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A Nonlocal Transform-Domain Filter for Volumetric Data
Denoising and Reconstruction
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Abstract—We present an extension of the BM3D filter to volumetric
data. The proposed algorithm, denominated BM4D, implements the
grouping and collaborative filtering paradigm, where mutually similar
d-dimensional patches are stacked together in a (d + 1)-dimensional
array and jointly filtered in transform domain. While in BM3D the
basic data patches are blocks of pixels, in BM4D we utilize cubes of
voxels, which are stacked into a four-dimensional “group”. The four-
dimensional transform applied on the group simultaneously exploits the
local correlation present among voxels in each cube and the nonlocal
correlation between the corresponding voxels of different cubes. Thus,
the spectrum of the group is highly sparse, leading to very effective
separation of signal and noise through coefficients shrinkage. After
inverse transformation, we obtain estimates of each grouped cube, which
are then adaptively aggregated at their original locations. We evaluate
the algorithm on denoising of volumetric data corrupted by Gaussian
and Rician noise, as well as on reconstruction of volumetric phantom
data with non-zero phase from noisy and incomplete Fourier-domain (k-
space) measurements. Experimental results demonstrate the state-of-the-
art denoising performance of BM4D, and its effectiveness when exploited
as a regularizer in volumetric data reconstruction.

Index Terms—Volumetric data denoising, volumetric data reconstruc-
tion, compressed sensing, magnetic resonance imaging, computed tomog-
raphy, nonlocal methods, adaptive transforms

I. INTRODUCTION

The past six years have witnessed substantial developments in
the field of image restoration. In particular, for what concerns
image denoising, starting with the adaptive spatial estimation strategy
termed nonlocal means (NLmeans) [1], it soon became clear that self-
similarity and nonlocality are the characteristics of natural images
with by far the biggest potential for image restoration. In NLmeans,
the basic idea is to build a pointwise estimate of the image where
each pixel is obtained as a weighted average of pixels centered at
regions that are similar to the region centered at the estimated pixel.
The estimates are nonlocal because, in principle, the averages can be
calculated over all pixels of the image. One of the most powerful and
effective extensions of the nonlocal filtering approach is the grouping
and collaborative filtering paradigm embodied by the BM3D image
denoising algorithm [2]. This algorithm is based on an enhanced
sparse representation in transform domain. The enhancement of the
sparsity is achieved by grouping similar 2-D fragments of the image
into 3-D data arrays which are called “group”. Such groups are
processed through a special procedure, named collaborative filtering,
which consists of three successive steps: firstly a 3-D transformation
is applied to the group, secondly the transformed group coefficients
are shrunk, and finally a 3-D group estimate is obtained by inverting
the 3-D transformation. Due to the similarity between the grouped
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fragments, the noise can be well separated by shrinkage because
the 3-D transformation discloses a highly sparse representation of
the true signal in transform domain. In this way, the collaborative
filtering reveals even the finest details shared by the jointly filtered
2-D fragments preserving at the same time their essential unique
features. The BM3D algorithm presented in [2] represents the current
state of the art in 2-D image denoising, demonstrating a performance
significantly superior to that of all previously existing methods.
Recent works discuss the near-optimality of this approach and offer
further insights about the rationale of the algorithm [3], [4].

In this work, we present an extension of the BM3D algorithm to
volumetric data denoising. While in BM3D the basic data patches
are blocks of pixels, in the proposed algorithm, denominated BM4D,
we naturally utilize cubes of voxels. The group formed by stacking
mutually similar cubes is hence a four-dimensional orthope (hy-
perrectangle) whose fourth dimension, along which the cubes are
stacked, embodies the nonlocal correlation across the data. Thus,
collaborative filtering simultaneously exploits the local correlation
present among voxels in each cube as well as the nonlocal correlation
between the corresponding voxels of different cubes. As in BM3D,
the spectrum of the group is highly sparse, leading to a very effective
separation of signal and noise by either thresholding or Wiener
filtering. After inverse transformation, we obtain the estimates of each
grouped cube, which are then aggregated at their original locations
using adaptive weights.

Further we exploit BM4D as a regularizer operator for the re-
construction of incomplete volumetric data. The proposed procedure
generalizes [5], [6], as it addresses the reconstruction of volumetric
data having non-zero phase from a set of incomplete noisy transform-
domain measurements. Our reconstruction procedure works itera-
tively. In each iteration the missing part of the spectrum is excited
with random noise; then, after transforming the excited spectrum to
the voxel domain, the BM4D filter attenuates the noise present in both
magnitude and phase of the data, thus disclosing even the faintest
details from the incomplete and degraded observations. The overall
procedure can be interpreted as a progressive approximation in which
the denoising filter directs the stochastic search towards the solution.

