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Collaborative Filtering of Correlated Noise:
Exact Transform-Domain Variance for

Improved Shrinkage and Patch Matching
Ymir Mäkinen, Lucio Azzari, and Alessandro Foi

Abstract—Collaborative filters perform denoising through
transform-domain shrinkage of a group of similar patches ex-
tracted from an image. Existing collaborative filters of stationary
correlated noise have all used simple approximations of the
transform noise power spectrum adopted from methods which do
not employ patch grouping and instead operate on a single patch.
We note the inaccuracies of these approximations and introduce
a method for the exact computation of the noise power spectrum.
Unlike earlier methods, the calculated noise variances are exact
even when noise in one patch is correlated with noise in any of the
other patches. We discuss the adoption of the exact noise power
spectrum within shrinkage, in similarity testing (patch matching),
and in aggregation. We also introduce effective approximations
of the spectrum for faster computation. Extensive experiments
support the proposed method over earlier crude approximations
used by image denoising filters such as Block-Matching and 3D-
filtering (BM3D), demonstrating dramatic improvement in many
challenging conditions.

Index Terms—Image denoising, colored noise, correlated noise,
collaborative filtering, BM3D

I. INTRODUCTION

TRANSFORM-based denoising algorithms [1], [2] per-
form noise removal in a chosen domain where the signal

to recover is sparse, i.e. it can be represented with a small
amount of coefficients significantly different from zero. The
shrinkage depends crucially on the transform-domain noise
variance, which, in the case of stationary correlated noise, can
be computed from the noise power spectral density (PSD) and
the transform basis functions [3], [4].

Transform-based algorithms can be combined with the
principles of nonlocal denoising (e.g., [5], [6]) to exploit the
mutual similarity between patches at different locations in
the image. BM3D [7] is one of the leading methods in this
hybrid class known as collaborative filters. Mutually similar
patches are jointly processed by applying first a 2-D transform
T 2D to each patch and then a 1-D transform T NL across the
obtained T 2D-spectra. This results in a 3-D transform T 3D

that decorrelates both local and nonlocal image regularity.
The advantage of collaborative filtering lies in the enhanced
sparsity in this T 3D domain where shrinkage is performed.
However, the effectiveness of denoising hinges on a correctly
set shrinkage threshold, which in turn requires knowledge of
the noise variance in this transform domain.

The authors are with Tampere University, Tampere, 33014, Finland; e-mail:
ymir.makinen@tuni.fi. An executable of the proposed BM3D algorithm with
Python and MATLAB interfaces is available at http://www.cs.tut.fi/∼foi/
GCF-BM3D/ or as ”bm3d” through PyPI.

To model the T 3D noise power spectrum, [7] and subsequent
works, such as the BM3D filter for correlated noise [8], have
adopted a simplified modelling borrowed from local filters like
[4], [9], so that the PSD in T 3D domain is calculated by merely
replicating the T 2D PSDs. However, this model presumes
T NL is orthonormal and, most importantly, that noise in one
patch is always independent from that in any other patch. The
latter requirement is often not fulfilled. As noted in [7] for
i.i.d. noise, noise correlation between patches may occur due
to their overlap. Furthermore, with stationary correlated noise,
noise may be correlated across different patches even if they
do not overlap, potentially creating large inaccuracies in the
simplified approximations.

Correlated noise has broad relevance in many realistic sce-
narios. In x-ray medical imaging, for example, noise affecting
the projections is commonly assumed stationary correlated
[10]–[16]. Thermal cameras are also affected by spatially
correlated noise and a significant component of fixed-pattern
noise which can be considered as stationary correlated in time
[17]–[19]. Furthermore, satellite and remote-sensing imagery,
particularly those captured using push-broom sensors and
radar, are affected by spatially correlated noise [20]–[22].

Although neural networks have recently achieved state-of-
the-art performance in white noise denoising, neural network
based methods for correlated noise denoising have not yet
caught up. Their adaptivity is presently limited to varying
levels of uncorrelated noise [23]–[25] and expensive retraining
of the network is required especially in the case of noise
with visible long-range correlation. The proposed method can
instead adapt to varying correlation without any prior training
and can thus be utilized within filters and iterative recovery
schemes that require online adjustment of the noise model,
such as [19], [26]. Furthermore, in terms of computational
complexity, collaborative filters are still an order of magnitude
less expensive than deep neural networks [27]–[29], making
them preferable for various real-time and low-power applica-
tions (e.g., [30], [31]).

Our contributions are summarized as follows1:
• We introduce a method for the exact computation of the

noise variance in transform domain in any number of

1This work is an extended version of the authors’ paper [32]. Here, we
extend the calculation of the transform-domain variances to any dimension-
ality. We elaborate further their use in shrinkage and aggregation, provide
an interpretation for the previous results on patch-matching, and analyze the
selection of algorithm parameters. We extend the set of experiments and
consider the case of non-periodic noise, which better reflects realistic imaging.
We also evaluate the refiltering procedure with other denoisers.

mailto:ymir.makinen@tuni.fi
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.cs.tut.fi/~foi/GCF-BM3D/
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dimensions (Section III-C) as well as effective approxi-
mations for faster computation (Section IV-D).

• We embed the new variance calculation into the BM3D
algorithm, where it can be used to improve shrinkage
accuracy (Section IV-B), adjust patch matching (Sections
III-D and IV-A), and to weigh patches in the aggregation
of the denoised patches (Section IV-C).

• We discuss the inherent limitations of patch-based collab-
orative filtering of correlated noise, and how denoising
results can be improved by applying a simple global
Fourier thresholding on the denoising residual and re-
filtering (Section V).

• We demonstrate significant, sometimes dramatic improve-
ments both in visual quality and PSNR by endowing
BM3D with the proposed algorithmic contributions, and
note that refiltering can restore further details in BM3D
but also several other tested denoising algorithms (Sec-
tion VII).

II. PROBLEM FORMULATION

Let us consider a noisy observation z :X→R of an un-
known deterministic noise-free image y corrupted by station-
ary additive correlated noise η

z(x) = y(x) + η(x), x ∈ X, (1)

where x∈X⊂Zd is the coordinate in the finite d-dimensional
regular image domain X , and

η = ν ~ g, ν (·) ∼ N (0, 1) , (2)

ν being zero-mean i.i.d. Gaussian noise with unit variance,
and g being a convolution kernel representing the spatial
correlation of the noise. Since var{ν} = 1, var{η} = ‖g‖22.
An equivalent way of representing correlated noise is by its
PSD Ψ:

Ψ = E
{
|F [η]|2

}
= var {F [η]} = |X| |F [g]|2 , (3)

F being the d-dimensional Fourier transform. The goal of
denoising is to estimate y from z; we consider the case of
non-blind denoising, assuming that g, or equivalently Ψ, is
known. When g is a scaled Dirac delta, (1)-(2) reduces to
the additive white Gaussian noise (AWGN) model and Ψ is
constant. When Ψ is markedly non-constant, the noise is often
described as colored, as opposed to white, in analogy with
optics.

Four examples of noise correlation as well as white noise
are shown in Figure 1, illustrated through the kernel g, a noise
realization η, and the PSD Ψ. The first kernel gw is a Dirac
delta, resulting in white, uncorrelated noise. The horizontal
kernel g1 is representative of sensor crosstalk in digital image
acquisition, g2 is representative of band-pass noise, and g3

is a line pattern noise common to analog videos [33]. The
kernel g4 realizes an example of pink noise, which is found in
analog electronic devices due to resistor voltage fluctuations
[34]. Definitions of the kernels g1, g2, g3, and g4 are given
in Table I. We further define four kernels g5, g6, g7, and g8

gw ν ~ gw |F [gw]|2

g1 ν ~ g1 |F [g1]|2

g2 ν ~ g2 |F [g2]|2

g3 ν ~ g3 |F [g3]|2

g4 ν ~ g4 |F [g4]|2

Figure 1. Left: correlation kernels (displayed on a 71×71-pixel canvas).
Center: correlated noise fields obtained by convolving the kernels with white
noise. Right: corresponding power spectral densities Ψ. As gw is a Dirac
delta, ν ~ gw is white noise and the corresponding PSD is flat.

combining the flat white-noise PSD of gw with that of gn,
n=1, 2, 3, 4 , through

gn+4 = F−1
[√

(1−β) + β|F [gn/‖gn‖2] |2
]
, (4)

with β=0.8 determining the proportion of noise energy rep-
resented by gn. Throughout the manuscript we refer to these
examples (upon suitable rescaling to a desired var{η}=‖g‖22)
to discuss the properties of collaborative filtering of correlated
noise and to assess the proposed model under challenging
conditions.

