signal y, have been suggested (e.g.
[3], [2]). Although they can provide a signiÞcant improvement
when the data agrees with the assumed signal�s model, in
practice when dealing with real data only marginal improve-
ment can be achieved over the basic alignment used in [47],
[49], where coefÞcients with the same index m (i.e. all DC
terms, all Þrst AC terms, etc.) are aligned in the same columns,
regardless of the length L of the current row.
In our implementation we use the following alignment

formula, denoting by m and m0 the old (i.e. the one coming
from (2)) and new coefÞcient index, respectively: m0 =
bmLmax/Lc, where L is the length of the current row, m =
0, . . . , L− 1, Lmax is the length of the longest row in U , and
the b·c brackets indicate the rounding to the nearest integer
smaller or equal to (·).

An illustration of the SA-DCT-domain hard-thresholding,
performed according to (4) and to the above coefÞcient align-
ment formula is given in Figure 3.

Fig. 4. From left to right: a detail of the noisy Cameraman showing an
adaptive-shape neighborhood �U+x determined by the Anisotropic LPA-ICI
procedure, and the image intensity corresponding to this region before and
after hard-thresholding in SA-DCT domain.

V. POINTWISE SA-DCT DENOISING

We use the anisotropic adaptive neighborhoods �U+x deÞned
by the LPA-ICI as supports for the SA-DCT, as shown in
Figure 4.
By demanding the local Þt of a polynomial model, we are

able to avoid the presence of singularities or discontinuities
within the transform support. In this way, we ensure that data
are represented sparsely in the transform domain, signiÞcantly
improving the effectiveness of thresholding.
Before we proceed further, it is worth mentioning that the

proposed approach can be interpreted as a special kind of
local model selection which is adaptive with respect both to
the scale and to the order of the utilized model. Adaptivity
with respect to the scale is determined by the LPA-ICI,
whereas the order-adaptivity is achieved by hard-thresholding.
Shape-adapted orthogonal polynomials are the most obvious
choice for the local transform, as they are more consistent
with the polynomial modeling used to determine its support.
However, in practice cosine bases are known to be more
adequate for the modeling of natural images. In particular,
when image processing applications are of concern, the use
of computationally efÞcient transforms is paramount, and thus
in the present paper we restrict ourself to the low-complexity
SA-DCT. We refer the interested reader to [16], where our
approach is considered within the more general theoretical
framework of nonparametric regression.

A. Fast implementation of the anisotropic neighborhood
In practice, we do not need a variety of different shapes as

broad as in the examples of Figures 2 and 4. A much sim-
pliÞed neighborhood structure is used in our implementation.
Narrow one-dimensional �linewise� directional LPA kernels
{gh,θk}h∈{1,2,3,5,7,9} are used for K = 8 directions, and after
the ICI-based selection of the adaptive-scales {h+ (x, θk)}8k=1
the neighborhood U+x is the octagon constructed as the polyg-
onal hull of

©
supp gh+(x,θk),θk

ª8
k=1
. Such neighborhoods are

shown in Figure 5. Although the supports obtained in this
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Fig. 5. Fast implementation of the LPA-ICI anisotropic neighborhoods.
�Linewise�one-dimensional directional LPA kernels are used for 8 directions.
The anisotropic neighborhood U+x is constructed as the polygonal hull of
the adaptive-scale kernels� supports (left). Thus, only the adaptive scales h+
are needed to construct the neighborhood. Some examples of the anisotropic
neighborhoods �U+x used for SA-DCT Þltering of the noisy Cameraman image
(right), σ=25. In our implementation we use h ∈ H = {1, 2, 3, 5, 7, 9}.

way have relatively simple shapes when compared to the
more general examples of Figure 2, we found that this is
not a signiÞcant restriction. On the contrary, a more regular
boundary of the transform�s support is known to improve the
efÞciency of the SA-DCT [4].
We note that in this particular implementation the value

of the adaptive-scale h+ (x, θk) coincides with the length
(measured in pixels) of the directional window in the direction
θk (i.e. with the length of the support of the corresponding
directional kernel).
For the sake of notation clarity, we remind that the adaptive

neighborhood of x used as support for the SA-DCT is �U+x
(with tilde), which is obtained from the adaptive neighborhood
U+x (without tilde) by translation and mirroring, as deÞned in
Section III. In both symbols the subscript �x� denotes the
point for which the adaptive scales are obtained while the �+�
is used to distinguish the adaptive neighborhoods from the
non-adaptive ones.

B. Local estimates
For every point x ∈ X, we construct a local estimate �y �U+

x
:

�U+x → R of the signal y by thresholding in SA-DCT domain
as in (4),

�y �U+
x
= T−1�U+

x

¡
Υx
¡
ϕz,x

¢¢
+m �U+

x
(z) , (5)

where the transform-domain coefÞcients ϕz,x : V �U+
x
→ R are

calculated as
ϕz,x = T �U+

x

³
z|�U+

x
−m �U+

x
(z)
´
, (6)

and Υx is a hard-thresholding operator based on the threshold

σ

q
2 ln | �U+x |+ 1. (7)

This threshold is essentially Donoho�s �universal� threshold
[9].
An estimate of the total sample variance tsvar

©
�y �U+

x

ª
of

�y �U+
x
is given as sum of variances of the transform coefÞcients

which are used for reconstruction. It has the form
tsvar

©
�y �U+

x

ª
= σ2

¡
1 +Nhar

x

¢
, (8)

where N har
x is the number of non-zero coefÞcients after thresh-

olding (so-called �number of harmonics�) and the unit addend
accounts for the addition of the mean after the inversion of the
transform.

Since the anisotropic neighborhoods corresponding to
nearby points are usually overlapping, and since the SA-DCT
is a complete system (basis) for an individual support �U+x , the
overall approach is obviously overcomplete.

C. Global estimate as aggregation of local estimates

In order to obtain a single global estimate �y : X → R
deÞned on the whole image domain, all the local estimates
(5) are averaged together using adaptive weights wx ∈ R in
the following convex combination:

�y =

P
x∈X wx�y �U+

x

|XP
x∈X wxχ �U+

x

. (9)

It is a standard approach to use weights wx that are in-
versely proportional to the average sample variance of �y �U+

x
,

tsvar
©
�y �U+

x

ª
/ | �U+x |. As shown in [22] for the case of sliding

8×8 block DCT denoising, such a simple weighting enables
to attain the same performance achievable with much more
involved models of the blocks� statistics.
However, this simple approach is inadequate when instead

of Þxed-size blocks one is considering adaptive regions with
arbitrary shape and size. In particular, not only the size of the
regions may vary, but also the number of overlapping shapes
may be different for different points. If the inverse of the
average variances are used as weights, it can be observed that
when regions of signiÞcantly different sizes overlap (this may
happen along edges or transitions), then the local estimates
corresponding to larger regions will inevitably �submerge� the
Þner details restored by smaller regions.
Crucial compensation of these oversmoothing effects can be

obtained by dividing the weights by the square of the size of
the support, and we deÞne wx as

wx =
tsvar

©
�y �U+

x

ª−1
| �U+x |

=
σ−2

(1 +Nhar
x ) | �U+x |

. (10)