Experimental results on volumetric data from the BrainWeb
database [7] demonstrate the state-of-the-art performance of the pro-
posed algorithm. In particular, we report significant improvement over
the results achieved by the optimized volumetric implementations of
the NLmeans filter [8], [9], [10], [11], which, to the best of our
knowledge, are the most successful approaches in magnetic resonance
(MR). We also test BM4D against real MR data provided by the
OASIS database [12]. As for the reconstruction experiments, our
iterative procedure achieves excellent performance for both the 3-D
Shepp-Logan [13], [14] and BrainWeb phantoms sampled by various
trajectories.

The remainder of paper is organized as follows. In Section II we
formally define the observation model, the BM4D implementation,
and the adopted parameters. The denoising experiments are analyzed
in Section III. In Section IV we first describe the volumetric recon-
struction procedure, and then in Section V we report its experimental
validation. Concluding remarks are given in Section VI.
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Fig. 1. Flow-diagram of the proposed BM4D algorithm. In both Hard-thresholding (left box) and Wiener-filtering (right box) stage, the grouping, collaborative
filtering and aggregation steps are performed for each reference cube of the observed volumetric data.

II. BM4D ALGORITHM

A. Observation Model

For the development of the BM4D algorithm, we consider noisy
volumetric observation z : X → R of the form

z(x) = y(x) + η(x), x ∈ X, (1)

where y is the original, unknown, volumetric signal, x is a 3-D coor-
dinate belonging to the signal domain X ⊂ Z3, and η(·) ∼ N (0, σ2)
is independent and identically distributed (i.i.d.) Gaussian noise with
zero mean and known standard deviation σ.

B. Implementation

The objective of the proposed BM4D is to provide an estimate ŷ of
the original y from the noisy observation z. Similarly to the BM3D
algorithm, BM4D is implemented in two cascading stages, namely a
hard-thresholding and a Wiener-filtering stage, each comprising three
steps: grouping, collaborative filtering, and aggregation. The flow-
diagram of the BM4D implementation is illustrated in Fig. I.

1) Hard-thresholding stage: Let CzxR
denote a cube of L×L×L

voxels, with L ∈ N, extracted from z at the 3-D coordinate xR ∈ X ,
which identifies its top-left-front corner. In the hard-thresholding
stage, the four-dimensional groups are formed by stacking together,
along an additional fourth dimension, (three-dimensional) noisy cubes
similar to CzxR

. Specifically, the similarity between two cubes is
measured via the photometric distance

d
`
Czxi

, Czxj

´
=

˛̨˛̨
Czxi
− Czxj

˛̨˛̨2
2

L3
, (2)

where || · ||22 denotes the sum of squared differences between corre-
sponding intensities of the two input cubes, and the denominator L3

serves as normalization factor. No prefiltering is performed before the
cube-matching, therefore the noisy observations are directly tested for
similarity.

In the grouping step, a group consisting of mutually similar cubes
extracted from z is built for every (reference) cube CzxR

. Two cubes
are considered similar if their distance (2) is smaller than or equal
to a predefined threshold τ ht

match which thus controls the minimum
accepted cube-similarity. Formally, we first define a set containing
the indices of the cubes similar to CzxR

as

SzxR
=
n
xi ∈ X : d

`
CzxR

, Czxi

´
≤ τ ht

match

o
. (3)

Then, such (3) is used to build the four-dimensional group

Gz
Sz

xR
=

a
xi∈Sz

xR

Czxi
, (4)

being
‘

the disjoint union operation. This process is exemplified
in Fig. I, where the reference cube, denoted by “R”, is matched to
a series of similar cubes located anywhere within the 3-D data. In
particular, the coordinate xR and the various xi in (3) correspond
to the tails and the heads of the arrows connecting the cubes,
respectively. Observe that, since the distance of any cube to itself
is always zero, from the definition of (3) follows that each group (4)
necessarily contains at least the reference cube CzxR

.
During the collaborative filtering step, four 1-D decorrelating linear

transform, which we denote as a joint four-dimensional transform
T ht

4D , are separately applied to every dimension of the group (4).
The so-obtained 4-D group spectrum is then shrunk coefficient by
coefficient by a hard-thresholding operator Υht with threshold value
σλ4D as

Υht
“
T ht

4D

“
Gz
Sz

xR

””
. (5)

The transform T ht
4D is assumed to have a DC term, which is never

shrunk during the collaborative filtering so that the mean value of the
group is preserved. Eventually, the filtered group, denoted as Ĝy

S
y
xR

,
is produced by inverting the four-dimensional transform as

T ht−1

4D

“
Υht
“
T ht

4D

“
Gz
Sz

xR

”””
= Ĝy

Sz
xR

=
a

xi∈Sz
xR

Ĉyxi
, (6)

being each Ĉyxi
an estimate of the original Cyxi

extracted from the
unknown volumetric data y.