III. NOISE PSD OF NONLOCAL COLLABORATIVE
TRANSFORMS

Collaborative filters operate on groups of similar patches
extracted from the image. Let {zx1 , . . . , zxM } be a group of
M d-dimensional patches extracted from z at coordinates2

x1, . . . , xM , respectively, where each patch is composed of N
elements (e.g., pixels, voxels) and all patches in the group have

2As coordinate of a patch we intend the coordinate of its first element,
which for a rectangular block is the pixel in the top-left corner. The patch
coordinates are treated as deterministic.
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Table I
REPRODUCIBLE MODELS FOR THE NOISE CORRELATION EXAMPLES IN

FIG. 1, WHERE x(1) AND x(2) DENOTE THE HORIZONTAL AND VERTICAL
INTEGER COORDINATES, AND Gς DENOTES A GAUSSIAN FUNCTION WITH

STANDARD DEVIATION ς CENTERED AT THE ORIGIN. THE FIRST THREE
ARE DEFINED BY THEIR KERNEL, UPON SUITABLE RENORMALIZATION TO

A DESIRED VARIANCE LEVEL var{η}=‖g‖22 . THE LAST IS DEFINED

THROUGH ITS PSD |F [g4]|2 OF EQUAL SIZE TO THE IMAGE.

g1 max{0, 1− |x(2)|}max{0, 16− |x(1)|}
g2 cos

((
(x(1))2 + (x(2))2

)1/2)
G10(x(1), x(2))

g3 cos(x(1) + x(2))G10(x(1), x(2))

|F [g4]|2
(
((x(1))2 + (x(2))2

)1/2
+ 10−2|X|1/2)−1

the same shape. Let T dD be a d-dimensional patch transform,
and denote by sxti =

〈
zxt , b

dD
i

〉
a generic T dD-spectrum

coefficient of zxt , where bdD
i is the i-th basis function of T dD.

Further, we denote by
{
sx1,...,xM
i,j , i=1, . . . , N, j=1, . . . ,M

}
the T (d+1)D spectrum of the group {zx1

, . . . , zxM }, computed
by applying a 1-dimensional transform T NL of length M to
[sx1
i , . . . , s

xM
i ], i=1, . . . , N . Here, and throughout the rest of

the manuscript, i and j index spectral components within the
local and nonlocal dimensions of a group, respectively.

The core of this work is about the calculation and use of the
variances var

{
sx1,...,xM
i,j

}
of the T (d+1)D spectrum sx1,...,xM

i,j ,
which we denote by vx1,...,xM

i,j . The indexing and notation of
the transform spectrum coefficients are illustrated in Figure 2.
Note the superscript making explicit the coordinates of the
grouped patches, which play an important role in characteriz-
ing the variance, as demonstrated in what follows.

A. Preliminaries

To calculate the noise variance of the T dD spectrum coeffi-
cients, we note that sxti =

〈
zxt , b

dD
i

〉
=
(
z~
←→
b dD
i

)
(xt), where

the ←→ decoration denotes the reflection about the origin of Zd.
Thus

var{sxti } = var
{(
ν~g ~

←→
b dD
i

)
(xt)

}
= var{ν}

∥∥∥g~←→b dD
i

∥∥∥2

2
,

which shows that this variance does not depend on the
coordinate xt of the patch. Hence we can adopt the simple
notation vi = var {sxti } and since var {ν} = 1,

vi =
∥∥∥g~←→b dD

i

∥∥∥2

2
=

∥∥∥∥|X|−2
Ψ
∣∣∣F[←→b dD

i

]∣∣∣2∥∥∥∥
1

, (5)

where the last equality follows from Parseval’s isometry and
(3).

As T (d+1)D is a separable transform, the T (d+1)D-spectrum
coefficients are calculated through the direct tensor product of
the T dD and T NL transforms, as

sx1,...,xM
i,j =

〈
[zx1

; · · · ; zxM ] , bdD
i ⊗bNL

j

〉
=

=
〈
[sx1
i , · · · , s

xM
i ] , bNL

j

〉
=

M∑
t=1

bNL
j (t)sxti , (6)

where bNL
j (t) is the t-th element of the j-th basis function bNL

j

of T NL, and [· ; · · · ; ·] denotes the stacking along the (d+1)-th
dimension.

z

zx2

s ,

s ,

1,1
x1
1

sx14

sx2
3

sx3
3

x1
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x2x1

s s ,x2,x3

x1,x2,x3

2,x ,x3

,x ,x2 3

41

1x
33

3 2
x1

z

T 2D

T NL

zx3

T 2D

T 2D

Figure 2. Notation and indexing of patch coordinates xk , patches zxk , and
coefficients sxki and s

x1,...,xM
i,j in the corresponding T dD and T (d+1)D

spectra. The illustration is for a group of three blocks of size 2×2 at
coordinates x1 =(4, 3), x2 =(7, 5), x3 =(8, 6) within a 10×10-pixel image
(d= 2). The variances of sxki , for any xk , are denoted by vi, whereas the
variances of sx1,...,xM

i,j are denoted by vx1,...,xM
i,j .

The exact calculation of the variance of the spectrum
coefficients may not be immediate from (6). The variance of
the spectrum coefficients is

vx1,...,xM
i,j = var

{
M∑
t=1

bNL
j (t)sxti

}
=

=

M∑
t=1

(
bNL
j (t)

)2
var
{
s
xt
i

}
+
∑
k 6=t

bNL
j (k)bNL

j (t) cov{sxti , s
xk
i } =

= vi

M∑
t=1

(
bNL
j (t)

)2
+
∑
k 6=t

bNL
j (k)bNL

j (t) cov{sxti , s
xk
i } , (7)

where cov{sxti , s
xk
i } is the covariance between same T dD

spectrum coefficients for different patches.

B. Conventional methods for approximating vx1,...,xM
i,j

The common simplifying assumption (e.g., [7], [8], [35])
is the independence of the noise between stacked patches; in
other words, noise may be correlated within each patch but not
across distinct patches. Thus, the covariance terms vanish from
(7). Under the further assumption that T NL is orthonormal, (7)
simplifies to (5):

vx1,...,xM
i,j ≈ vi

M∑
t=1

(
bNL
j (t)

)2
= vi , (8)

meaning that T (d+1)D spectrum variances are identical to those
of T dD and become independent of the patch coordinates.

The approximation (8) is used by BM3D and the cited
derivative works3. However, the requirement of independence
between patches is not always fulfilled: it obviously fails if the
patches are overlapping, but when noise is correlated it may
fail even if they do not overlap. The failure of this requirement
results in potentially significant imprecision in the calculation
of the variances.

3Notably RF3D video denoiser [19] interpolates the spectrum variances
under fixed-pattern noise from the exact variances computed for two extreme
cases of idealized alignment of the blocks, as further discussed in Section VIII.
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Figure 3. A noisy image and a group of 8 blocks (reference block in red),
and the corresponding b̃NL

j for j=1, 2, 3, as well as the respective bNL
j where

T NL is the Haar transform. Gray in the b̃NL
j images indicates the zero level.

