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Unbiased Injection of Signal-Dependent Noise
in Variance-Stabilized Range

Lucas Rodrigues Borges, Marcelo Andrade da Costa Vieira, and Alessandro Foi

Abstract—The design, optimization, and validation of many
image processing or image-based analysis systems often requires
testing of the system performance over a dataset of images
corrupted by noise at different signal-to-noise ratio regimes. A
noise-free ground-truth image may not be available, and different
SNRs are simulated by injecting extra noise into an already
noisy image. However, noise in real-world systems is typically
signal-dependent, with variance determined by the noise-free
image. Thus, also the noise to be injected shall depend on
the unknown ground-truth image. To circumvent this issue, we
consider the additive injection of noise in variance-stabilized
range, where no previous knowledge of the ground-truth signal
is necessary. Specifically, we design a special noise-injection
operator that prevents the errors on expectation and variance
that would otherwise arise when standard variance-stabilizing
transformations are used for this task. Thus, the proposed
operator is suitable for accurately injecting signal-dependent
noise even to images acquired at very low counts.

Index Terms—Noise injection, variance stabilization, optimiza-
tion, Anscombe transformation, Poisson noise.

I. INTRODUCTION

Many image processing and image-based analysis systems are
sensitive to variations on the image quality. It is imperative
to understand the effect that image SNR may exert on the
performance of these methods. Therefore it is a common
approach to evaluate them over sets of images corrupted by
different noise levels.

For instance, the optimization of the radiation dose in X-
ray systems is of great importance in medical applications.
Acquiring several images of the same patient at different SNR
regimes is prohibitive due to radiation-related risks. In this
case, it is common to perform pre-clinical trials by simulating
different radiation doses through injection of noise into a noisy
standard-dose image [1]–[8].

In many applications, the observations are corrupted by
signal-dependent non-additive errors related to the inherent
uncertainties such as photon accumulation, which is often
modeled through the Poisson distribution. The data distribution
hence depends on its expectation, and simulations thus require
an underlying noise-free signal, or ground-truth image. How-
ever, this poses a challenge, as such noise-free image may
not be available. One approach consists in estimating the true
signal, either using local statistics from a single observation
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[2] or through previous modeling of the acquisition system
[5]. However, estimating the underlying signal is not always
feasible, since it may introduce errors due to smearing and
blurring through smoothing, as pointed by the authors them-
selves [2], [5]. Another approach consists in creating a signal-
independent noise mask with the desired noise properties and
installing dependency by assuming that the observed Poisson
variable is a good approximation of the true signal [1], [3],
[4], [6], which provides good performance only at high-count
regimes.

In previous works we proposed the injection of additive
Gaussian noise in a variance-stabilized range, resulting in an
approximately Poissonian distribution in the signal range [7],
[8]. In this way, no previous knowledge of the true signal is
needed, and the noise injection is performed in a pixel-by-
pixel manner, avoiding potential problems due to smoothing
or due to inaccurate estimation of the signal. However, due to
the use of generic variance-stabilizing transformations (ideally
meant for the denoising task), the method [7], [8] is biased
for small counting and performs poorly in applications where
the counting rate is reduced.

Thus, here we introduce an operator built using a pair of
forward and inverse transformations jointly optimized specif-
ically for the noise-injection task. Such operator is capable
of performing unbiased noise injection even at very low
counting rates (≈1 count per pixel), allowing, e.g., the accurate
simulation of reduced-dose X-ray images from inputs that
are already in photon-limited imaging modalities. To the best
of our knowledge, this is the first work that addresses this
problem specifically taking into account the low-count regime,
which is the most challenging case for two fundamental
reasons. Firstly, at low counts the SNR of the input image
is already very low, making it impossible to obtain a trust-
worthy estimate of the underlying noise-free image through
denoising. Even state-of-the-art filters [9] invariably introduce
smearing, blurring, or other artifacts [10], [11]. Secondly,
variance-stabilization techniques are typically designed based
on large-count asymptotics, which is well known to lead to
inaccurate stabilization and bias at low counts [12], [13]. In
particular, we demonstrate our methodology for the Poisson
observation case, which is arguably the most challenging one
since exact variance stabilization of Poisson data is known to
be fundamentally impossible to achieve [14].

II. PRELIMINARIES

A. Poisson observation model and problem formulation
Consider z̊i, i = 1, 2, . . . , N as the acquired pixels forming an

image z̊. We model each z̊i as an independent scaled Poisson
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random variable with underlying signal yi ≥0,

z̊i = π̊i/λ̊ π̊i ∼ P (λ̊yi) (1)

where E { z̊i |yi } = yi , var { z̊i |yi } = yi/λ̊, and λ̊ > 0 is a scaling
factor that controls the relative noise strength.