The groups (6) are an overcomplete representation of the denoised
signal, because cubes in different groups, as well as cubes within the
same group, are likely to overlap; as a result, within the overlapping
regions, different cubes provides multiple, and in general different, es-
timates for the same voxel. In the aggregation step, such redundancy
is exploited through an adaptive convex combination to produce the
basic volumetric estimate

ŷht =

P
xR∈X

“P
xi∈Sz

xR

wht
xR
Ĉyxi

”
P
xR∈X

“P
xi∈Sz

xR

wht
xRχxi

” , (7)

where wht
xR

are group-dependent weights, χxi : X → {0, 1} is the
characteristic (indicator) function of the domain of Ĉyxi

(i.e. χxi = 1

over the coordinates of the voxels of Ĉyxi
and χxi = 0 elsewhere),

and every Ĉyxi
is assumed to be zero-padded outside its domain. Note

that, whereas in BM3D a 2-D Kaiser window of the same size of the
blocks is used to alleviate blocking artifacts in the aggregated estimate
[2], in the proposed BM4D we do not perform such windowing,
because of the small size of the cubes. The weights in (7) are defined
as

wht
xR

=
1

σ2N ht
xR

, (8)
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where σ is the standard deviation of the noise in z, and N ht
xR

denotes the number of non-zero coefficients in (5). Since the DC
coefficient is always retained after thresholding, i.e. N ht

xR
≥ 1, the

denominator of (8) is never zero. Note that the number N ht
xR

has a
double interpretation: on one hand it measures the sparsity of the
thresholded spectrum (5), and on the other, as explained in [2], it
approximates the total residual noise variance of the group estimate
(6). Thus, those groups exhibiting a high degree of correlation are
rewarded with larger weights, whereas others having a large residual
noise are penalized by smaller weights.

2) Wiener-filtering stage: In the Wiener-filtering stage, the group-
ing is performed within the basic estimate ŷht. We expect the obtain
a more accurate and reliable matching because the noise level in
ŷht is considerably smaller than that in z. We are interested in
improving the matching because a better grouping leads to a more
effective sparsification of the group spectrum, which in turn results
in a superior denoising quality. Formally, for each reference cube
C ŷ

ht

xR
extracted from the basic estimate ŷht, we build the set of the

coordinates of its similar cubes as

Sŷ
ht

xR
=
n
xi ∈ X : d

“
C ŷ

ht

xR
, C ŷ

ht

xi

”
< τwie

match

o
, (9)

where d(·, ·) is defined as in (2).
The collaborative filtering is implemented as an empirical Winer

filter. Analogously to (4), at first a group Gŷht

S
ŷht
xR

is extracted from ŷht

using the set of coordinates (9), then from the energy of its spectrum
we define the empirical Wiener filter coefficients as

W
S

ŷht
xR

=

˛̨̨
T wie

4D

“
Gŷht

S
ŷht
xR

”˛̨̨2
˛̨̨
T wie

4D

“
Gŷht

S
ŷht
xR

”˛̨̨2
+ σ2

, (10)

where σ denotes the standard deviation of the noise, and T wie
4D is

a transform operator composed by four 1-D linear transformations,
which are in general different than those in T ht

4D . Subsequently, we
use the same set (9) to extract a second (noisy) group, termed Gz

S
ŷht
xR

,

from the observation z. The coefficients shrinkage is implemented
as element-by-element multiplication between the spectrum of the
noisy group and the Wiener-filter coefficients (10). The estimate of
the group

Ĝy

S
ŷht
xR

= T wie−1

4D

„
W

S
ŷht
xR

· T wie
4D

„
Gz

S
ŷht
xR

««
(11)

is finally produced by applying the inverse four-dimensional trans-
form T wie−1

4D to the shrunk spectrum
The final estimate ŷwie is produced through a convex combination,

analogous to (7), in which the sets (3) are replaced with (9), and the
aggregation weights for a specific group estimate (11) are defined
from the energy of the Wiener-filter coefficients (10) as

wwie
xR

= σ−2
˛̨̨˛̨̨
W

S
ŷht
xR

˛̨̨˛̨̨−2

2
, (12)

where σ is the standard deviation of the noise in z. In this way, as in
[2], each (12) gives an estimate of the total residual noise variance
of the corresponding group (11).