C. Exact calculation of vx1,...,xM
i,j

We observe that sxti can equivalently be written as4

sxti =
〈
z, bdD

i ~δxt
〉
, (9)

where δxt is a Dirac delta at the coordinate xt. The coefficient
sx1,...,xM
i,j is thus computed as

sx1,...,xM
i,j =

M∑
t=1

bNL
j (t)

〈
z, bdD

i ~δxt
〉

= (10)

=

M∑
t=1

〈
z, bdD

i ~
(
bNL
j (t) δxt

)〉
. (11)

The sum in (11) can be finally seen as the convolution [36]

sx1,...,xM
i,j =

(
←→z ~bdD

i ~b̃NL
j

)
(0) , (12)

where b̃NL
j =

∑M
t=1 b

NL
j (t) δxt is an array of the same size of

z that is zero everywhere except at the coordinates xt where
it assumes the corresponding values bNL

j (t) (see Figure 3).
Even though (12) is arithmetically identical to (6), it physically
embeds the spatial locations x1, . . . , xM that (6) had lost
through the stacking.

If we assume z as in (1), the variance of the generic
spectrum coefficient sx1,...,xM

i,j computed from a group of
blocks extracted from z is

vx1,...,xM
i,j =var

{
sx1,...,xM
i,j

}
= var

{
(←→z ~bdD

i ~b̃NL
j )(0)

}
=

= var
{

(ν~←→g ~bdD
i ~b̃NL

j )(0)
}

=

=
∥∥←→g ~bdD

i ~b̃NL
j

∥∥2

2
= (13)

=
∥∥∥|X|−2

Ψ
∣∣F [bdD

i

]∣∣2 ∣∣F [b̃NL
j

]∣∣2∥∥∥
1
. (14)

Note how (13) incorporates a convolution against b̃NL
j which

is instead completely missing from (5); as b̃NL
j varies with

the relative displacement of the patches, so do (13)-(14), as
opposed to (5) and (8) which are the same for all groups.

The above procedure is directly applicable to nonlo-
cal collaborative transforms used by filters for arbitrary d-
dimensional data, for instance by BM3D for filtering images
(d=2) and by BM4D [37] for filtering volumetric data (d=3).
Note that, unlike (8), (14) does not presume anything about
orthogonality or normalization of the T dD and T NL transforms.

4The first element of bdD
i is used as its origin in convolution.
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Figure 4. Comparison between vi and vx1,...,xM
i,j . Each group of plots shows

a 1-D noise signal (black line) with unit variance from which we extractM=4
segments of N=16 samples (colored shaded areas), and 4 bar-plots that
represent the ratio

√
vi/v

x1,...,xM
i,j , with j = 1, . . . , 4. From top to bottom

we have: white Gaussian noise with 1) non-overlapping and 2) overlapping
segments; correlated Gaussian noise with 3) non-overlapping distant segments,
4) non-overlapping close segments, and 5) overlapping segments. Only for the
topmost case vi is exact, while in general it is very different from v

x1,...,xM
i,j .

To appreciate the difference between (14) and (8) we
report a set of 1-D examples in which we compare the
conventional expression against the real standard deviation of
the coefficients. In Figure 4 we report two scenarios, one in
which we consider a 1-D signal (the black line) composed of
white i.i.d. noise and one composed of correlated noise. For
each signal we extract 4 non-overlapping and 4 overlapping
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segments of length 16 (the colored segments), that will each
constitute a group. We then compute the transform of each
group of segments using two 1-D orthonormal transforms
(DCT of each segment followed by the Haar transform applied
across the segments), equivalent to T NL and T dD in the
d-D case. Finally, in the bar-plots we report each row j

of
√
vi/v

x1,...,xM
i,j , that is, the ratio between the standard

deviations of the noise spectrum computed using (8) and (14),
respectively. Note how the conventional formula (8) is exact
only in the first case at the top of the figure, where we have
non-overlapping segments of i.i.d. noise.

D. Patch matching

Nonlocal methods compare patches around a moving ref-
erence patch at xR. Each potential patch at xj is evaluated
through an ordering function LxR(xj) in order to select the
best M (possibly overlapping) patches to construct the group
{zx1

, . . . , zxM }. In practice, the goal is often to find the
patches which are most similar to the reference patch in terms
of the underlying noise-free content. As L operates on noisy
patches, the difference between noise-free content can only be
estimated or approximated. One may use directly the `2-norm
of the difference of the noisy patches

LxR (xj) =
∥∥zxR− zxj∥∥2

2
, (15)

difference of their spectra LxR (xj) =
∥∥sxRi − sxji ∥∥2

2
, or other,

non-Euclidean distance measures [38]. To reduce the effects
of noise, many methods (e.g., [8], [39]) include a scaling of
the difference by the respective standard deviations of the
coefficients such that

LxR (xj) =

∥∥∥∥sxRi − sxji√
vi

∥∥∥∥2

2

. (16)

This aims to give less weight to those coefficients which are
presumed to be particularly noisy.

As illustrated by Figure 4, in the case of correlated noise,
noise in nearby patches may be strongly correlated with noise
in the reference patch. In this case, ranking provided by the
above equations may be problematic, as correlation may guide
the matching to prioritize patches where the noise is the most
similar. It is thus useful to consider the variances between the
two patches compared in the patch matching phase to consider
the effects of correlation.

The difference between two noisy patches zxR and zxj can
be written as∥∥zxR− zxj∥∥2

2
= 2

N∑
i=1

〈[
sxRi , s

xj
i

]
, bNL

2

〉2
= 2

N∑
i=1

(s
xR,xj
i,2 )2,

(17)
where bNL

2 = 1�√2 [1,−1] and sxRi , s
xj
i are spectra produced by

an arbitrary orthonormal transform T dD.
We note that (s

xR,xj
i,2 )2 is a non-central chi-squared random

variable with one degree of freedom and with mean and
variance

E
{

(s
xR,xj
i,2 )2

}
= v

xR,xj
i,2 + E2

{
s
xR,xj
i,2

}
, (18)

var
{

(s
xR,xj
i,2 )2

}
= 2(v

xR,xj
i,2 )2 + 4v

xR,xj
i,2 E2

{
s
xR,xj
i,2

}
, (19)

0 64 128 0 64 128 0 86 172 0 127 254 0 64 128

Figure 5. Left to right: maps of
∑N

i=1 v
xR,xj
i,2 as a function of xR− xj

for the kernels gw , g1, g2, g3, and g4 shown in Figure 1 with ‖g‖22 = 1.
Note how the center pixels are black as v

xR,xj
i,2 = 0, i = 1, . . . , N , when

xR =xj . The map is invariant to swapping xR with xj as seen from (14),
where |F [b̃NL

j ]|2 is invariant to translation and sign change.

where vxR,xji,2 can be calculated with (14) for the corresponding
T dD and T NL transforms. Noting that 2

∑N
i=1 E2

{
s
xR,xj
i,2

}
=∥∥E

{
zxR− zxj

}∥∥2

2
and by (18), we can express the expectation

of (17) as

E
{∥∥zxR− zxj∥∥2

2

}
=
∥∥E
{
zxR− zxj

}∥∥2

2
+2

N∑
i=1

v
xR,xj
i,2 , (20)

which quantifies the positive bias in the patch comparison and
shows that this bias depends exclusively on the noise through
v
xR,xj
i,2 , i, . . . , N . The expectation can thus vary with the rela-

tive position between patches, i.e. with xR−xj , as illustrated
in Figure 5. For the correlation kernels of this example, noise
in patches closer to the reference patch or aligned in the
direction of the correlation tends to correlate more with the
reference patch, hence lower variances in the patch difference
and consequently lower value of 2

∑N
i=1 v

xR,xj
i,2 .

By subtracting 2
∑N
i=1 v

xR,xj
i,2 from

∥∥zxR− zxj∥∥2

2
, we get

an unbiased estimate of
∥∥E
{
zxR− zxj

}∥∥2

2
:

E

{∥∥zxR− zxj∥∥2

2
− 2

N∑
i=1

v
xR,xj
i,2

}
=
∥∥E
{
zxR− zxj

}∥∥2

2
, (21)

which can be used to formulate a bias-corrected ordering
function as

LxR (xj) =
∥∥zxR− zxj∥∥2

2
− 2

N∑
i=1

v
xR,xj
i,2 . (22)

IV. APPLICATION TO IMAGE DENOISING: BM3D

We demonstrate the use of the procedures described in
Section III across various components of the BM3D denoising
algorithm.