Let us observe that in areas where the size of the adaptive
neighborhood is nearly constant (e.g. within smooth parts of
the image) the weights (10) are inversely proportional to the
average and to the total sample variances of the corresponding
local estimates, wx ∝ tsvar

©
�y �U+

x

ª−1. Thus, we can use the
weights (10) for such areas also.
The weights wx have this form because the total sample

variance tsvar
©
�y �U+

x

ª
is obviously an upper bound for the

pointwise residual-noise variance of the local estimate �y �U+
x

(such pointwise variance is not necessarily uniform over �U+x ),
while the extra factor | �U+x | addresses the correlation that
exists between overlapping neighborhoods (the number of
overlapping neighborhoods is loosely proportional to their
size). Qualitatively speaking, these weights favour estimates
which correspond to sparser representations (fewer coefÞcients
survived thresholding, and thus lower variance) and at the
same time avoid that estimates with a small support (thus
representing image details) are oversmoothed by other over-
lapping estimates which have a large support (which usually
are strongly correlated among themselves and outnumber
estimates of a smaller support).
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Fig. 6. A fragment of Lena. From left to right: original, noisy observation (σ=25, PSNR=20.18dB), BLS-GSM estimate [42] (PSNR=31.69dB), and the
proposed Pointwise SA-DCT estimate (PSNR=31.66).

D. Wiener Þltering in SA-DCT domain
Using the same approach as for thresholding, we introduce

an empirical Wiener Þlter in the SA-DCT domain. It assumes
that an estimate �y of y is known (in practice, we obtain this
estimate using the above thresholding technique). For every
x ∈ X, let ϕ�y,x : V �U+

x
→ R be the SA-DCT (on �U+x )

coefÞcients of �y where the mean m �U+
x
(z) of z is subtracted

before applying the transform:
ϕ�y,x = T �U+

x

³
�y|�U+

x
−m �U+

x
(z)
´
. (11)

The local Wiener estimate �ywi�U+
x
is deÞned as

�ywi�U+
x
= T−1�U+

x

¡
ωxϕz,x

¢
+@xm �U+

x
(z) , (12)

where the SA-DCT coefÞcients ϕz,x of z are calculated as in
(6), and ωx ∈ V �U+

x
and @x ∈ R are respectively the Wiener

attenuation factors for ϕz,x and for the subtracted mean value
m �U+

x
(z),

ωx =
ϕ2�y,x

ϕ2�y,x + σ
2
, @x =

m2
�U+
x
(�y)

m2
�U+
x
(�y) + σ2/ | �U+x |

. (13)

The global estimate �ywi can be obtained analogously as in (9),
using the convex combination with the adaptive weights wwix :

�ywi =

P
x∈X w

wi
x �y

wi
�U+
x

|XP
x∈X wwix χ �U+

x

, wwix =
σ−2

(@2
x+

P
V �U+x

ω2x)| �U+x |
. (14)

Similarly to (10), the termσ2
¡
@2
x+
P
V �U+x

ω2x
¢
in the adaptive

weights corresponds to an estimate of the total sample variance
of �ywi�U+

x
.

The Pointwise SA-DCT results which we present in this
paper correspond to the �ywi estimate (14), obtained using the
thresholding estimate �y (9) as a reference for the calculation
of the Wiener attenuation factors ωx,@x (13).

VI. POINTWISE SA-DCT FOR DEBLOCKING AND
DERINGING OF BLOCK-DCT COMPRESSED IMAGES

The scope of the proposed Þltering method is not limited
to denoising only, and in this section we extend the above
Pointwise SA-DCT denoising algorithm into an high-quality
image deringing and deblocking Þlter for B-DCT compressed
images.

Fig. 8. Agreement between the values of σ estimated by Equation (15) and
the best ones (found experimentally), which give the highest PSNR for the
Þltered Lena, Boats, and Peppers images.

A. Motivation
The new wavelet-based JPEG-2000 image compression

standard solved many of the drawbacks of its predecessor
JPEG, which relies on the 8×8 B-DCT. The use of a wavelet
transform computed globally on the whole image, as opposed
to the localized B-DCT, does not introduce any blocking arti-
facts and allows it to achieve a very good image quality even at
high compression rates. Unfortunately, this new standard has
received so far only very limited endorsement from digital
camera manufacturers and software developers. As a matter
of fact, the classic JPEG still dominates the consumer market
and the near-totality of pictures circulated on the internet is
compressed using this old standard. Moreover, the B-DCT
is the workhorse on which even the latest MPEG video
coding standards rely upon. There are no convincing indicators
suggesting that the current trend is about to change any time
soon. All these facts, together with the ever growing consumer
demand for high quality imaging, makes the development of
advanced and efÞcient post-processing (deblocking, deringing,
etc.) techniques still a very actual and relevant application area.

B. Modeling
While more sophisticated models of B-DCT-domain quan-

tization noise have been proposed by many authors, we model
this degradation as some additive noise. Thus, we use the
observation model z = y + η of Equation (1), where y is
the original (non-compressed) image, z its observation after
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Fig. 7. A fragment of Cameraman. From left to right: original, noisy observation (σ=25, PSNR=20.14dB), BLS-GSM estimate [42] (PSNR=28.35dB), and
the proposed Pointwise SA-DCT estimate (PSNR=29.11dB).

quantization in B-DCT domain, and η is noise with variance
σ2. In order to apply the Pointwise SA-DCT Þlter we need a
suitable value for the variance σ2. We estimate it directly from
the quantization table Q= [qi,j ]i,j=1,...,8 using the following
empirical formula:

σ2 = 0.69 · ¡.........q¢1.3 , .........q = 1
9

X3

i,j=1
qi,j . (15)

This formula uses only the mean value
.........q of the nine table

entries which correspond to the lowest-frequency DCT har-
monics (including the DC-term) and has been experimentally
veriÞed to be adequate for a wide range of different quantiza-
tion tables and images. In Figure 8 we show how the values
of σ calculated by Equation (15) agree with the best values
found experimentally for the Lena, Boats, and Peppers images
compressed with different quantization tables corresponding
to JPEG with quality Q=1,. . . ,100 (and thus

.........q=1,. . . ,255).
Note that a higher compression (e.g. JPEG with small Q)
corresponds to a larger value for this variance (i.e. Q and