III. DENOISING EXPERIMENTS

We validate the denoising capabilities of BM4D1 using noisy mag-
netic resonance phantoms, because we recognize medical imaging to

1MATLAB code available at http://www.cs.tut.fi/∼foi/GCF-BM3D/

be one of the most prominent applications based on volumetric data.
We measure the objective quality of the denoising trough its PSNR

PSNR (y, ŷ) = 10 log10

 
D2|X̃|P

x∈X̃ (ŷ(x)− y(x))2

!
,

where D is the peak of y, X̃ = {x ∈ X : y(x) > 10 · D/255}
(in order not to compute the PSNR on the background as in [8]),
and |X̃| is the cardinality of X̃ . We also evaluate our experiments
with the structure similarity index (SSIM), that is a metric originally
presented for 2-D images in [15] and extended to 3-D data in [8] that
better relates to the human visual system than traditional methods
based on the mean squared error such as the PSNR. In what follows,
without loss of generality, we assume to deal with real-valued signals
normalized to the intensity range [0, 1] (i.e. D = 1).

The experiments are made under both Gaussian- and Rician-
distributed noise. In the former case, the noisy observations z are
distributed accordingly to (1); in the latter, the noisy observations
z : X → R+ follow the definition

z(x) =

q
(cry(x) + σηr(x))2 + (ciy(x) + σηi(x))2, (13)

where x is a 3-D coordinate belonging to the domain X ⊂ Z3, cr and
ci are constants satisfying the condition 0 ≤ cr, ci ≤ 1 = c2r + c2i ,
and ηr(·), ηi(·) ∼ N (0, 1) are i.i.d. random vectors following the
standard normal distribution. In this way, z ∼ R (y, σ) represents
the raw magnitude MR data, modeled as a Rician distribution R of
parameters y and σ, denoting the (unknown) original noise-free signal
and the standard deviation of the Rician noise, respectively [16].

Leveraging a recently proposed method of variance-stabilization
(VST) [16] for the Rician distribution, BM4D can be successfully
applied to data distributed as in (13) without incorporating any
adaptation to the algorithm. The purpose of the VST is to remove
the dependency of the noise variance on the underlying signal before
the denoising, and compensate the effects of the bias in the produced
filtered estimate. Formally, the denoising of Rician data via the BM4D
algorithm is expressed as

ŷ = VST−1
“

BM4D
`
VST (z, σ) , σVST

´
, σ
”
, (14)

where VST−1 denotes the inverse variance-stabilization transforma-
tion, σVST is the stabilized standard deviation induced by the VST,
and σ is the standard deviation of the noise in (13). Thus, the noisy
Rician data z is first stabilized by the VST and then filtered by BM4D
using a constant noise level σVST; the final estimate is finally obtained
by applying the inverse VST to the output of the denoising. Note that
this inverse is not the trivial algebraic inverse of the forward VST,
but it includes further nonlinearities in order to compensate both the
bias due to forward stabilization and the bias due to the non-zero
mean of the Rician noise [16].

The volumetric test data y is the T1 BrainWeb phantom of size
181× 217× 181 voxels having 1mm slice thickness, 0% noise, and
0% intensity non-uniformity [7]. We synthetically generate the noisy
observations z accordingly to (1) and (13) using different values of
standard deviation σ, ranging from 1% to 19% of the maximum value
D of the original signal y.

In order to provide relevant comparisons, we validate the denoising
performance of the BM4D algorithm against the optimized blockwise
nonlocal means OB-NLM3D [10], the optimized blockwise nonlocal
means with wavelet mixing OB-NLM3D-WM [11], the oracle-based
3-D DCT ODCT3D [8], and the prefiltered rotationally invariant
nonlocal means PRI-NLM3D [8]. To the best of our knowledge,
ODCT3D and PRI-NLM3D represent the state of the art in MR image
denoising. The OB-NLM3D, OB-NLM3D-WM, ODCT3D, and PRI-
NLM3D algorithms exist in separate implementations developed for
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TABLE I
PARAMETER SETTINGS FOR THE PROPOSED BM4D ALGORITHM.

Parameter
Stage

Hard thresholding Wiener filtering
Normal Modif. Normal Modif.

Cube size L 4 4 5
Group size M 16 32 32

Step Nstep 3
Search-cube size NS 11

Similarity thr. τmatch 2.9 24.6 0.4 6.7
Shrinkage thr. λ4D 2.7 2.8 Does not apply
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Fig. 2. PSNR denoising performance of BM4D under the normal (◦) and
modified (�) profile applied to the BrainWeb phantom [7] corrupted by i.i.d.
Gaussian noise (left) and Rician noise (right) with varying level of σ.

Gaussian- and Rician-distributed noise, thus we decorate their names
with a subscript “N ” (Gaussian) and “R” (Rician) to denote the noise
distribution addressed by the specific algorithm implementation.