A. Block matching for BM3D

The first step of BM3D consists of a block-matching proce-
dure where, to produce a group of M similar blocks, a noisy
reference block is compared against all noisy blocks located
within a surrounding finite region (search window). Ideally,
the matched blocks would have similar underlying noise-free
content, i.e. such that

∥∥E
{
zxR− zxj

}∥∥2

2
is small. However,

as shown by (20), this cannot be assessed accurately from a
comparison of noisy blocks

∥∥zxR− zxj∥∥2

2
.
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Figure 6. Lena’s hair with noise generated by kernel g3, and a view of
Couple with noise generated by g1, both with ‖g‖22 =0.02, and the respective
denoising results for hard-thresholding with γ = 0, 1, 2, 3, 4.

Figure 7. Demonstrations of the block matching process for the images of
Figure 6 for γ = 0 (left) and γ = 3 (right), showing positions of the reference
block and the 8 most similar matches as well as the contents of these 9 blocks.
Note how in the case of γ = 0, blocks are mainly matched following a strong
noise pattern, which is still seen in the denoised image shown in Figure 6.

Compared to only subtracting the bias as described by (21),
our experiments indicate that the denoising quality is further
improved by ranking potential matches according to

LxR (xj) =
∥∥zxR− zxj∥∥2

2
− 2γ

N∑
i=1

v
xR,xj
i,2 , (23)

with γ>1 (instead of γ=1 in (21)), as demonstrated in Fig-
ure 6 and Figure 7. All experiments reported in the remainder
of this paper are produced with γ=3. An interpretation for
the increased denoising quality is provided in Section VIII-A,
suggesting that γ>1 facilitates the inclusion in the group
of noisy blocks which differ from the noisy reference block
mainly due to the variance of (17).

The common design of BM3D [7] includes a second de-
noising stage where the block-matching is carried over the
denoised estimate of the first stage. Because this estimate
can be treated as a noise-free approximation of the clean
image, the second block-matching is performed without any
bias subtraction, i.e. γ=0.

B. Shrinkage

The core of BM3D is shrinkage performed on the T (d+1)D

spectrum of the grouped noisy blocks. For a given transform-
domain coefficient of the group, a generic shrinkage can be
expressed as

sx1,...,xM
i,j 7−→ αi,js

x1,...,xM
i,j , (24)

where αi,j is a shrinkage attenuation factor which depends
on sx1,...,xM

i,j , the noise statistics, and possible other priors.
Various shrinkage functions can be used for this purpose.
In particular, the common design of BM3D [7] uses hard-
thresholding in the first denoising stage, followed by an
empirical Wiener filter in the second stage.

In hard-thresholding, the shrinkage is performed by setting
spectrum coefficients smaller than a threshold

√
vx1,...,xM
i,j λ to

zero, as they are mostly composed of noise:

αHT
i,j =

{
1 if

∣∣sx1,...,xM
i,j

∣∣ ≥√vx1,...,xM
i,j λ

0 otherwise,
(25)

where λ≥0 is a fixed constant. In Wiener filtering, the
attenuation coefficients of the transfer function are computed
from the previous estimate, used as pilot signal, and from the
variance of the noise spectrum coefficients as

αwie
i,j=

‖
〈[
ŷHT
x1

; · · · ; ŷHT
xM

]
, bdD
i ⊗bNL

j

〉
‖2

‖
〈[
ŷHT
x1

; · · · ; ŷHT
xM

]
, bdD
i ⊗bNL

j

〉
‖2+µ2vx1,...,xM

i,j

, (26)

where ŷHT is the estimate of y obtained from the hard-
thresholding stage (note the similarity to (6)), and µ2 is a
scaling factor included due to aggregation to influence the
bias-variance ratio we wish to minimize through the Wiener
filter.

As seen from both (25) and (26), both shrinkage operations
depend crucially on the correct calculation of vx1,...,xM

i,j .

C. Aggregation

After calculating the attenuation factors of the group, they
can be applied to the T (d+1)D spectra to obtain estimates for
the grouped blocks:

ŷxj = QdD{〈αx1,...,xM
i,j sx1,...,xM

i,j , qNL
j

〉}
, (27)

where QdD is the inverse transform of T dD, and qNL
j is the j-th

transform basis function of the inverse of T NL. We aggregate
the obtained estimates into a buffer using aggregation weights,
where blocks that have less residual noise get a larger weight.
The general idea behind weighted aggregation is to improve
quality of the final estimate and reduce the visibility of artifacts
[40], [41]. Originally, BM3D used a unique weight to aggre-
gate each block of a group {zx1

, . . . , zxM }. The weight was
computed from the inverse of the sum of the variances of the
surviving coefficients in hard-thresholding, or from the inverse
of the sum of the Wiener coefficients in Wiener filtering: a
small weight for a group with large residual variance, and a
large weight for a group with small residual variance.

With the proposed noise analysis we can calculate residual
noise variance for blocks of the group {zx1

, . . . , zxM } and
compute new, block-specific aggregation weights

wagg
j =

(
N∑
i=1

〈(
vx1,...,xM
i,j αx1,...,xM

i,j

)
,
∣∣qNL
j

∣∣2〉)−1

, (28)

where wagg
j is the aggregation weight of the block j, and

αx1,...,xM
i,j are the shrinkage attenuation factors, either for

Wiener or hard-thresholding.
In other words, in (28) we first compute the sum of the

residual variance within each block j after shrinkage by
applying an inverse transform to the residual of vx1,...,xM

i,j , and
then we invert the value to obtain the aggregation weight.
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D. Fast implementation

The increased complexity compared to the conventional
methods for approximating the variances can be seen from
the new global convolution in (13) or the multiplication and a
Fourier transform in (14) compared to (5). Moreover, (14) has
to be recomputed for each group, whereas (8) can be computed
once at the beginning of the algorithm and reused for every
group. Even using fast algorithms, computing either (13) or
(14) for every group is not feasible for any reasonably sized
image, as the global Fourier transform of F

[
b̃NL
j

]
needs to be

recomputed for every j of every group. Thus, we introduce
several ways to approximate (14) for practical calculation
times without significant sacrifices in accuracy.

First, we use a linear interpolation to downscale the PSD Ψ
to a Nf× · · · ×Nf d-dimensional array. Consistent with the
downscaling of Ψ, we periodically fold b̃NL

j to a Nf×· · ·×Nf
array, reducing its size while preserving the energy of the
transform T NL. Second, since b̃NL

j is sparse, the individual
cascaded 1-dimensional FFTs required for the separable com-
putation of F

[
b̃NL
j

]
are also sparse. For instance, when d = 2,

instead of 2Nf 1-D FFTs of length Nf , we need at most
Nf +Mcol, where Mcol≤M is the number of distinct column
(or row) components of the spatial locations x1, . . . , xM .
Third, exploiting the symmetries of the Fourier spectrum, the
amount of operations for computing (14) can be almost halved.

It is also possible to calculate the exact variances only
for some sx1,...,xM

i,j . Although the misestimation of the noise
variance can cause both noise artifacts and oversmoothed
areas, it is often relatively safe to approximate the variances
for coefficients where the signal is small. Specifically, if
we calculate the variances vx1,...,xM

i,j exactly for coefficients
sx1,...,xM
i,j larger than a threshold τ and the shrinkage follows

(24) with 0 ≤ αi,j ≤ 1, then τ bounds the shrinkage error
arising from approximating vx1,...,xM

i,j for a coefficient such
that

∣∣sx1,...,xM
i,j

∣∣ ≤ τ . This can be used to reduce the compu-
tational burden without significant compromises in accuracy,
as there are typically few large-magnitude sx1,...,xM

i,j due to
signal compaction in T (d+1)D domain.