.........q are
inversely related). The standard-deviation σ is not linear with
respect to the qi,j�s, a fact which reßects the non-uniformity
of the distribution of the B-DCT coefÞcients.
Note that the σ2 which is calculated by (15) is not an

estimate of the variance of compressed image, nor it is an
estimate of the variance of the difference between original and
compressed images. Instead, it is simply the assumed value
for the variance of η in the observation model (1). Roughly
speaking, it is the variance of some hypothetical noise which,
if added to the original image y, would require � in order to
be removed � the same level of adaptive smoothing which is
necessary to suppress the artifacts generated by the B-DCT
quantization with the table Q. Much larger or much smaller
values of σ2 would respectively result in oversmoothing or
leave the compression artifacts unÞltered.
Figures 9 and 10 show fragments of the JPEG-compressed

grayscale Cameraman image obtained for two different com-
pression levels (JPEG quality Q=6 and Q=15) and the corre-
sponding Pointwise SA-DCT Þltered estimates. For these two
cases the estimated standard-deviations are σ=17.6 and σ=9.7.
Let us observe that the procedure deÞned by (15) can be

used in a straightforward manner, because the quantization
tables are always (and necessarily) either provided with the
coded data, or Þxed in advance by the compression standard.
It allows to apply the Pointwise SA-DCT denoising algorithm

Fig. 9. Details of the JPEG-compressed Cameraman (Q=6, bpp=0.19,
PSNR=25.03dB) and of the corresponding Pointwise SA-DCT estimate
(PSNR=26.11dB). The estimated standard deviation for this highly com-
pressed image is σ=17.6.

Fig. 10. Details of the JPEG-compressed Cameraman (Q=15, bpp=0.37,
PSNR=27.71dB) and of the corresponding Pointwise SA-DCT estimate
(PSNR=28.58dB). The estimated standard deviation for this compressed image
is σ=9.7.

of Section V as an effective deblocking and deringing Þlter
for B-DCT coded images and videos. The proposed method
is particularly relevant for video postprocessing, since it can
exploit the SA-DCT hardware of MPEG-4 decoders.

VII. POINTWISE SA-DCT FILTERING OF COLOR IMAGES
WITH STRUCTURAL CONSTRAINT IN
LUMINANCE-CHROMINANCE SPACE

The extension from grayscale to color images of our denois-
ing and deblocking approach is based on a very simple, yet
powerful strategy. The key idea is the following: the structures
(e.g. objects, edges, details, etc.) which determine the adaptive
shapes are the same across all three color channels, thus the
same shapes should be used for the SA-DCT Þltering of
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the three channels. In order to increase its effectiveness, the
method is implemented after transformation in a luminance-
chrominance color-space. We call it structural constraint in
luminance-chrominance space and it fully exploits the shape-
adaptive nature of our approach without adding anything to its
complexity.

A. Luminance-chrominance space
We generalize the observation model (1) to color data. Let

y = [yR yG yB] be the original color image in the RGB color
space. We consider noisy observations z = [zR zG zB] of the
form

zC = yC + ηC , C = R,G,B, (16)

where the noise η = [ηR ηG ηB] is independent Gaussian,
ηC (·) ∼ N

¡
0, σ2C

¢
, C = R,G,B.

In order to deal with color images, we Þrst perform a color-
space transformation, aiming at reducing the strong correlation
between channels which is typical of the RGB space. In par-
ticular, we consider the �opponent� and the YUV/YCbCr color
spaces [41]. Up to some normalization, the transformation to
these color spaces can be expressed by multiplication of a
column vector with the R, G, and B components against one
of the matrices

Aopp=


1
3

1
3

1
3

1√
6 0

−1√
6

1
3
√
2

−√2
3

1
3
√
2

, Ayuv=
 0.30 0.59 0.11
−0.17 −0.33 0.50
0.50 −0.42 −0.08

 .
Although purists may consider it an abuse of terminology, we
call �luminance� and �chrominances� not only the components
the YUV space, but also those of the opponent color space. We
denote the luminance channel as Y , and the chrominances as
U and V .
In such luminance-chrominance decompositions, the origi-

nal inter-channel correlation of the RGB space is captured into
the luminance channel, which thus enjoys a better signal-to-
noise ratio (SNR), whereas the chrominance channels contain
the differential information among the RGB channels.
We then come to the following observation model in

luminance-chrominance space,
zC = yC + ηC , C = Y,U, V, (17)

where [zY zU zV ] = [zR zG zB ]AT , [yY yU yV ] = [yR yG
yB ]A

T , and ηC (·) ∼ N
¡
0, σ2C

¢
, C = Y,U, V .

Ideally, the Y , U , and V channels are considered as inde-
pendent. Therefore, the common approach for color denoising
in luminance-chrominance space is to Þlter the three channels
(i.e. zY , zU , and zV ) separately and independently one from
the other.
However, when considering natural images, the different

color channels always share some common features which are
inherited from the structures and from the objects depicted in
the original image. In particular, it can be observed that along
the objects� boundaries all color channels usually exhibit some
simultaneous discontinuities or sharp transitions.
We exploit this kind of structural correlation by imposing

that the three transform�s supports which are used for the
Þltering of zY , zU , and zV at a particular location have the
same adaptive shape. In practice, we use for all three channels

Fig. 11. Fragments of the original F-16 image (top-left), of its noisy ob-
servation (σ=30, PSNR=18.59dB) (top-right) and of two denoised estimates:
our Pointwise SA-DCT estimate (bottom-left), and the ProbShrink-MB [40]
estimate (bottom-right). The PSNR for the two estimates is 31.59dB and
30.50dB, respectively.

the adaptive neighborhoods deÞned by the Anisotropic LPA-
ICI for the luminance channel.
Such a constraint has the effect that whenever some struc-

ture is detected (in the luminance channel by the LPA-ICI),
it is taken into account (and thus preserved) for the Þltering
of all three channels. Restricted to the adaptive supports,
however, the channels are assumed as independent, and thus
the transform-domain hard-thresholding and Wiener Þltering
are still performed for each channel independently from the
others.
After the Þltering of the three channels, inverse color-

transformation returns the estimate of the original image y
in the RGB space.

B. Pointwise SA-DCT denoising in luminance-chrominance
space
The noise variances for the Y , U , and V channels can

be calculated as the elements of the vector [σ2Y σ2U σ2V ] =
[σ2R σ2G σ2B]A

T2, where σ2R, σ2G, and σ2B are the noise
variances for the R, G, and B channels and AT2 is the trans-
posed color transformation matrix with all elements squared.
For denoising, the opponent color transformation is preferable
because of the orthogonality of the rows of Aopp.
The better SNR of the luminance and its higher �information

content� are the two main reasons why it is in this channel
that we look for structures. There are also other reasons. In
natural images it often happens that uniformly colored objects
present luminance variations due to non-uniform illumination
or shadowing: such transitions cannot be detected from the
chrominances. On the other hand, it is quite rare that abrupt
changes appear in the chrominances and not in the luminance.
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Fig. 12. Fragments of the JPEG-compressed (Q=10, 0.25bpp,
PSNR=26.87dB), and restored F-16 color image (PSNR=28.30dB) using
the proposed Pointwise SA-DCT deblocking Þlter in luminance-chrominance
space.