A. Algorithm Parameters

We set the size of the cubes in BM4D in such a way that the
cubes contain roughly as many voxels as the number of pixels in the
2-D blocks in BM3D. In this manner, we are able to successfully
utilize most of the settings originally optimized for BM3D. Since the
BM3D algorithm is presented under two sets of parameter, namely
the normal and modified profile in which the blocks have size 8 and
11 [2], we correspondingly define for BM4D two analogous profiles
having cube size L = 4 and L = 5.

The separable four-dimensional transforms of BM4D are similar
to those in [2]. In the hard-thresholding stage T ht

4D is a composition
of a 3-D biorthogonal spline wavelet in the cube dimensions (note
that, due to the small L, this transform is actually equivalent to a 3-D
Haar separable transform) and a 1-D Haar wavelet in the grouping
dimension; in the Wiener-filtering stage T wie

4D embeds a 3-D discrete
cosine transform (DCT) in the cube dimensions and, again, a 1-D
Haar wavelet in the grouping dimension. The Haar transform in the
fourth dimension restricts the cardinality of the groups to be a power
of two, but, since such cardinality is not known a priori, we constrain
the number of grouped cubes to be the largest power of 2 smaller
than or equal to the minimum value between the original cardinality
of the groups and a predefined value M . Then, in order to reduce the
computational complexity of the algorithm, the grouping is performed
within a three-dimensional window of size NS ×NS ×NS centered
at the coordinate of the current reference cube, and all such reference
cubes are separated by a step Nstep ∈ N in every spatial dimension.
Table I summarizes the role and the value of all parameters utilized
by BM4D.

TABLE III
ACQUISITION DETAILS OF THE OASIS “OAS1 0108 MR1” MRI

CROSS-SECTIONAL DATA.

MP-RAGE OAS1 0108 MR1 sequence
TR (msec) 9.7
TE (msec) 4.0
Flip angle (deg) 10
TI (msec) 20
TD (msec) 200
Orientation Sagittal
Dimension (voxels) 256× 256× 128

Resolution (mm) 1.0× 1.0× 1.25

In the modified profile, following the comments suggested in [17],
we increase the values of the similarity thresholds τ , the group
size M , the cube size L, and the hard-threshold value λ4D . The
rationale behind such modifications consists in improving both the
reliability of the matching by using larger cubes, and the effectiveness
of the collaborative filtering by promoting the formation of bigger
groups. The denoising performance of BM4D under both the normal
and modified profile with increasing values of standard-deviation
σ (for both Gaussian- and Rician-distributed data) is illustrated in
Fig. 2. As one can see, the modified profile consistently provides
the best PSNR performance, especially in cases when the noise
variance is large, i.e. σ > 15%. The results present a consistent
behavior with Figure 9 in [2], where the two different profiles are
compared in 2-D image denoising. These results are explained by
the nature of MR images, as modeled by the BrainWeb phantom,
predominantly characterized by low-frequency content, abundance of
similar patches, and a vast smooth background. The modified profile
leverages such attributes because, on one hand, it tends to form groups
having maximum cardinality, and, on the other, it applies a slightly
more aggressive smoothing through the larger λ4D . That being so, we
choose to always utilize the modified parameters for our experimental
evaluation.

B. Denoising of BrainWeb Phantom

Table II reports the PSNR and SSIM performance for the OB-
NLM3D, OB-NLM3D-WM, ODCT3D, PRI-NLM3D, and BM4D
filters. The proposed BM4D algorithm always achieves the best
results both in case of Gaussian- and Rician-distributed noise, with
PSNR improvements on the current state-of-the-art filters [8] roughly
ranging between 0.5dB and 1.4dB. Additionally, we observe that,
among the considered algorithms, the PSNR and SSIM performance
of BM4D exhibits the most graceful degradation as noise level σ
increases. Fig. 8 shows a cross-section of the BrainWeb phantom,
denoised by all algorithms; the illustrated noisy observation, shown
in Fig. 7(c), has been corrupted by i.i.d. Gaussian noise having
σ = 15%. From a subjective point of view, BM4D achieves an
excellent visual quality, as can be seen from the smoothness in
flat areas, the details preservation along the edges, and the accurate
preservation of the intensities in the restored phantom.