Our goal is to obtain from z̊i a new set of noisier scaled
Poisson observations zi with a smaller scaling factor λ < λ̊:

zi = πi/λ πi ∼ P (λyi). (2)

Thus zi has the same mean as z̊i but larger standard deviation:

E {zi |yi }= yi=E { z̊i |yi } , std{zi |yi }=
√

yi

λ
=

std { z̊i |yi }√
λ/λ̊

. (3)

A definition such as (2) assumes knowledge of the noise-
free yi , which means that obtaining zi from z̊i may be possible
only subject to certain approximations. Pragmatically, we
formulate an optimization problem where the sought solution
is a non-negative zi ≥0 that solves (3) in a least-squares sense.

B. Variance-stabilizing transformation

Variance-stabilizing transformations (VSTs) are commonly
applied to cease the dependency between the noise-free signal
and the noise variance, allowing, e.g., suppression of signal-
dependent noise through many off-the-shelf filters for addi-
tive models [13]. The typical VST for Poisson data is the
Anscombe transformation, which for observations (1) takes
the form

aλ̊( z̊i) = 2
√
λ̊ z̊i +

3
8
, (4)

yielding stabilized variables that can be treated as normal with
unit variance: aλ̊( z̊i) ∼ N

(
aλ̊(yi) + 1/8, 1

)
[15].

III. NOISE INJECTION

A. Definition

Let f be the VST for z̊. We consider addition of further
noise to the stabilized f ( z̊) and hence we aim at constructing
an operator Φλ,λ̊ of the form

zi = Φλ,λ̊( z̊i) = g ( f ( z̊i) + σni) (5)

where ni ∼ N (0, 1) and σ ≥ 0 so that Φλ,λ̊( z̊i) satisfies (3).
For instance, a tedious but otherwise simple analysis based on
mixtures of noncentral χ2 distributions [16] shows that setting

f = aλ̊, σ2 =
λ̊

λ
− 1, g (x) =

1
4λ̊

(
x2 −

3
2
− σ2

)
(6)

yields

E
{
Φλ,λ̊( z̊i)

���yi
}
= yi, (7)

var
{
Φλ,λ̊( z̊i)

���yi
}
=

yi

λ
+
λ̊2 + λ̊λ − 2λ2

8λ̊2λ2
. (8)

We wish to emphasize that the equalities (7) and (8) are
not based on asymptotics or other approximations and are
thus precise for any combination of yi ≥ 0 and λ̊ ≥ λ ≥ 0.
In particular, (7) shows that (5) and (6) solve the left-hand
side of (3) exactly for any y ≥ 0. When this happens we
say that Φλ,λ̊ performs an (exact) unbiased noise injection in

variance-stabilized range. Equation (8) shows that the right-
hand side of (3) is solved only approximately, with good
relative accuracy for large y. However, this approximation
of the desired variance may be rather coarse for small λ
or small y. Moreover, (6) does not account for the non-
negativity requirement, yielding variables that can be as low as
g(0)<0. The clipped Φ+

λ,λ̊
( z̊)=max

{
0,Φλ,λ̊( z̊)

}
ensures non-

negativity, but impacts both (7) and (8), particularly at low
count rates [17]. Figure 1 (left) illustrates how the expectation
and standard deviation of Φ+

λ,λ̊
( z̊) differ from the goal (3)

at low counts. Let us note that (6) is per se already an
improvement over [7], [8], where the inverse transformation
was an inverse of the Anscombe transformation designed to
be unbiased with filtering and without noise injection, which
led to a systematic extra positive bias (≈λ−1/4) at both large
and small counts.

B. Optimization

The operator Φ+
λ,λ̊

as defined by (6) fulfills (3) asymptot-
ically. To improve the operator at low counts, we define a
practical optimization task. Following [18], we model f and
g through rational-polynomial functions,

f (x) = 2

√√∑J
k=0 pk xk∑K
k=0 qk xk

= 2

√
P(x)
Q(x)

, (9)

g(x) =
∑N

k=0 rk xk∑M
k=0 sk xk

=
R(x)
S(x)

, (10)

and optimize the coefficients of the polynomials P, Q, R, and
S under the constraint that f and g approach the definitions (6)
asymptotically, which ensures [19] that also (3) are attained
asymptotically through (7) and (8). Thus we require

P(x)
Q(x)

− λ̊x −
3
8
−→
x→+∞

0, (11)

R(x)
S(x)

−
1

4λ̊

(
x2 −

3
2
− σ2

)
−→
x→+∞

0. (12)

These force K = J−1 and M = N−2. For simplicity, we here
set J=3 and N =4, for which (11) and (12) hold provided

p3 = λ̊q2, q1 = p2 −
3p3

8
, r4 =

3 + 2σ2

λ̊s2
,

r3 =
λ̊s1

3 + 2σ2 , r2 =
λ̊s0

3 + 2σ2 −
3 + 2σ2

2λ̊
.