Therefore, it is sufÞcient to perform the LPA-ICI adaptive-
scale selection on the luminance channel only.

C. Deblocking and deringing of B-DCT compressed color
images
The proposed strategy for color image Þltering is also par-

ticularly effective for deblocking and deringing color images.
When compressing color images or video, the standard

approach (e.g. in the JPEG and MPEG), is to Þrst perform
the YUV color transformation and then compress the result-
ing three channels separately. According to the modeling
in the previous sections, we assume that the original (non-
compressed) image y in the RGB color space is represented,
after B-DCT quantization in YUV space, as the zC in the ob-
servation model (17), where yY , yU and yV are the luminance
and chrominance channels of y, and zY , zU and zV are the
corresponding channels after quantization in B-DCT domain.
We estimate the variances σ2Y , σ2U , and σ2V of ηC , C =

Y,U, V , from the corresponding quantization tables for the
luminance and chrominance channels, using formula (15).
However, if (as it is commonly done) the chrominance chan-
nels are downsampled, then the estimated variances for the
chrominances need to be further multiplied by 2, in order to
account for the coarser sampling.
Usually, the quantization tables Q U and Q V used for the

two chrominances coincide, Q U = Q V = Q UV . Following
standard models of the human visual system, a higher com-
pression is typically performed on the chrominances than on
the luminance. Thus, it is typical that the estimated variances
are such that 2σ2Y < σ2U = σ2V . Even at relatively high bit-
rates, the compression of the chrominance channels can be
quite aggressive.

As for color image denoising, we approach color data in
a channel-by-channel manner imposing a unique structural
constraint among the three channels. This allows to Þlter
the chrominance channels restoring the structural information
which was lost due to quantization and coarse sampling. The
peculiarity of our approach is easily explained and demon-
strated through the next example.
Figures 12 and 13 present a very common scenario. It can

be seen that only very few AC-terms of the chrominance
blocks survive to quantization, and the resulting chrominance
channels end up with the vast majority of blocks represented

Y

U

V

−→

−→

−→

Fig. 13. The adaptive anisotropic neighborhoods are selected by the LPA-ICI
on the luminance channel (left-top). Observe that the neighborhoods are not
affected by the blocking artifacts and yet are quite accurate with respect to
the image features. These neighborhoods are used for SA-DCT Þltering of the
luminance as well as of the two chrominances (left-middle and left-bottom).
The result of such Þltering is shown in the right column. The color estimate
obtained after inverse YUV color-transformation is shown in Figure 12.

by the DC-term only. It results in unpleasant color-bleeding
artifacts along edges between differently colored objects. At
the same time, on smoother areas the uneven hue due to
quantization becomes particularly noticeable. In this example,
the values of σY and σU = σV calculated according to
formula (15) are 12.6 and 27.1, respectively.
As shown in Figure 13(left), we use for all three channels

the adaptive neighborhoods deÞned by the Anisotropic LPA-
ICI for the Y channel, because it is in the luminance that
the structural information is usually better preserved after
compression.
Figure 13(right) shows that the proposed method effectively

attenuates ringing and blocking artifacts, faithfully preserving
the structures and the salient feature in the image. More-
over, it demonstrates its ability of reconstructing the missing
structural information in the chrominance channels, where
the details of the tail of the plane are clearly revealed, with
precise boundaries. The obtained color estimate, shown in
Figure 12(right), is then quite sharp, with well-deÞned edges,
and the color-bleeding artifacts (clearly visible in the JPEG-
compressed image) are accurately corrected.

VIII. EXPERIMENTS AND RESULTS
We conclude the paper with a number of experimental

results and comparisons which demonstrate the state-of-the-
art performance of the developed algorithms.

A. Grayscale denoising
Let us start with Þltering of grayscale images corrupted by

additive Gaussian white noise. In Table I we compare our
results against those reported by other authors. In terms of
PSNR, the results of our estimates are high, often outperform-
ing all other methods. Additional results are given in Table
II for more images and levels of noise. We emphasize the
outstanding preservation of sharp details which we demon-
strate in Figures 6, 7, and 14, while almost no visible artifacts
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TABLE I
PSNR (DB) COMPARISON TABLE FOR THE DENOISING OF THE GRAYSCALE Lena, Boats, Peppers, AND House TEST IMAGES WITH

DIFFERENT LEVELS OF GAUSSIAN NOISE.

Lena 512×512 Boats 512×512 Peppers 256×256 House 256×256
Method σ 15 20 25 15 20 25 15 20 25 15 20 25
Pointwise SA-DCT 33.86 32.62 31.66 31.79 30.49 29.47 32.44 31.04 29.92 34.14 32.92 31.92
BLS-GSM (Portilla et al.) [42] 33.90 32.66 31.69 31.70 30.38 29.37 31.74 30.31 29.21 33.63 32.39 31.40
Patch-based (Kervrann and Boulanger) [29] 33.70 32.64 31.73 31.44 30.12 29.20 32.13 30.59 29.73 34.08 32.90 32.22
MGGD (Cho and Bui) [7] 33.70 32.46 31.48 31.46 30.14 29.12 � � � � � �
Recursive Anisotropic LPA-ICI [17], [18] 32.72 31.44 30.43 30.87 29.58 28.58 31.78 30.30 29.16 33.18 31.82 30.73

TABLE II
GRAYSCALE IMAGE DENOISING PERFORMANCE AS PSNR (DB) FOR THE

PROPOSED POINTWISE SA-DCT ALGORITHM.

σ Lena Peppers Barbara C.man House Hill
5 38.54 37.99 37.47 38.15 39.38 37.03
10 35.58 34.46 33.48 33.98 35.98 33.43
15 33.86 32.44 31.37 31.70 34.14 31.60
20 32.62 31.04 30.00 30.18 32.92 30.39
25 31.66 29.92 28.95 29.11 31.92 29.50
30 30.86 29.03 28.10 28.24 31.10 28.80
35 30.17 28.26 27.35 27.51 30.39 28.22
50 28.60 26.55 25.44 25.88 28.67 26.85

Fig. 14. Fragments of the Pointwise SA-DCT estimates of the Boats, Peppers,
and House images, σ=25.

are present. Other transform-based estimates, such as those
from [42], often display noticeable overshootings on the edges
and unpleasant spurious oscillations. These artifacts, which are
characteristic of all oscillatory transforms (including the SA-
DCT), do not appear in our estimates thanks to the adaptive
selection of the transform support.