In the particular case when vx1,...,xM
i,j are calculated ex-

actly only for some sx1,...,xM
i,j with j=j1, . . . , jK , K≤M

(i.e. for K select planes of the 3-D spectrum, see Figure 2),
we can approximate the remaining (M−K)N variances for

Table II
AVERAGE EXECUTION TIME OF DENOISING Lena (512×512 PIXEL) IN

SECONDS OVER 100 RUNS DEPENDING ON THE Nf AND K PARAMETERS,
RUNNING SINGLE-THREADED AS A MATLAB MEX FILE ON AN AMD

RYZEN 7 1700 CPU. THE RUN TIME OF OLD BM3D [8] FOR CORRELATED
NOISE IN THE SAME ENVIRONMENT WAS 5.33 SECONDS. TIME

COMPLEXITY OF THESE ALGORITHMS IS LINEAR WITH THE NUMBER OF
PIXELS IN THE IMAGE. ALL EXPERIMENTS REPORTED IN SECTION VII

USE Nf = 32 AND K = 4. CHANGES IN RESULTING PSNR VALUES WITH
DIFFERENT Nf AND K PARAMETERS ARE DEMONSTRATED IN FIGURE 8.

Nf

8 16 32 64

K

1 5.47 5.64 6.52 8.96
4 5.57 6.04 8.13 15.74
8 5.69 6.65 10.53 25.66

12 5.77 7.07 12.40 33.86
16 5.82 7.48 14.39 42.52

j /∈{j1, . . . , jK} as

vx1,...,xM
i,j ≈

Mvi −
K∑
k=1

vx1,...,xM
i,jk

M − K
. (29)

This approximation follows from the energy-preservation iden-
tity

∑M
j=1 v

x1,...,xM
i,j =Mvi that holds for an orthonormal T NL

and is convenient as vi (5) needs not be recomputed for each
group. Note that (29) can be treated as an interpolator between
(8) and (14), because if K=0 then (29) approximates all
variances with (5).

In our implementation, we presume that most of the signal is
compacted in the first few coefficient planes of sx1,...,xM

i,j , and
thus compute exact variances vx1,...,xM

i,j only for j=1, . . . ,K
and rely on (29) for the rest. The impact of the two approxi-
mation parameters Nf and K on the average CPU execution
times for single-threaded denoising and PSNR of the estimate
are reported in Table II and in Figure 8.

V. INHERENT LIMITATIONS OF TRANSFORM-DOMAIN
BLOCK FILTERING

Ideally, sparsity-based methods transform the signal in a
domain where the clean image can represented by few high-
magnitude coefficients, whereas the noise is spread over many
coefficients that remain of small magnitude. These methods
become ineffective when noise also gets compacted into few

8 16 32 64 128

27.5

28

28.5

Nf

PS
N

R
(d

B
)

8 16 32 64 128

24.5

25

25.5

26

Nf

8 16 32 64 128

17.5

20

22.5

25

27.5

30

32.5

Nf

K = 1

K = 4

K = 8

K = 12

K = 16

Figure 8. Average PSNR (dB) of denoising a set of images specified in Section VII corrupted by white noise as well as correlated noise defined by g1 and
g3 (left to right) with ‖g‖22 =0.02 with varying K as a function of Nf . Note that although denoising of white noise is not affected by the PSD resizing, the
folding of b̃NL

j still causes inaccuracies with small values of Nf . The effects of Nf and K on execution time are demonstrated in Table II.



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020

coefficients that are among those that capture significant
energy of the clean signal – under such scenario (exemplified
by some of the PSDs in our experiments), it is not possible
to remove noise without at the same time oversmoothing the
estimate even with the exact variances (14), as demonstrated
in Figure 9. For instance, a T dD like the 2-D DCT lacks
directional selectivity and cannot differentiate between diag-
onal and antidiagonal components, making it impossible to
attenuate diagonal noise without oversmoothing antidiagonal
image components. The small size of the patches further limits
the frequency resolution of T dD.

A. Global Fourier thresholding and refiltering

An estimate of the details lost due to these systemic factors
may be obtained by comparing the global FFT spectrum of the
residual ∆ = z − ŷ, where ŷ is the denoised image, against
the noise PSD:

∆̂ = F−1[F [∆]H[α∆]] , (30)

where α∆ is a three-sigma test

α∆ =

{
1 if |F [∆] | > 3

√
Ψ

0 otherwise,
(31)

and H is a morphological filter to dilate the result of the test,
and thus reduce the effects of noise. A new noisy image zGFT

with PSD ΨGFT =ΨH[α∆] is defined as

zGFT = ŷ + ∆̂ .

Whenever the collaborative filter suppresses noise without
systematic oversmoothing, we have α∆≈0 and thus also
H[α∆]≈0; in this situation zGFT≈ ŷ and its noise PSD is
zero, hence the estimate produced by refiltering is not going to
substantially differ from the initial ŷ. Otherwise, with system-
atic oversmoothing, the spectrum of ∆ contains coefficients

z (17.12 dB) ŷHT (27.89 dB)

z (17.09 dB) ŷHT (27.50 dB)

Figure 9. View of denoising of Lena corrupted by correlated noise defined
by g3 (top) and g7 of (4) (bottom), both with ‖g‖22 =0.02. On left, the noisy
images z, and on right the corresponding hard-thresholding estimates ŷHT.

large with respect to Ψ; for such frequencies α∆ =1, and zGFT

captures the oversmoothing with the associated noise compo-
nents described by ΨH[α∆], as demonstrated in Figure 10 and
Figure 11. By filtering zGFT with the collaborative filter, we
can restore some of the details lost when filtering z, as shown
in Figure 12.

The refiltering process is done separately with the estimates
of hard-thresholding and Wiener filtering immediately after the
respective steps, thus resulting in two hard-thresholding steps
followed by two Wiener-filtering steps. The entire denoising

zz

α∆α∆

H[α∆]H[α∆]
√

Ψ
√

Ψŷ̂y

∆∆ ∆̂̂∆

√
ΨGFT
√

ΨGFTzGFTzGFT

F [∆]F [∆] F[∆̂]F[∆̂]

Figure 10. Demonstration of the global Fourier thresholding process applied to the result of hard-thresholding of Cameraman corrupted by noise modeled
by kernel g3 with ‖g‖22 =0.02. First, we obtain the residual ∆ as the difference of the noisy image z and the hard-thresholding stage estimate ŷ. Then, we
perform the three-sigma test (31) on the Fourier spectrum of the residual F [∆] against

√
Ψ to obtain α∆, which is then dilated to H[α∆]. With H[α∆],

we filter the residual ∆ as in (30) to obtain ∆̂, which is combined with ŷ to obtain the new noisy image zGFT with PSD ΨGFT =ΨH[α∆]. For comparison,
we also show the Fourier spectrum F [∆̂] of ∆̂. Due to the lack of periodicity in the noise, z and ŷ are zero-padded by the correlation kernel size. Fourier
spectra and root PSDs are visualized by their log-magnitude.
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zz

α∆α∆

H[α∆]H[α∆]
√

Ψ
√

Ψŷ̂y

∆∆ ∆̂̂∆

√
ΨGFT
√

ΨGFTzGFTzGFT

F [∆]F [∆] F[∆̂]F[∆̂]

Figure 11. Demonstration of the global Fourier thresholding process as in Figure 10 with the correlation kernel g7 of (4) and ‖g‖22 = 0.02. The correlated
noise produced through this kernel includes a white noise component, which is reflected by the gray background of

√
Ψ; as such, the signal cannot be

separated from the residual ∆ as clearly as in Figure 10. The refiltering process manages nevertheless to recover a considerable amount of details, which are
preserved through a second application of collaborative hard-thresholding as can be seen from comparing Figure 9(bottom) and Figure 12(bottom).

zGFTHT = ŷHT + ∆̂ (39.58 dB) ŷHTGFT (39.51 dB)

zGFTHT = ŷHT + ∆̂ (29.68 dB) ŷHTGFT (30.95 dB)

Figure 12. Global Fourier thresholding and refiltering of hard-thresholding
results of Figure 9. On left, the noisy images zGFTHT produced by the global
Fourier thresholding; on right, the refiltered results ŷHTGFT . For the noise
represented by g3 (top), zGFTHT is almost noise-free and ŷHTGFT retains a very
significant amount of detail. The noise of g7 (bottom) includes a white noise
component, due to which the signal cannot be separated from the residual
as clearly, but nevertheless the refiltering provides a significant improvement
both visually and with regard to the PSNR compared to the result of Figure 9.

process with the refiltering steps is illustrated in Figure 13. The
effectiveness of the procedure depends largely on the original
noise structure – sometimes the image features removed by
the shrinkage cannot be completely separated from noise even
through further processing.