C. Denoising of Real Magnetic Resonance Data

The denoising algorithms have been also tested on real cross-
sectional MR data made publicly available by the Open Access Series
of Imaging Studies (OASIS) database [12]. The T1-weighted mag-
netization prepared rapid gradient-echo (MP-RAGE) 16-bit images
have been acquired via a 1.5-T Vision scanner (Siemens, Erlangen,
Germany) in a single imaging session, additional details on the
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TABLE II
PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE IN EACH CELL) DENOISING PERFORMANCES ON THE VOLUMETRIC TEST DATA

FROM THE BRAINWEB DATABASE [7] OF THE PROPOSED BM4D (UNDER THE MODIFIED PROFILE) AND THE OB-NLM3D [10], OB-NLM3D-WM [11],
[18], ODCT3D [8], AND PRI-NLM3D [8] FILTERS. TWO KINDS OF OBSERVATIONS ARE TESTED, ONE CORRUPTED BY I.I.D. GAUSSIAN AND THE OTHER

BY SPATIALLY HOMOGENOUS RICIAN NOISE ACCORDING TO THE OBSERVATION MODELS (1) AND (13). BOTH CASES ARE TESTED UNDER DIFFERENT
STANDARD-DEVIATIONS σ, EXPRESSED AS PERCENTAGE RELATIVE TO THE MAXIMUM INTENSITY VALUE OF THE ORIGINAL VOLUMETRIC DATA. VST
REFERS TO THE VARIANCE-STABILIZATION FRAMEWORK DEVELOPED FOR RICIAN-DISTRIBUTED DATA [16]. THE SUBSCRIPTS N (GAUSSIAN) AND R

(RICIAN) DENOTE THE ADDRESSED NOISE DISTRIBUTION.

Noise Filter σ

1% 3% 5% 7% 9% 11% 13% 15% 17% 19%

Gauss.

(Noisy data) 40.00|0.97 30.46|0.81 26.02|0.66 23.10|0.53 20.91|0.43 19.17|0.36 17.72|0.30 16.48|0.25 15.39|0.22 14.42|0.19
OB-NLM3DN 42.47|0.99 37.57|0.97 34.73|0.95 32.82|0.92 31.42|0.90 30.32|0.87 29.40|0.84 28.61|0.82 27.91|0.79 27.28|0.77

OB-NLM3D-WMN 42.52|0.99 37.75|0.97 35.01|0.95 33.13|0.93 31.73|0.90 30.61|0.88 29.68|0.85 28.88|0.83 28.18|0.80 27.55|0.78
ODCT3DN 43.78|0.99 37.53|0.97 34.89|0.95 33.18|0.93 31.91|0.91 30.90|0.89 30.07|0.88 29.35|0.86 28.73|0.85 28.18|0.83

PRI-NLM3DN 44.04|0.99 38.26|0.98 35.51|0.96 33.67|0.94 32.37|0.92 31.29|0.90 30.40|0.89 29.65|0.87 28.99|0.85 28.40|0.84
BM4D 44.09|0.99 38.39|0.98 35.95|0.96 34.38|0.95 33.21|0.93 32.28|0.92 31.50|0.91 30.82|0.90 30.23|0.88 29.70|0.87

Rician

(Noisy data) 40.00|0.97 30.49|0.81 26.09|0.66 23.20|0.53 21.04|0.43 19.32|0.36 17.88|0.30 16.65|0.25 15.57|0.21 14.60|0.18
OB-NLM3DR 42.41|0.99 37.45|0.97 34.54|0.94 32.51|0.91 30.97|0.88 29.71|0.85 28.62|0.81 27.64|0.78 26.74|0.74 25.91|0.70

VST + OB-NLM3DN 42.48|0.99 37.45|0.97 34.40|0.94 32.26|0.91 30.65|0.88 29.34|0.85 28.23|0.81 27.25|0.78 26.37|0.74 25.57|0.71
OB-NLM3D-WMR 42.44|0.99 37.54|0.97 34.66|0.95 32.61|0.92 31.01|0.88 29.69|0.85 28.53|0.81 27.50|0.77 26.57|0.74 25.71|0.70

VST + OB-NLM3D-WMN 42.53|0.99 37.68|0.97 34.75|0.95 32.66|0.92 31.06|0.89 29.77|0.86 28.68|0.83 27.71|0.80 26.84|0.76 26.04|0.73
ODCT3DR 42.96|0.99 37.38|0.97 34.70|0.95 32.90|0.93 31.53|0.90 30.41|0.88 29.48|0.86 28.67|0.84 27.95|0.82 27.30|0.80

VST + ODCT3DN 43.74|0.99 37.51|0.97 34.79|0.95 32.98|0.93 31.59|0.90 30.47|0.88 29.52|0.86 28.71|0.84 27.98|0.82 27.31|0.80
PRI-NLM3DR 43.97|0.99 38.19|0.98 35.34|0.96 33.37|0.94 31.94|0.91 30.74|0.89 29.75|0.87 28.88|0.85 28.10|0.82 27.39|0.80