B. Color denoising
For the color denoising experiments, the variance of the

additive Gaussian noise is set to be the same for all RGB color
channels, σ2R = σ2G = σ2B = σ2. Filtering is performed after
transformation to the opponent color space. Table III gives the
PSNR results for the denoising of the Lena, Peppers, Baboon,
House, F-16, and Lake color test-images over a wide range of
values of σ.
In Table IV we compare our results against those by

other state-of-the-art methods, as reported in [40]. In partic-
ular, the vector-based minimum-mean-squared-error estimator
(VMMSE) [45], the multiband wavelet thresholding (MBT)
[44], and the ProbShrink-multiband wavelet algorithm [40] are
considered for comparison.
Let us note that the reference methods which are included

in the Table IV are all multiband or vector methods, which are
speciÞcally designed for the denoising of color or multispectral

TABLE III
COLOR IMAGE DENOISING PERFORMANCE AS PSNR (DB) FOR THE

PROPOSED POINTWISE SA-DCT ALGORITHM.

σ Lena Peppers Baboon House F-16 Lake
10 34.95 33.70 30.62 35.67 36.41 32.34
15 33.58 32.42 28.33 34.09 34.67 30.52
20 32.61 31.57 26.89 32.97 33.41 29.40
25 31.85 30.90 25.86 32.12 32.42 28.58
30 31.21 30.33 25.07 31.39 31.59 27.93
35 30.65 29.81 24.44 30.74 30.88 27.38
50 29.27 28.53 23.03 29.13 29.19 26.10
75 27.77 27.07 21.46 27.39 27.43 24.68

images. Such algorithms simultaneously Þlter all channels,
exploiting the possible inter-channel correlation, and are thus
inherently superior to the simpler strategy where a scalar
(grayscale) denoising Þlter is used independently for each
separate channel.
We remark that although in our approach the adaptive

supports for the SA-DCT at a particular location are the
same for all three channels, the SA-DCT-domain Þltering
is performed for each channel independently. Nevertheless,
our results are very competitive and the comparison table
shows that in fact the proposed technique outperforms all other
reference methods.
Similarly to the grayscale case, the denoised color estimates

produced by our adaptive algorithm are visually very good.
A close inspection to Figures 11 and 15 may reveal the
outstanding preservation of sharp details achieved by the
shape-adaptive transform. At the same time, almost no visible
artifacts (such as blurriness or overshootings) are present.

C. Deblocking and deringing
In order to assess the Þltering performance of the proposed

method, extensive simulation experiments were performed
for different types of quantization tables, several level of
compression, and for grayscale as well as for color images.
We reproduce the same experimental settings used by other
authors and we present comparative numerical results collected
in three separate tables. The Þrst two tables contain results for
grayscale images obtained using three particular quantization
tables found in the literature (Table V) and using the standard
JPEG (Table VI). The third and last table is dedicated to
experiments with JPEG compression of color images.
Three quantization tables, usually denoted as Q1, Q2, and

Q3, have been used by many authors (e.g. [33] and references
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Fig. 15. Fragments from the noisy (σ=25, PSNR=20.18dB) and denoised color Peppers image (PSNR=30.90dB), obtained using the proposed Pointwise
SA-DCT algorithm.

TABLE IV
PSNR (DB) COMPARISON TABLE FOR THE DENOISING OF THE Lena, Peppers, AND Baboon COLOR TEST IMAGES WITH DIFFERENT

LEVELS OF GAUSSIAN NOISE.

Color Lena 512×512 Color Peppers 512×512 Color Baboon 512×512
Method σ 10 15 20 25 10 15 20 25 10 15 20 25
Pointwise SA-DCT 34.95 33.58 32.61 31.85 33.70 32.42 31.57 30.90 30.62 28.33 26.89 25.86
ProbShrink-MB (Pizurica et al.) [40] 34.60 33.03 31.92 31.04 33.44 32.05 31.12 30.35 30.17 27.83 26.38 25.27
VMMSE (Scheunders and Driesen) [45] 34.02 31.89 30.24 28.88 33.12 31.13 29.67 28.45 30.68 28.24 26.63 25.36
MBT (Scheunders) [44] 33.84 32.29 31.14 30.15 31.19 30.22 29.45 28.77 28.50 26.78 25.53 24.56

therein) in order to simulate various types of B-DCT compres-
sion. To help the reader identifying the considered quantization
tables, we report here the Þrst row of each table:
Q1 (1 · · · 8,1) = [50 60 70 70 90 120 255 255],
Q2 (1 · · · 8,1) = [86 59 54 86 129 216 255 255],
Q3 (1 · · · 8,1) = [110 130 150 192 255 255 255 255].

The values of the standard deviation σ corresponding to these
three tables � calculated using formula (15) � are 12.62, 13.21,
and 22.73, respectively. In terms of image degradation, they
correspond to a medium to high compression level, similar to
what can be obtained by using JPEG with quality Q=11, Q=9,
and Q=5, respectively.
In Table V we present results for deblocking from B-

DCT quantization performed using these speciÞc quantization
tables. We compare the results obtained by our SA-DCT
algorithm against the best results obtained by any of the
methods [33], [23], [35], [39], [56], [54], as reported in [33].
The results are in favor of our proposed technique, which
consistently outperforms all other methods.
Further positive results are shown in Table VI for the case of

deblocking from JPEG-compression. In this second table we
compare against the best result obtained by any of the methods
[1], [6], [43], [55], [34], [35], as reported in [1]. Also in this
comparison, the SA-DCT method is found to be superior to
all other techniques, outperforming them of about 0.5dB in all
experiments.
In Table VII we show results for the SA-DCT Þltering

of JPEG-compressed color images, from very high (Q=4)
to very low (Q=75) compression levels. It can be seen that

the improvement is signiÞcant especially for very high and
moderate compression levels. For very low compression levels
(for which the compression artifacts are barely visible and thus
there is typically no need for postprocessing) the improvement
is still substantial for those images which present some struc-
tures or edges.
For the simulations in Table VI and Table VII as well as

for all JPEG experiments presented in this paper, we use
the baseline IJG JPEG implementation. For a JPEG-quality
parameter Q=50, the top rows of the quantization tables for
the luminance and chrominance channels are

QYQ=50 (1 · · · 8,1) = [16 11 10 16 24 40 51 61],
QUVQ=50 (1 · · · 8,1) = [17 18 24 47 99 99 99 99],

and the corresponding estimated standard-deviations according
to (15) are σY = 4.4 and σU = σV = 9.7.
We conclude with two examples which highlight the very

special reconstruction ability enabled by our structural con-
straint in luminance-chrominance space.
Figure 16(left) shows a fragment of the JPEG compressed

Lena image (Q=20, 0.38bpp, PSNR=29.83dB). The corre-
sponding U and V chrominance channels are shown in Figure
17. One can barely recognize the salient features of the
image, such as the border of the hat or the contours of the
eyes and nose. These structures can be faithfully restored
by the use of adaptive-shape supports which are determined
from the luminance channel, as shown in Figure 18. It is
remarkable that even small details such as the iris can be
accurately reconstructed from the coarse available information
using adaptive transform�s supports. The restored color image
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TABLE V
PSNR (DB) COMPARISON TABLE FOR RESTORATION FROM B-DCT QUANTIZATION FOR THREE DIFFERENT QUANTIZATION MATRICES.
THE VALUES UNDER �OTHERS� CORRESPOND TO THE BEST RESULTS OF ANY OF THE METHODS [33], [23], [35], [39], [56], [54], AS

REPORTED IN [33].