It should be noted that as (30) processes the noise in the
global Fourier domain, it presumes the noise periodic, i.e. such
that the convolution in (2) is circular. Most inaccuracies caused

z Ψ

input

BM3D Hard
thresholding ŷHT

Global
Fourier

Thresholding
zGFTHT

ΨGFTHT

BM3D Hard
thresholding ŷHTGFT

BM3D Wiener
filtering ŷWie

Global
Fourier

Thresholding
zGFTWie

ΨGFTWie

BM3D Wiener
filtering

ŷWieGFT

output
Noisy image

PSD
Pilot estimate

Figure 13. Flowchart of the entire denoising process. The process takes as
input the noisy image z as well as the noise PSD Ψ. The first step of the
algorithm performs hard-thresholding with these arrays as input, resulting in
an estimate ŷHT. If refiltering is included, ŷHT is then processed through the
global Fourier thresholding, which yields a new noisy image zGFTHT and its
corresponding PSD ΨGFTHT . These are then filtered through another BM3D
hard-thresholding step, resulting in a new estimate ŷHTGFT . This is used as a
pilot estimate for the following Wiener filter, which outputs the first Wiener
estimate ŷWie. This estimate is processed again though the global Fourier
thresholding filter, the output of which is a noisy image zGFTWie and its PSD
ΨGFTWie , the noisy input to a second Wiener filter with ŷWie as a pilot. The
output of this Wiener filter is the final estimate ŷWieGFT .

by this mismatch can be mitigated by zero-padding the noisy
image and the denoised estimate by the support size of the
correlation kernel g and then cropping the resulting zGFT.
Corresponding padding and cropping operations are made on
g in order to define Ψ for (31) and ΨGFT for the subsequent
collaborative filtering. Although the zero-padding does not
completely mitigate the inaccuracies caused by the lack of
periodicity, the remaining artifacts are mainly found at the
edges of the image. Such artifacts for the considered cases of
correlated noise are demonstrated in Figure 14. Strategies for
non-circular deconvolution, such as [42], [43], could perhaps
be leveraged to further reduce these artifacts.
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Figure 14. Demonstration of the edge artifacts created by the refiltering
process. On the top two rows, denoising results of 100×100 noisy images
subject to correlated noise by kernels g1, g2, g3, and g4 (‖g‖22 =0.02 in all
cases). On top, the noisy images were generated with periodic noise (such
that the convolution in (2) is circular). Below, the noise was generated with
a non-circular convolution (as used in all other experiments in the paper).
On the bottom row, differences between the two estimates. The underlying
white noise realizations in the visible areas are identical in both cases, and
differences at the boundaries arise after convolution due to the circularity or
the lack thereof. Although the estimates are different due to differences in
noise at the boundaries, they are largely of similar quality in the central parts
of the image.

VI. PARAMETER SELECTION

A common diagonal shrinkage threshold λ for (25) is the
so-called universal threshold λ =

√
2 log(MN), where MN

is the sample size transformed by T (d+1)D [44]. This thresh-
old value follows the statistics of the sample maximum of∣∣〈[ηx1

; · · · ; ηxM ] , bdD
i ⊗bNL

j

〉∣∣ /√vx1,...,xM
i,j when these stan-

dardized samples are independently distributed; it is not valid
when

〈
[ηx1 ; · · · ; ηxM ] , bdD

i ⊗bNL
j

〉
are correlated, which can

happen either because of correlation in the noise or because
of block overlap. For the sake of simplicity and based on
empirical tuning, BM3D had used a fixed shrinkage threshold
independent of N , specifically λ=2.7 for white noise [7] and
a slightly larger λ=2.9 for correlated noise [8].

Figure 15 demonstrates how the optimal λ largely depends
on the correlation kernel used, and that it may be either
smaller or larger than that of white noise. Hence the practice
regretfully deviates from the theoretical guidelines from [3],
which indicated λ for white noise as an upper bound for the
other cases, noting that the probability of the sample maximum
to exceed a given threshold is highest when standardized
samples are independent.

As the Wiener filtering is highly dependent on the pilot
signal, the choice of µ2 is also affected by λ. Changes in µ2

can then, up to a point, mitigate the effects of under- or over-
filtering of the hard-thresholding estimate, as demonstrated in
Figure 16. We note that BM3D had always adopted µ2 = 1
[7], [8].

The adaptive selection of good λ and µ2 parameters for
any given PSD is based on a set of 500 PSDs (randomly
generated and excluding any of the tested PSDs except gw)
for which we have preliminarily obtained the best λ and µ2

2 2.5 3 3.5 4
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Figure 15. Relative changes in resulting average PSNR values of denoising
a set of images (‖g‖22 = 0.02) with changing values of λ. Only the hard-
thresholding stage of BM3D is employed. We note that the best value of λ
largely depends on the correlation kernel, and may be larger than that of white
noise (kernel gw).
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µ = 1.3

µ = 1.4

Figure 16. Resulting PSNR values of denoising a set of images with correlated
noise defined by gw (top) and g1 (bottom) with ‖g‖22 =0.02 while changing
the λ and µ parameters. Note the different values of µ.

from a grid of test values, defined as those which on average
across 5 test images result in the best PSNR (similar to the
maxima of Figure 16). Specifically, we find the 20 closest
PSDs within this set based on the Mahalanobis distance of
the integral projections along the principal axes of the PSDs.
The adaptive λ and µ2 are obtained as the weighted average
of the respective best parameters for the closest PSDs, with
weights reciprocal to the distances. A second pair of λ and µ2

is produced similarly for the refiltering steps.
For the simplification parameters, we select K=4 and

Nf =32, which provide a significantly improved runtime
without serious compromises in denoising quality, as demon-
strated by Table II and Figure 8. As the refiltering procedure
performs two stages of both hard-thresholding and Wiener (see
Figure 13), its cost is double of that without refiltering.

VII. EXPERIMENTS

To assess the performance gain from the algorithmic im-
provements described in Section IV, we consider denoising
of images with added white noise as well as the correlated
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Table III
AVERAGE PSNR FOR DENOISING OF WHITE NOISE AND EIGHT CORRELATED NOISE CASES OVER Barbara, Boat, Cameraman, Couple, House, Lena, Man,
AND Peppers WITH 10 INDEPENDENT REALIZATIONS FOR EACH COMBINATION OF IMAGE, NOISE CASE, AND VARIANCE LEVEL. WE MARK IN BOLD ALL

THE RESULTS THAT CANNOT BE DIFFERENTIATED FROM THE BEST ONE THROUGH A WELCH’S T-TEST [45] WITH p=0.05.

g ‖g‖22
noisy new BM3D new BM3D old BM3D old BM3D BLS-GSM BLS-GSM NLMC NLMC Noise Clinic Noise Clinic