We can always fix q0 = s0 = 1, hence (9) and (10) depend
only on few free parameters Π =

[
p3 p2 p1 p0 r4 r3 r1 r0

]
,

which we can vary as to minimize the discrepancy errors

EE(y) = E
{
Φ
+

λ,λ̊
( z̊)

����y
}
− y

Estd(y) = std
{
Φ
+

λ,λ̊
( z̊)

����y
}
−

√
y

λ

between the actual expectation and standard deviation of
Φ+
λ,λ̊

( z̊) and their desired values (3). In particular, we define
the optimal parameters Π∗ as the solution of

Π
∗ = argmin

Π

∫ +∞
0

E2
E(y)

y2
ε

+
E2

std(y)
yε

dy, (13)
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,λ̊
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}
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st

d
{ Φ+ λ

,λ̊
(z̊

)� � � �y
} √ λ

y y

Before optimization After optimization

Figure 1. Expectation and standard deviation of Φ+
λ, λ̊

(z̊) before (left) and

after (right) optimization (λ = 0.25, 0.50, λ̊ = 1).

where yε = max {ε, y}, ε > 0. The integral cost (13) controls
the relative quadratic errors; the integral is always finite, at
y → 0+ by using a fixed positive ε , and at y → +∞ due to
the constraints on the polynomial coefficients.

Note that Πinit=
[

0 0 1 3/8 0 0 −1/2 0
]

gives exactly (6).

IV. EXPERIMENTS

To solve (13) we employ a multi-start Nelder-Mead direct-
search method [20], [21], with initial condition given by Πinit
and set ε =0.01. Because cases with λ̊,1 can be treated using
1
λ̊
Φ+
λ/λ̊,1

(
λ̊ z̊

)
, without loss of generality we always assume

λ̊ = 1. We consider two illustrative cases λ = 0.50 and
λ = 0.25, which respectively correspond to a half and to a
quarter exposure (or dose in case of X-ray radiation). Figure
2 shows the optimized functions f and g, where the latter is
plotted as g+ = max {0, g} to incorporate the non-negativity
of Φ+

λ,λ̊
. Note the irregular profile, particularly for g with

λ = 0.50, typical of optimized VSTs (see, e.g., [18], [22]).
Figure 1 (right) presents the expectation and standard deviation
of the optimized Φ+

λ,λ̊
( z̊), which approximate the goal (3)

in practice perfectly for y as low as 1. A comparison with
Figure 1 (left) demonstrates the significant improvement over
the unoptimized operator (6).

In Figure 3, we compare the cumulative distribution function
(CDF) and mean of z according to the ideal target Poisson
distribution (2) with those obtained from Φ+

λ,λ̊
( z̊) before and

after optimization, for a few combinations of λ, and y. The
first two sub-plots from the left (λ=0.50 and λ=0.25) show
that a decrease on λ increases the error on the mean, which is
corrected by the optimization. The rightmost sub-plot (y=20)
shows that the method converges for high values of the signal
even before the optimization is performed.

Figure 2. Functions f and g+ =max {0, g } before and after optimization of
Φ+
λ, λ̊

(λ=0.25, 0.50, λ̊=1).

Further, Figure 4 demonstrates the application of the pro-
posed approach to a low-count image z̊ of fluorescent cells.
For this experiment, we have access to a virtually noise-free
ground-truth signal y, from which we can obtain a reference
ideal noisy z for λ = 0.5 according to (2), against which we
can compare the other noisy images. Firstly, we can notice
the bias in the unoptimized Φ+

λ,λ̊
( z̊) solution (6), particularly

in the background, which is visibly brighter. It is instead
difficult to detect qualitative differences between the optimized
Φ+
λ,λ̊

( z̊) (13) obtained from z̊ and the ideal z obtained from
y: despite the already low SNR of z̊, many thin filament
structures and localized features can be still recognized. We
also wish to compare the result of our method to an image ζ ,
λζi ∼ P (λ ŷi), generated from an estimate ŷ of y by a state-
of-the-art denoising method [9], [13] applied to z̊. We can
observe a loss of detail and contrast when ŷ is used as an
approximation of y. For instance, the filament at bottom-left
of the image is lost through filtering, and contours are overall
less sharp in ζ than in any of the Φ+

λ,λ̊
( z̊) images. We wish to

emphasize that differences between ζ ans z are caused only
by the differences between ŷ and y, since P used the same
pseudo-random pattern for all images.