Lena 512×512 Peppers 512×512 Barbara 512×512
Table image others P. SA-DCT image others P. SA-DCT image others P. SA-DCT
Q1 30.70 31.63 32.12 30.42 31.33 32.02 25.94 26.64 26.79
Q2 30.09 31.19 31.56 29.82 30.97 31.45 25.59 26.32 26.45
Q3 27.38 28.65 29.03 27.22 28.55 29.13 24.03 24.73 25.13

TABLE VI
PSNR (DB) COMPARISON TABLE FOR RESTORATION FROM JPEG COMPRESSION OF GRAYSCALE IMAGES. THE VALUES UNDER

�OTHERS� CORRESPOND TO THE BEST RESULT OBTAINED BY ANY OF THE METHODS [1], [6], [43], [55], [34], [35], AS REPORTED IN
[1].

Lena 512×512 �Green Peppers�1 512×512 Barbara 512×512
Qual. JPEG (bpp) others P. SA-DCT JPEG (bpp) others P. SA-DCT JPEG (bpp) others P. SA-DCT
4 26.46 (0.11) 27.63 28.08 25.61 (0.14) 26.72 27.41 23.48 (0.14) 24.13 24.65
6 28.24 (0.15) 29.22 29.87 27.32 (0.18) 28.22 28.97 24.50 (0.18) 25.08 25.51
8 29.47 (0.18) 30.37 30.99 28.40 (0.22) 29.28 29.90 25.19 (0.23) 25.71 26.11
10 30.41 (0.22) 31.17 31.84 29.16 (0.25) 29.94 30.51 25.79 (0.28) 26.27 26.61
12 31.09 (0.25) 31.79 32.48 29.78 (0.28) 30.47 31.00 26.33 (0.32) 26.81 27.10

TABLE VII
PSNR (DB) RESULTS FOR THE POINTWISE SA-DCT FILTERING OF JPEG-COMPRESSED COLOR IMAGES. RESULTS ARE GIVEN ALSO IN

TERMS OF IMPROVEMENT-IN-SNR (ISNR, DB).

Color Lena 512×512 Color Peppers 512×512 Color Baboon 512×512 Color House 256×256
Qual. JPEG (bpp) P. SA-DCT ISNR JPEG (bpp) P. SA-DCT ISNR JPEG (bpp) P. SA-DCT ISNR JPEG (bpp) P. SA-DCT ISNR
4 23.34(0.12) 24.79 1.45 22.32(0.13) 23.77 1.46 19.28(0.17) 20.00 0.72 22.63(0.15) 23.76 1.13
6 25.52(0.16) 27.09 1.57 23.99(0.17) 25.54 1.54 20.38(0.26) 21.05 0.67 24.41(0.19) 25.66 1.24
8 26.64(0.19) 28.16 1.52 24.99(0.21) 26.40 1.41 21.12(0.35) 21.71 0.59 25.16(0.24) 26.41 1.25
10 27.53(0.23) 29.06 1.53 25.77(0.25) 27.11 1.34 21.63(0.43) 22.13 0.50 26.25(0.27) 27.54 1.29
15 28.97(0.31) 30.33 1.35 26.88(0.33) 27.99 1.11 22.49(0.62) 22.88 0.38 27.52(0.34) 28.66 1.14
20 29.83(0.38) 31.00 1.17 27.57(0.40) 28.53 0.96 23.07(0.77) 23.37 0.31 27.87(0.41) 28.75 0.88
25 30.44(0.44) 31.46 1.02 28.04(0.47) 28.90 0.86 23.50(0.92) 23.75 0.25 28.55(0.47) 29.44 0.89
30 30.91(0.50) 31.79 0.88 28.40(0.54) 29.14 0.74 23.85(1.05) 24.06 0.21 28.96(0.54) 29.76 0.80
40 31.54(0.61) 32.26 0.72 28.83(0.66) 29.45 0.62 24.40(1.29) 24.56 0.16 29.51(0.65) 30.20 0.69
50 32.02(0.72) 32.63 0.61 29.25(0.78) 29.81 0.56 24.85(1.51) 24.97 0.12 29.80(0.76) 30.40 0.60
75 33.21(1.13) 33.56 0.35 30.29(1.23) 30.67 0.52 26.21(2.33) 26.25 0.04 31.44(1.18) 32.00 0.56

(PSNR=31.00dB) is shown in Figure 16(right). The ringing
and the blocking artifacts disappeared, whereas no details have
been oversmoothed, demonstrating the superior adaptivity of
the approach. Moreover, thanks to the accurate reconstruction
of the structures in the chrominance channels, our estimate
does not exhibit any signiÞcant chromatic distortion and has
a natural appearance.
Although it is well-established that the human visual sys-

tem is less sensitive to distortions in the chrominances than
to those in the luminance, the importance of restoring the
chrominances must not be overlooked. In fact, all modern
image and video compression standards are designed to exploit
the characteristics of the human visual system, and thus adjust
the compression rate for the luminance and chrominance
channels in such a way to balance the perceptual impact of
the distortions among the three channels. Therefore, when

1In order to replicate the experiments as in [1], the �Peppers� image used
for Table VI is the green channel of the RGB color Peppers. Let us note,
however, that far more often in the literature the grayscale Peppers are found
as the luminance channel Y of the RGB Peppers image.

visual quality is of concern, the restoration of the different
channels deserves equal attention. The downsampling and the
coarser quantization of the chrominances makes their accurate
restoration a much more difÞcult and challenging task.

Figure 19 provides a Þnal example of the accuracy of the
proposed method. First, one can see the sharp reconstruction of
contours (e.g. in the legs, shoulders and head). Color-bleeding
and blocking artifacts are completely suppressed, not only on
smooth regions but even on rather thin details such as the
snorkel. Second, the Þgure shows that the method is still
reliable even when no useful structural information can be
extracted from the luminance channel. In particular, it can be
seen that the swimsuit is composed of three differently colored
patches, all of which have the same luminance. This makes
impossible to reconstruct the boundaries between these patches
in a very sharp manner, as the only information available lies
in the chrominances. Nevertheless, because the SA-DCT is a
basis (complete system), the different colors of these patches
are well preserved, while the transform-domain thresholding
effectively suppresses the blockiness.
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Fig. 16. Fragment of the JPEG-compressed Lena image (Q=20,
0.38bpp, PSNR=29.83dB) and of its Pointwise SA-DCT Þltered estimate
(PSNR=31.00dB).