VST + PRI-NLM3DN 44.21|0.99 38.20|0.98 35.34|0.96 33.36|0.94 31.90|0.91 30.71|0.89 29.71|0.87 28.88|0.85 28.13|0.82 27.46|0.80
VST + BM4D 44.08|0.99 38.34|0.98 35.83|0.96 34.17|0.94 32.89|0.93 31.82|0.91 30.90|0.89 30.06|0.88 29.29|0.86 28.57|0.84

acquisition process are summarized in Table III. The (anonymous) test
subject is a 25-years old right-handed male with no brain damages.
The noise has been assumed to be Rician-distributed, and its standard
deviation, estimated as described in [16], is approximately σ ≈ 4%
of the maximum intensity value of the data. The acquired phantom is
shown in Fig. 7(d), whereas Fig. 8 shows the corresponding denoised
results produced by the OB-NLM3D, OB-NLM3D-WM, ODCT3D,
PRI-NLM3D, and BM4D filters. It is not possible to give objective
measurement of the denoising quality because the ground-truth data
is unknown; however, from a subjective point of view, we note that
the visual quality of the restored phantom has been significantly
improved by every algorithm, as the noise has been removed without
introducing disturbing artifacts. Given the relatively mild standard
deviation of the corrupting noise, all algorithms produce good-quality
estimates, nevertheless we note that fine details in the phantoms
restored by OB-NLM3D and OB-NLM3D-WM are slightly over-
smoothed whereas the estimates obtained from ODCT3D, PRI-
NLM3D, and BM4D have comparable visual quality.

D. Computational Complexity and Scalability

The current single-threaded MATLAB/C implementation of the
BM4D algorithm under the modified profile requires about 11 min-
utes to denoise the BrainWeb phantom on a machine with a 2.66-
GHz processor and 8GB of RAM. About 30% of the computation
time is spent during the hard-thresholding stage, and the remaining
is spent during the Wiener-filtering stage. We remark that the cube-
matching nonlocal search procedure, mainly parametrized by the size
of the 3-D search window NS and by the step between neighboring
processed cubes Nstep, is by far the most time-consuming task. In
our current implementation only the 1-D transform applied to the
fourth (grouping) dimension uses a fast algorithm, whereas the 3-
D separable transform used for each cube is computed via matrix
multiplications; therefore BM4D could be accelerated by employing
fast transform algorithms also for the cube dimensions. Table IV
shows the PSNR performance, together with the execution times, of
BM4D tuned with different combinations of NS and Nstep.

Significant accelerations can be induced by decreasing NS . In

TABLE IV
PSNR DENOISING PERFORMANCES OF BM4D TUNED WITH DIFFERENT

COMBINATIONS OF THE PARAMETERS CONTROLLING THE
CUBE-MATCHING, NAMELY THE SIZE OF THE 3-D SEARCH WINDOW NS
AND THE STEP BETWEEN NEIGHBORING PROCESSED CUBES NSTEP ; THE

LAST COLUMN SHOWS THE MEAN EXECUTION TIMES OF THE DENOISING
PROVIDED BY A SINGLE-THREADED MATLAB/C IMPLEMENTATION. THE
HARDWARE USED TO EXECUTE THE EXPERIMENTS IS A MACHINE WITH A

2.66-GHZ PROCESSOR AND 8GB OF RAM. THE TEST DATA IS THE
BRAINWEB PHANTOM, CORRUPTED BY I.I.D. GAUSSIAN NOISE WITH

STANDARD DEVIATIONS σ. THE PERFORMANCES OF BM4D UNDER THE
DEFAULT SETTINGS NS = 11 AND NSTEP = 3 ARE REPORTED IN ITALIC

FONT.

Param. σ Sec.
NS Nstep 7% 11% 15% 19%

1
5 27.71 24.39 22.08 20.31 4.0
4 30.99 28.57 26.93 25.70 6.2
3 31.82 29.58 28.10 27.00 13.6

3
5 32.81 30.51 28.90 27.66 49.7
4 33.36 31.13 29.57 28.37 91.2
3 33.54 31.31 29.76 28.57 210.5

5
5 33.68 31.58 30.13 29.00 107.8
4 33.95 31.85 30.41 29.30 204.9
3 34.05 31.97 30.53 29.42 455.8

7
5 33.90 31.81 30.36 29.24 118.5
4 34.17 32.08 30.63 29.51 228.5
3 34.26 32.18 30.74 29.63 524.1

9
5 33.98 31.89 30.42 29.27 139.5
4 34.24 32.13 30.68 29.55 253.5
3 34.34 32.25 30.80 29.68 604.3

11
5 34.00 31.86 30.37 29.21 155.1
4 34.27 32.17 30.69 29.56 289.8
3 34.38 32.28 30.83 29.70 676.7

13
5 34.01 31.84 30.34 29.16 199.1
4 34.30 32.18 30.70 29.55 372.7
3 34.40 32.30 30.83 29.70 870.5