(refilter) (refilter) (refilter) (refilter) (refilter)

gw

0.001 30.00 35.73 35.74 35.75 35.74 35.07 35.09 35.11 35.03 34.74 35.05
0.01 20.00 30.40 30.38 30.39 30.32 29.49 29.46 29.34 29.25 27.57 28.63
0.02 16.99 28.79 28.78 28.77 28.68 27.88 27.84 27.54 27.42 25.38 26.63

g1

0.001 29.96 36.17 36.50 35.98 36.22 35.47 35.68 30.38 31.12 32.05 32.79
0.01 19.96 28.40 28.82 26.80 26.97 28.84 28.94 21.10 21.43 21.57 22.94
0.02 16.95 25.90 26.33 23.39 23.52 26.92 26.99 18.24 18.48 18.14 19.22

g2

0.001 30.00 35.23 36.95 34.40 35.02 35.26 35.70 30.61 31.37 33.84 34.88
0.01 20.00 28.67 31.29 25.42 25.88 29.74 30.40 21.71 22.02 24.87 26.36
0.02 16.99 26.98 29.59 22.52 22.91 28.37 28.99 18.94 19.15 22.38 23.65

g3

0.001 30.10 37.21 42.53 32.54 33.39 40.32 44.95 29.99 30.76 32.60 34.77
0.01 20.10 31.15 41.16 21.93 22.41 35.87 42.43 20.52 20.87 20.55 20.99
0.02 17.09 29.66 40.26 18.83 19.32 34.67 41.35 17.61 17.87 17.44 17.68

g4

0.001 29.99 34.27 34.27 34.39 34.38 33.74 33.76 32.63 33.02 33.94 34.07
0.01 19.99 27.58 27.56 27.67 27.65 27.18 27.16 24.78 25.28 26.98 27.25
0.02 16.98 25.47 25.46 25.52 25.49 25.27 25.25 22.57 23.14 24.79 25.14

g5

0.001 30.00 35.26 35.40 35.09 35.12 34.69 34.76 32.39 32.59 32.22 32.76
0.01 20.00 28.11 28.24 27.47 27.46 28.21 28.21 25.93 26.34 22.46 23.69
0.02 16.99 25.82 25.95 25.00 24.99 26.35 26.32 24.35 24.58 19.08 20.19

g6

0.001 30.08 35.62 37.49 32.69 32.94 37.19 38.28 32.69 32.83 32.75 32.75
0.01 20.08 29.72 31.87 22.72 22.82 31.72 32.37 28.58 28.75 21.48 21.70
0.02 17.07 28.22 30.26 19.71 19.81 30.31 30.69 27.97 27.98 18.47 18.61

g7

0.001 30.00 34.59 35.21 34.15 34.26 34.49 34.66 32.87 32.93 33.84 34.00
0.01 20.00 28.38 29.11 26.38 26.42 28.78 28.99 28.37 28.36 25.70 26.55
0.02 16.99 26.77 27.43 23.84 23.86 27.31 27.47 27.12 26.99 23.36 24.21

g8

0.001 29.99 34.51 34.50 34.61 34.60 33.95 33.97 32.93 33.31 34.09 34.24
0.01 19.99 28.00 27.97 28.09 28.06 27.51 27.49 25.26 25.70 27.21 27.58
0.02 16.98 25.95 25.93 26.01 25.97 25.63 25.61 23.01 23.55 25.04 25.52

noise cases defined in Table I and through (4), respec-
tively associated to kernels gw, g1, . . . , g4, and g5, . . . , g8.
For each kernel, we test three different levels of variance
‖g‖22 =0.001, 0.01, 0.02 on a set of 8 natural images (Cam-
eraman, House, Peppers of size 256×256, and Barbara, Boat,
Couple, Lena, Man of size 512×512).

We compare denoising results of BM3D with the proposed
improvements (“new BM3D”) versus BM3D for correlated
noise (“old BM3D”) [8], NLMeans-C [46], BLS-GSM [47],
and Noise Clinic5 [48]. In the comparison, we include also
the refiltering procedure applied to new BM3D as detailed in
Section V, as well as to each of the four other algorithms,
for which it is implemented as a global Fourier thresholding
between two passes of the same algorithm.

The results are reported in Table III and illustrated in
Figure 17 and Figure 18. All reported PSNR values are
computed after trimming off a 16-pixel border in order to
ignore possible edge artifacts caused by the refiltering.

Furthermore, to demonstrate the effects of our improve-
ments over the old BM3D applied to real data, we show a
comparison of stripe removal of Terra MODIS satellite data
[49] in Figure 19. This long-wavelength infrared imagery
is characterized by crosstalk [50], which we here model as

5We acknowledge the comparison to Noise Clinic as somewhat unfair,
considering that Noise Clinic is a blind denoising algorithm that estimates the
noise model and PSD from noisy image. In an attempt to provide sufficient
noisy data for the PSD estimation, we pad y of Noise Clinic with a large
smooth gradient.

stationary using a horizontal line kernel, ignoring out-of-band
contributors.

By comparing results of old and new BM3D, we can see
that the exact variances play a crucial role in enabling effective
denoising of strongly correlated noise. Furthermore, refiltering
provides a significant improvement in most cases of correlated
noise, without reduction in quality in cases where further
details cannot be recovered.

Notably, the benefits of refiltering are not limited to BM3D;
other algoritms benefit from the applied refiltering step in
several cases, particularly BLS-GSM for kernel g3, as can be
seen from both Table III and Figure 18. However, it should be
noted that the refiltering is designed to restore oversmoothed
details, not to improve the noise attenuation. Thus in some
cases (such as the old BM3D for correlated noise), it does not
provide a notable advantage due to the original estimate being
very noisy.

VIII. DISCUSSION

The presented method allows the calculation of exact
transform-domain noise variances for any number of dimen-
sions (such as video or volumetric data) or patch shape, appli-
cable to any collaborative filter, such as BM3D, V-BM3D [51],
BM4D [37], and RF3D [19]. Previously, all versions of BM3D,
apart from the video denoising algorithm RF3D, approximated
the T (d+1)D noise variance simply by replicating the T dD

variances.
In RF3D, the noise is modeled as a combination of random

and fixed-pattern noise in time, each described by a 2-D
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Figure 17. Denoising results of Table III for the three best algoritms, shown as the average PSNR difference to the best result, which is always displayed at
0. The shaded areas visualize the standard deviation of the average PSNR values.

PSD. Hence the overall 3-D noise power spectrum Ψ has
two distinct components: a temporal-DC plane equal to the
sum of the 2-D PSDs, and a complementary temporal-AC
volume composed of stacked replicas of the 2-D PSD of
the random noise. Blocks are grouped from different frames
into a 3-D array transformed as in BM3D, thus producing
a spectrum sx1,...,xM

i,j with x1, . . . , xM from M consecutive
frames. The variances vx1,...,xM

i,j are computed exactly only for
two extreme cases: 1) blocks share the same spatial position
(x1 = · · ·=xM ), and 2) blocks are sufficiently separated such
that the fixed-pattern noise acts as another random noise.
Intermediate cases are interpolated from these two extremes
based on the proportion of blocks sharing a common spatial
coordinate. We note that such approximation is effective only
because of the special structure of the 3-D PSD Ψ and of the
typical regular arrangement of grouped blocks along motion
trajectories in a video. The variance calculation method of
Section III-C is significantly more general, even in its fast
approximate forms of Section IV-D.

It is interesting to observe how a classical method like BLS-
GSM is able to overcome BM3D in a few cases, particu-
larly without refiltering. This is due to the highly redundant
steerable pyramid transform adopted by this algorithm, which
offers much finer granularity than the simple block transforms
used by BM3D.

The refiltering procedure described in Section V is useful
applied not only to BM3D, but also other denoising methods.
The usability of the simple procedure shows that even with
perfect modeling of the noise, the algorithms may be bound by
the limitations brought by the used transforms or scales that
lack the granularity needed for compacting the clean signal
into few high-magnitude coefficients and spread most of the
noise energy onto the remaining coefficients. We note that
experiments on further iterations of refiltering did not give
evidence of significant additional improvement.

In the remainder of this section, we expand on three par-
ticular aspects of this work: an interpretation of the empirical
preference for a value of γ larger than what would simply
compensate the bias in (23); the limitations of the stationary
correlated noise model (1)–(3) and how to overcome them in
practical applications; and the inversion of (14), i.e. how one

might estimate the noise PSD Ψ from the T (d+1)D spectrum
variances.