D. Subjective perceptual quality
Although the Þgures presented in this paper already show

that the Pointwise SA-DCT estimates are visually very good,
we wish to mention that an independent research as been
conducted [51], [52], aiming at evaluating the perceptual
quality of the estimates of many state-of-the-art denoising
methods. The research was based on an extensive psychovisual
experiment where several noisy images were denoised by var-
ious algorithms and then subjectively judged by a large group
of observers. Aspects such as blurriness, noisiness, presence
of artifacts, etc., were investigated. Our Pointwise SA-DCT
algorithm was among the considered denoising algorithms,
which included many state-of-the-art methods such as [42],
[46], and [40]. The analysis of the results of this experimental
research attest that our Pointwise SA-DCT estimates clearly

Fig. 17. The U and V chrominances of the JPEG-compressed Lena
image shown in Figure 16(left). Only very few DCT harmonics survived the
aggressive quantization, and the structural information is almost completely
lost.

Fig. 18. The chrominances shown in Figure 17 after reconstruction by
Pointwise SA-DCT Þltering. The blockiness is removed and the structures
are faithfully restored.

Fig. 19. Fragments of the original, compressed, and restored Kodak image
12. Top to bottom row: RGB color, luminance Y channel, chrominance
V channel. From left to right: original image, JPEG-compressed (Q=16,
0.25bpp, PSNR=30.45), restored by proposed Pointwise SA-DCT method
(PSNR=31.45).

outperformed in terms of overall subjective quality all esti-
mates produced by techniques of other authors. In particular,
it is shown that even in those cases where in terms of PSNR
the Pointwise SA-DCT estimate might be inferior to the BLS-
GSM estimate [42], thanks to the absence of artifacts and the
better preservation of details the Pointwise SA-DCT estimate
still provides a signiÞcantly superior visual quality.

E. Complexity

When considering the computational complexity of the
proposed algorithm, the Þrst thing to observe is that the LPA-
ICI technique is fast, because it is based on convolutions
against one-dimensional kernels for a very limited number of
directions. It constitutes a negligible computational overhead
for the whole Pointwise SA-DCT Þltering algorithm, whose
complexity is instead essentially determined by the calculation
of the forward and inverse SA-DCT transforms for every
processed neighborhood.
The complexity of the algorithm is linear with respect to

the size of the image and depends on the shapes of the
transform supports. Since such shapes are pointwise-adaptive,
the complexity depends on the particular image and noise.
On average, and without resorting to fast algorithms, the
asymptotic computational complexity of processing a single
neighborhood is O ¡

N3
¢
, with N2 being the size of the

neighborhood. However, fast algorithms for calculation of the
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Fig. 20. Denoising performance (PSNR, dB) vs. execution time (seconds)
plots for the grayscale 512×512 Lena (left) and 256×256 Cameraman (right)
images, σ=25. Execution time refers to the current MATLAB implementation
measured on a 1.5 GHz Pentium M CPU.

shape-adaptive DCT transforms do exists (e.g. [50]), thus the
complexity is O ¡

N2 logN
¢
. In our examples N can vary

between 1 and 17, with the most frequent values between 6
and 12. On a more practical level, it is important to remark that
highly-optimized hardware platforms (designed for real-time
SA-DCT coding of high-resolution video) are available.
Our proposed method is also fully scalable in terms of

complexity/performance trade-off. Scalability is achieved by
decreasing the number of different scales and especially
by limiting the number of overlapping neighborhoods (and
thus the overcompleteness). In practice, we do not process
a neighborhood �U+x if x belongs to a sufÞcient number
Moverlap of already-processed neighborhoods: by decreasing
Moverlap fewer forward and inverse SA-DCT transforms are
computed. Figure 20 shows how a signiÞcant acceleration
of the algorithm can be achieved in this manner with only
a marginal loss in the Þnal estimate�s quality. Execution
times refer to our current MATLAB implementation of the
Pointwise SA-DCT Þlter (including Anisotropic LPA-ICI and
SA-DCT hard-thresholding and Wiener Þltering) measured on
a 1.5 GHz Pentium M CPU. This MATLAB demonstration
software is not optimized in terms of computational efÞciency
(in particular we do not implement the SA-DCT using fast
algorithms), nevertheless its execution time is comparable
to other advanced wavelet-based denoising algorithms. As a
comparison, on the same machine it takes about 90 seconds
to denoise the grayscale Lena image (σ=25) using the BLS-
GSM algorithm [42] (PSNR=31.69dB) and about 8 seconds
using the ProbShrink algorithm [40] (PSNR=31.21dB).
When discussing about complexity/performance trade-off, it

is important to underline that in terms of PSNR the empirical
Wiener Þltering estimate (14) is usually about 0.3-0.5dB better
than the simpler hard-thresholding estimate (9) that is used as
reference signal for (14). Since the empirical Wiener Þltering
accounts roughly for half of the overall complexity of the
algorithm, the algorithm can be made faster by simply skipping
this second-stage Þltering. However, it can be seen from the
plots in Figure 20 that a much more efÞcient trade-off is
achieved using the above scalability strategy: execution time
can be halved (from 25 to 12 seconds for Lena and from 5.5
to 2.5 seconds for Cameraman) sacriÞcing as little as 0.15dB
in PSNR.
Finally, we wish to note that the impact of the coefÞcient

alignment described in Section IV-C is marginal in terms of

Fig. 21. Denoising of Cameraman (σ=25, observation shown in Figure 7)
using B-DCT with Þxed block of size 8×8 (left) and 16×16 (right). The
PSNRs of the two estimates are 28.83dB and 28.63dB, respectively. Compare
with the Pointwise SA-DCT estimate shown in Figure 7 (PSNR=29.11dB).

PSNR (about 0.1dB improvement) and completely negligi-
ble in terms of complexity (look-up-tables can be utilized),
hence its use shall depend exclusively on particular soft-
ware/hardware design requirements.

F. Discussion
It is natural to ask to what extent the use of a shape-adaptive

transform contributes to the objective and subjective quality
achieved by the proposed method. In Figure 21 we show two
estimates obtained by the denoising algorithm described in
Sections V-B�V-D (hard thresholding and Wiener Þltering in
transform-domain) using a square block of Þxed size (8×8
and 16×16) instead of the adaptively shaped support �U+x .
Although in terms of PSNR the results are quite satisfactory,
the visual quality of the estimates can be disappointing: several
artifacts are visible, including blurring and ringing around the
edges. For these two estimates, instead of relying on Equation
(7), we used MSE-optimal values of the hard-threshold. We
note that the overall visual quality cannot be really improved
by increasing or decreasing this threshold, because that would
either accentuate the blur or introduce more artifacts. Thus,
these may be considered as the best estimates which can be
obtained by this algorithm using square blocks of these Þxed
sizes. The Pointwise SA-DCT estimate shown in Figure 7 not
only has higher PSNR, but also exhibits signiÞcantly sharper
edges and fewer artifacts. While the DCT on blocks of Þxed
size gives essentially only spatial and frequency selectivity,
the Pointwise SA-DCT provides an image representation that
combines spatial (adaptation is pointwise), frequency (using
SA-DCT harmonics), scale (size of transform basis elements
is adaptive), and directional (support is anisotropic) selectivity.
The locally-adaptive supports can thus be rightly considered as
the main reason of the success demonstrated by the Pointwise
SA-DCT Þlter here and in the aforementioned psychovisual
experiment [51], [52]. Further advantages of our method arise
when we consider color image processing, since the structural
constraint in luminance-chrominance space cannot be realized
using blocks of Þxed size.