As a final experiment, we compare the accuracy of the
proposed method to that of the direct injection of signal-
dependent noise with πi ≈ N

(
z̊iλ, z̊iλ

(
1 − λ/λ̊

))
, as used

by, e.g., [1], [3], [4], [6]. This normal distribution is actually
an approximation of the binomial distribution B

(
z̊i λ̊, λ/λ̊

)
=

P (λyi) which, while formally ideal, is never used directly
because it does not generalize well to the non-pure Poisson
scenario typical of practical applications. Similar to Φ+

λ,λ̊
, also

in this case we need to enforce non-negativity which similarly
impacts the expectation and variance leading to unwanted bias,
as illustrated in Figure 5 for λ = 0.25. The case λ = 0.50,
omitted due to space limitation, demonstrates comparably
negligible expectation bias for the two methods, and a minor
deficiency in the directly injected variance.

V. DISCUSSION AND CONCLUSIONS

We have proposed an operator capable of changing the rela-
tive strength of signal-dependent noise corrupting an image.
The injection is pixelwise and is performed in a variance-
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λ̊ = 1, λ = 0.50, y = 1 λ̊ = 1, λ = 0.25, y = 1 λ̊ = 1, λ = 0.25, y = 20

Figure 3. Cumulative distribution function (CDF) and mean µP of z according to the ideal target Poisson distribution (2) vs the CDFs and means µB, µA
obtained from Φ+

λ, λ̊
(z̊) before optimization (6) and after optimization (13). Each subplot corresponds to different combinations of y and λ, while λ̊=1.

y z̊ (1) ŷ [9], [13]

z, λzi ∼P (λyi ) (2) Φ+
λ,λ̊

( z̊) (13) Φ+
λ,λ̊

( z̊) (6) ζ , λζi ∼P (λ ŷi )

Figure 4. Comparison of various approaches for obtaining a lower-SNR image (3) from a Poisson observation z̊ (1), for λ=0.50, λ̊=1: results by proposed
noise-injection before (6) and after optimization (13), Poisson ζ on a denoised estimate ŷ, ideal reference Poisson z (2) on noise-free ground-truth y.

E
{ Φ+ λ

,λ̊
(z̊

)� � � �y
}

st
d
{ Φ+ λ

,λ̊
(z̊

)� � � �y
} √ λ

y y

Figure 5. Comparison of expectation and standard deviation of the random
variables produced by direct injection of signal-dependent noise to the image
intensities vs the proposed method of injection in variance-stabilized range
with optimized transformations (λ = 0.25, λ̊ = 1).

stabilized range, where knowledge of the ground-truth image
is unnecessary. We showed that the initial form of the operator,
based on asymptotics, performs poorly at low counts, and
have thus developed an optimized operator that significantly

improves the results across the dynamic range. Since this
approach is based on univariate mappings and on injection
of spatially uncorrelated noise, the total computational cost
is proportional to the number of pixels in the image. The
present goal (3) and the corresponding cost (13) involve only
the first two moments of z, but it is of course possible to
include extra higher-order moments, and employ higher-order
rational polynomials with J >3 and N >4 or other parametric
families of transformations. One may naturally expect better
fit from increasing the number of parameters.

In this letter we have considered the Poisson distribution
as the most challenging case. The proposed approach can be
easily generalized to other distributions, and we shall consider
noise injection also for Poisson-Gaussian combinations, as
well as the interaction with quantization. Also, we wish
to further investigate the case of spatially correlated noise.
Finally, we aim to obtain a closed form of the optimized Φ+

λ,λ̊
,

readily applicable to any 0<λ < λ̊.
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Supplementary to the article
“Unbiased Injection of Signal-Dependent Noise

in Variance-Stabilized Range”
Lucas Rodrigues Borges, Marcelo Andrade da Costa Vieira, and Alessandro Foi

In this appendix we detail the mathematical steps that lead from (5) and (6) to (7) and (8) on the second page of the article.

We begin from expanding the output of the noise-injection operator as

Φλ,λ̊( z̊) =
x2

4λ̊
−

3
8λ̊
−
σ2

4λ̊
,

where x is obtained by applying f to z̊ followed by the addition of noise,

x = 2
√
λ̊ z̊ +

3
8
+ σn, n (·) ∼ N (0, 1) .