A. Effect of γ>1 on block-matching

To provide an interpretation of the effect of γ>1, we
consider the variance of (17), which by (19) can be written as

var
{∥∥zxR− zxj∥∥2

2

}
≈ 8

N∑
i=1

(
v
xR,xj
i,2

)2
+

16

N∑
i=1

v
xR,xj
i,2 E2

{
s
xR,xj
i,2

}
, (32)

where the approximation follows from omitting the
covariances. Focusing on the cases where the factor∑N
i=1 v

xR,xj
i,2 plays a significant role in (23), we assume∑N

i=1 v
xR,xj
i,2 E2{sxR,xji,2 } ≤

∑N
i=1(v

xR,xj
i,2 )2. Thus from (32)

we get

var
{∥∥zxR− zxj∥∥2

2

}
≤ 24

N∑
i=1

(
v
xR,xj
i,2

)2
, (33)

and, noting that
∑N
i=1

(
v
xR,xj
i,2

)2 ≤ (∑N
i=1 v

xR,xj
i,2

)2

,

std
{∥∥zxR− zxj∥∥2

2

}
≤
√

24

N∑
i=1

v
xR,xj
i,2 . (34)

Hence, we speculate that a γ>1 essentially provides an extra
subtraction of γ−1√

6
std
{∥∥zxR− zxj∥∥2

2

}
from (23), facilitating

the inclusion in the group of noisy blocks which differ from
the noisy reference block mainly due to the variance of (17).

B. Overcoming the limitations of the observation model

Although we focus on the case of non-blind denoising,
the proposed improvements are fairly robust to limited PSD
over- or underestimation. Thus, they are directly applicable to
the blind case as well, provided an estimate Ψ̂ of the PSD
Ψ by an estimator such as [52]–[55]. The impact of scalar
misestimation is relatively small and can be appreciated from
Figures 6, 15, and 16, as changes in γ, λ, and µ are analogous
to scaling the PSD. For example for g1 and variance 0.02, in
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Peppers new BM3D (30.20dB) old BM3D (30.13dB) BLS-GSM (29.39dB) NLMC (29.13dB) Noise Clinic (27.65dB)

noisy (20.00dB) new BM3D (refilt.) (30.18dB) old BM3D (refilt.) (30.07dB) BLS-GSM (refilt.) (29.36dB) NLMC (refilt.) (28.55dB) Noise Clinic (refilt.) (28.70dB)

Couple new BM3D (27.36dB) old BM3D (26.78dB) BLS-GSM (27.65dB) NLMC (20.93dB) Noise Clinic (21.29dB)

noisy (19.90dB) new BM3D (refilt.) (27.80dB) old BM3D (refilt.) (27.02dB) BLS-GSM (refilt.) (27.77dB) NLMC (refilt.) (21.29dB) Noise Clinic (refilt.) (22.49dB)

Man new BM3D (29.06dB) old BM3D (18.52dB) BLS-GSM (34.14dB) NLMC (17.62dB) Noise Clinic (17.41dB)

noisy (17.12dB) new BM3D (refilt.) (39.35dB) old BM3D (refilt.) (18.97dB) BLS-GSM (refilt.) (41.58dB) NLMC (refilt.) (17.91dB) Noise Clinic (refilt.) (17.67dB)

Figure 18. A view of Peppers with white noise (kernel gw , ‖g‖22 = 0.01), Couple with horizontal noise (kernel g1, ‖g‖22 = 0.01), and Man with diagonal
pattern noise (kernel g3, ‖g‖22 = 0.02). Denoising results of BM3D with the proposed improvements, old BM3D, BLS-GSM, NLM-C and Noise Clinic, as
well as these methods with the applied refiltering procedure. Note how the new BM3D yields significant improvements compared to the old BM3D in both
cases of correlated noise, while keeping the same performance in white noise. Refiltering restores visible details for both correlated noise cases, without
affecting the performance for white noise. Furthermore, especially with the noise generated by g3, refiltering restores significant detail also for the BLS-GSM
algorithm.
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Figure 19. Stripe removal of Terra MODIS band 30 data (9.580–9.880 µm)
using BM3D. Left to right: noisy image, denoising results with old BM3D,
denoising results with new BM3D. Old BM3D fails to remove the stronger
stripes, which are successfully removed with the proposed improvements.
Images are histogram-equalized for visualization purposes.

Figure 16 the parameter variations lead to loss in the tenths of
dB, whereas in Table III the difference between old and new
BM3D is more than 2dB.

The model also presumes the noise stationary; however, in
BM3D all the filtering operations take place on quite small
limited regions. Thus, global stationarity can be relaxed, ap-
plying the filter separately on smaller region where stationarity
holds with a relevant local model for Ψ. In particular, for
all the reported experiments, block-matching is done within a
39×39 search-neighborhood, and the downscaled Ψ as well
as the region used for computing the variances have only a
32×32 support. Likewise, the global Fourier thresholding can
be applied on smaller image sections (e.g., 100×100).

Furthermore, the assumption of additive noise is not fun-
damentally restrictive. These algorithms are applicable, for
example, to signal-dependent noise with spatial correlation
[55] by means of variance-stabilizing transformations and
suitable renormalization of Ψ, as shown in [56].

C. Potential for estimating the noise PSD Ψ

In this work, we assume that the noise PSD Ψ is known,
and it is used to calculate the variances vx1,...,xM

i,j of the
spectrum coefficients of any group of patches with block
coordinates x1, . . . , xM via (14). The same formula can be
leveraged to compute an estimate Ψ̂ of Ψ given sample
estimates v̂x1,...,xM

i,j of vx1,...,xM
i,j . Specifically, let us consider a

collection of R group coordinates
{
x[r]

1 , . . . , x
[r]
M [r]

}R
r=1

, and the

associated sample estimates
{
v̂
x[r]
1 ,...,x

[r]
M[r]

i,j

}R
r=1

, which could be
computed using methods like those in [19], [48], [55], [57].
Following (14), the error in the sample estimates given Ψ can
be quantified for the r-th group coordinates x[r]

1 , . . . , x
[r]
M [r] as

Ur(i, j,Ψ) = v̂
x[r]
1 ,...,x

[r]
M[r]

i,j −
∥∥∥|X|−2

Ψ
∣∣F[bdD

i

]∣∣2∣∣F[b̃NL
j

]∣∣2∥∥∥
1
.

Minimizing this error over the entire collection and spectral
indices yields an estimate of Ψ as

Ψ̂=argmin
Ψ≥0

R∑
r=1

M [r]∑
j=1

N∑
i=1

|Ur(i, j,Ψ)|q . (35)

where q=2 yields a quadratic equation as Ur(i, j,Ψ) is linear
on Ψ for a nonnegative Ψ, while q=1 provides a robust
estimate. A smoothness or regularity prior on Ψ can be used to

define a penalty that disambiguates underdetermined solutions.
A weighting term ωr or ωr(i, j) can be included within the
summation in (35) to balance the contribution of different
sample estimates v̂x

[r]
1 ,...,x

[r]
M[r]

i,j to the final estimate Ψ̂. Note
that (35) can be solved iteratively, e.g., as in [55].

IX. CONCLUSIONS

We presented a method which allows for both the exact
computation and effective approximations of the noise spec-
trum variance in nonlocal collaborative transforms in any
number of dimensions by taking into account the relative
positions of the matched blocks and their interplay with the
noise power spectrum. The exact variances allow us to both
calculate more accurate shrinkage thresholds and to avoid
matching blocks that are strongly correlated in noise rather
than similar in the underlying image.

The experiments show that the presented method can yield
significant improvements in BM3D denoising both visually
and in terms of PSNR. The greatest improvements can be
noted when the noise is very strongly correlated. We also show
that a simple global Fourier thresholding and refiltering step
can be used to recover a significant amount of detail with
several cases of correlation, as the denoising may be limited
due to block size or the used transforms.

A significant improvement for various cases of correlated
noise can be noted even when the variances are approximated
for a majority of the spectrum coefficients as described in
Section IV-D; thus the proposed methods do not entail a
computational burden.
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