G. Other applications and types of noise
The particular adaptivity of the Pointwise SA-DCT ap-

proach can be used for other image restoration applications,
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such as image deblurring [13] and inverse-halftoning [8].
While in this paper we considered denoising only from

white Gaussian noise, there are no principal limitations to
the use of our approach for removal of colored or signal-
dependent noise. We refer the reader to [13], where (in the
context of deblurring) the Pointwise SA-DCT is used to re-
move colored noise from regularized deconvolution estimates.
Signal-dependent noise can removed exploiting a recursive
version Anisotropic LPA-ICI algorithm [11] to identify the
adaptive transform supports �U+x . On each support the signal
is uniform, hence the noise variance is also uniform and can
be well approximated by an adaptive constant σ2

¡
�U+x
¢
via the

variance function [11]. Thus, the SA-DCT Þltering and the
aggregation can be applied as in Sections V-B�V-D provided
that the Þxed σ2 is replaced by the adaptive σ2

¡
�U+x
¢
.

H. Software and more examples and results
More simulation results, full-color pictures, and the MAT-

LAB software which implements the presented method are
available at http://www.cs.tut.fi/~foi/SA-DCT/ . All
the results and Þgures shown in the present paper can be
reproduced using this publicly available software.

IX. CONCLUSIONS
We presented a novel image Þltering approach based on the

shape-adaptive DCT transform (SA-DCT). Hard-thresholding
and empirical Wiener Þltering are performed in SA-DCT do-
main, with an arbitrarily-shaped transform�s support which is
adaptively deÞned for every point in the image. The approach
is used for the accurate denoising of grayscale as well as
color images. Besides noise removal, the proposed method is
also effective in dealing with those artifacts which are often
encountered in block-DCT compressed images and videos.
Blocking artifacts are suppressed while salient image features
are preserved. The luminance-driven shape-adaptive Þltering
can faithfully reconstruct the missing structural information
of the chrominances, thus correcting color-bleeding artifacts.
The visual quality of the estimates is high, with sharp detail
preservation, clean edges, and without unpleasant artifacts
introduced by the Þtted transform. The Pointwise SA-DCT
algorithms demonstrate a remarkable performance, typically
outperforming the best methods known to the authors.

APPENDIX
For the readers less familiar with the LPA and ICI tech-

niques utilized in Sections III and V-A, in this appendix
we give more details on these techniques. For the sake of
simplicity, we restrict ourself to the 1D case (thus dropping the
subscript θk from notation). This simpliÞcation is not essential,
because as we described in Section V-A in our implementation
we use 1D kernels supported on line segments.

A. Local Polynomial Approximation (LPA)
The Local Polynomial Approximation (LPA) (e.g. [10]) is a

technique which is applied for nonparametric estimation using
a polynomial data Þt in a sliding window. The polynomial

Fig. 22. The Intersection of ConÞdence Intervals (ICI) rule.

order m and the window function w characterize the LPA.
The LPA estimates are calculated by convolution against a
kernel g = wφΦ−1 [1 0 · · · 0]T , where w= diagw is the
diagonal matrix composed by the weights w, φ is a vector of
m+ 1 polynomial functions (basis) φn = vn

n! , n = 0, . . . ,m,
and Φ= φTwφ is the Gramian matrix (formed by the inner
products of the basis elements against each other).
Starting from a basic window function w, one can obtain

LPA�s of different bandwidths/scales using scaled windows
wh = w (·/h), where h ∈ R+ is the scale parameter. The
corresponding kernels are denoted as gh. It is common practice
to use compactly supported window functions. In this case,
by using a basic window w of unit length, we obtain that h
coincides with the length of the window wh. Hence, window
length (size), scale, and bandwidth become interchangeable
concepts.
The choice of the scale parameter is crucial when dealing

with noisy data, because it controls the amount of smoothing
introduced by the local approximation. A large h corresponds
to a larger window and therefore to smoother estimates, with
lower variance and typically increased estimation bias. A small
h corresponds to noisier estimates, less biased, and with higher
variance. Thus, the scale parameter h controls the trade-off
between bias and variance in the LPA estimates.

B. Intersection of ConÞdence Intervals (ICI) rule
The Intersection of ConÞdence Intervals (ICI) rule [21],

[24] is a criterion used for the adaptive selection of the size
(length/scale) of the LPA window. Let x be a Þxed estimation
point/pixel. The LPA estimates �yhj (x) =

¡
z ~ ghj

¢
(x) are

calculated for a set H = {hj}Jj=1 of increasing scales h1 <
· · · < hJ . The goal of the ICI is to select among these
given estimates

©
�yhj (x)

ªJ
j=1

an adaptive estimate �yh+(x) (x),
h+ (x) ∈ H, such that �yh+(x) (x) is close to an �ideal�
estimate �yh∗(x) (x) which minimizes the MSE with respect
to the variation of the scale h (note that h∗ (x) does not
necessarily belong to H). Roughly speaking, the estimate
�yh+(x) (x) is the �best� among the given ones.
The ICI rule is as follows: Consider the intersec-

tion of conÞdence intervals Ij =
Tj
i=1Di, where

Di =
h
�yhi (x)− Γσ�yhi (x), �yhi (x) + Γσ�yhi (x)

i
, σ�yhi (x) =

std {�yhi(x)} is the standard deviation of �yhi (x), and Γ > 0
is a threshold parameter. Let j+ be the largest of the indexes
j for which Ij is non-empty, Ij+ 6= ∅ and Ij++1 = ∅. The
adaptive scale h+ (x) is deÞned as h+ (x) = hj+ and the
adaptive estimate is thus �yh+(x) (x).
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An illustration of the ICI is given in Figure 22. The
standard-deviations of the LPA estimates can be easily cal-
culated from the L2-norm of the corresponding kernel as
σ�yhj (x) = std

©
�yhj (x)

ª
= σ

°°ghj°°2. Since the scales are
increasing, the standard-deviations are decreasing and the
conÞdence intervals shrink as j increases. Therefore, in the
intersections we are testing estimates with progressively lower
variance. The rationale behind the ICI is that the estimation
bias is not too large as long as the intersections are non-
empty. In practice this means that the ICI adaptively allows the
maximum level of smoothing, stopping before oversmoothing
begins. Asymptotically, the LPA-ICI adaptive estimator allows
to get a near-optimal quality of signal recovery [21].
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