Throughout our analysis, we treat
{
x2���y

}
as a mixture distribution with mixture components Cj =

{
x2���z̊= λ̊

−1j
}

and mixture
weights w j equal to the scaled Poisson probability P

(
z̊= λ̊−1j ���y

)
, j = 0, 1, 2, . . . . According to this mixture model, we have

E
{
Φλ,λ̊( z̊)���y

}
=

E
{
x2���y

}

4λ̊
−

3
8λ̊
−
σ2

4λ̊
=

1
4λ̊

n∑
j=0

w jm j −
3

8λ̊
−
σ2

4λ̊
(14)

var
{
Φλ,λ̊( z̊)���y

}
=

var
{
x2���y

}

16λ̊2
=

1
16λ̊2

*.
,

n∑
j=0

w j

(
m2

j + s2
j

)
− m2+/

-
(15)

where m j and s2
j are respectively the mean and variance of Cj , and m =

∑n
j=0 w jm j = E

{
x2���y

}
.

For any given value of z̊, the conditional distribution of x is a normal centered at f ( z̊):

{x | z̊} ∼ N *
,
2
√
λ̊ z̊ +

3
8
, σ2+

-
.

Hence, { x
σ

����z̊
}
∼ N *

,

2
σ

√
λ̊ z̊ +

3
8
, 1+

-
Therefore, for any given value of z̊, x2/σ2 follows a noncentral χ2 distribution with 1 degree of freedom and noncentrality
parameter µ2 = E2

{
x
σ

���z̊
}
. The conditional expectation and variance are thus

E
{

x2

σ2

�����
z̊
}
= 1 + µ2 = 1 +

4
σ2

(
λ̊ z̊ +

3
8

)
,

var
{

x2

σ2

�����
z̊
}
= 2 + 4µ2 = 2 +

16
σ2

(
λ̊ z̊ +

3
8

)
.

Hence,

E
{
x2���z̊= λ̊

−1j
}
= m j = σ

2 + 4
(

j +
3
8

)
, (16)

var
{
x2���z̊= λ̊

−1j
}
= s2

j = 2σ4 + 16σ2
(

j +
3
8

)
. (17)
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Substituting (16) into (14) and recalling that λ̊ z̊ ∼ P
(
λ̊y

)
yields (7):

E
{
Φλ,λ̊( z̊)���y

}
=

1
4λ̊

n∑
j=0

P
(
z̊= λ̊−1 j ���y

) (
σ2 + 4

(
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3
8

))
−

3
8λ̊
−
σ2

4λ̊
=

=
1
λ̊

n∑
j=0

P
(
z̊= λ̊−1 j ���y

)
j =

1
λ̊

n∑
j=0

P
(
λ̊ z̊= j ���y

)
j =

1
λ̊

E
{
λ̊ z̊���y

}
= y. (18)

Combining (18) with (14) also gives m = 4λ̊y + 3
2 + σ

2. We can now substitute (17) into (15):

var
{
Φλ,λ̊( z̊)���y

}
=

1
16λ̊2

*.
,

n∑
j=0

P
(
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) *
,

(
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(
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))2
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(
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8

)
+
-
−

(
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3
2
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-
=
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1

16λ̊2
*.
,

n∑
j=0

P
(
z̊= λ̊−1 j ���y

) (
16 j2 + 24 jσ2 + 12 j − 16y2 λ̊2 − 8yσ2 λ̊ − 12yλ̊ + 2σ4 + 6σ2

)+/
-
.

Noting, as in (18), that
∑n

j=0 P
(
z̊= λ̊−1 j ���y

)
j = E

{
λ̊ z̊���y

}
= λ̊y, we obtain

var
{
Φλ,λ̊( z̊)���y

}
=

1
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*.
,
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8
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-
.

Next, since y2 λ̊2 =
(∑n

j=0 P
(
z̊= λ̊−1 j ���y

)
j
)2
, we have

∑n
j=0 P

(
λ̊ z̊= j ���y

)
j2 − y2 λ̊2 = var

{
λ̊ z̊���y

}
= λ̊y and hence

var
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}
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1
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*.
,

n∑
j=0

P
(
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(
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)
+
σ4

8
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-
=
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+

3σ2
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.

Since σ2 = λ̊
λ − 1, we finally obtain (8):

var
{
Φλ,λ̊( z̊)���y

}
=

y

λ
+
λ̊2 + λ̊λ − 2λ2

8λ̊2λ2
.
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