15
5 34.03 31.86 30.34 29.15 257.7
4 34.31 32.18 30.69 29.53 482.5
3 34.42 32.30 30.82 29.68 1130.1



6

fact, referring to Table IV, the setting NS = 1 is roughly between
50× and 150× faster than the default size NS = 11. However,
NS = 1 de facto disables the grouping procedure, because in such
case the search windows, and consequently the groups, contain one
and only one element, that is the reference cube itself. As a result, the
sparsification induced by the collaborative filtering is less effective
because the nonlocal correlation is missing in the grouped data. The
repercussions are evident in the corresponding PSNR performance,
which is about up to 5dB worse than those of the default case.
In general, whenever NS is enlarged and Nstep does not vary, the
execution time grows by roughly a factor of 1.2× without producing
a dramatic PSNR improvement. Interestingly, the PSNR sometimes
worsen as NS ≥ 11, thus suggesting that bigger search windows do
not always improve the denoising quality.

Conversely, keeping NS fixed, and excluding the case limit
NS = 1, we observe that the execution time roughly halves at
every increment of Nstep with a performance degradation of only
about 0.4dB. Anyway the step should not be carelessly enlarged
because whenever Nstep > L any pair of adjacent reference cubes are
separated by a gap of L−Nstep voxels in each dimension, and since
there is no guarantee that every voxel in those gaps will be covered by
non-reference cubes, the final denoised volume may contain missing
estimates. In the experiments reported in Table IV, we substitute the
occurring missing estimates with the corresponding values of the data
used in the grouping, i.e. the z in the hard-thresholding stage and ŷht

in Wiener-filtering stage.
In conclusion, we have verified that BM4D gracefully scale with

different tuning of the search-window size NS and the step Nstep

parameters, which in turn affect the complexity of the cube-matching
search procedure. However, optimal filtering results are achieved
when NS > 3 and Nstep ≤ L, to enable a better grouping and avoid
possible missing estimates in the final denoised volume.

IV. ITERATIVE RECONSTRUCTION FROM INCOMPLETE

MEASUREMENTS

In several inverse imaging applications, such as magnetic reso-
nance imaging (MRI), the observed (acquired) measurements are
a severe subsample of a transform-domain representation of the
original unknown signal. In this section, we propose an iterative
procedure, designed for the joint denoising and reconstruction of
incomplete volumetric data, that uses the proposed BM4D algorithm
as a regularizer operator.

A. Problem Setting

In volumetric reconstruction, an unknown signal of interest is
observed through a limited number linear functionals. In compressed-
sensing problems, these observations can be considered as a limited
portion of the spectrum of the signal in transform domain. In general,
a direct application of an inverse operator cannot reconstruct the
original signal, because we consider cases where the available data
is much smaller than what is required according to the Nyquist-
Shannon sampling theorem. However, it is shown that whenever the
signal can be represented sparsely in a suitable transform domain,
stable (and even exact) reconstruction of the unknown signal is still
possible [19], [20]. The most popular reconstruction techniques are
formulated as a convex optimization, usually solved by mathematical
programming algorithms, that yields the solution most consistent with
the available data. The optimization is typically constrained by a
penalty term expressed as `0 or `1 norms, which are exploited to
enable the sparsity of the assumed image priors [21], [22], [23], [20].
Our approach, inspired by [5], [6], [24], replaces such parametric

modeling of the solution with a nonparametric one implemented by
the use of a spatially adaptive denoising filter.

In MRI the non-uniform coil sensitivity and inhomogeneities of
the magnetic field, causing frequency shifts and distortions in both
intensity and geometry of the acquired data, generate (complex)
images with a non-zero phase component [31], [32], [33]. It is
generally assumed that the magnitude contains most of the structural
information of the underlying data and the phase is smooth varying
[25], [26], [27], [28]. Thus, even though the real and imaginary parts
could be processed simultaneously, e.g., enforcing smoothness priors
on the complex representation of the image, in our approach the
magnitude and phase of the data are independently regularized in
order to preserve their unique and individual features.

B. Observation Model

The observation model for the volumetric reconstruction problem
is given by

θ = T
“
yeıφ

”
+ η, (15)

where θ is the transform-domain representations of the unknown
volumetric data having magnitude y : X → R+ and absolute
(unwrapped) phase φ : X ⊂ Z3 → R, ı is the imaginary unit, T
is, for our purposes, the Fourier transform, and η(·) ∼ N

`
0, σ2

´
is

i.i.d. complex Gaussian noise with zero mean and standard deviation
σ.

Let Ω be the support of the available portion of the spectrum θ. We
define a sampling operator S as the characteristic (indicator) function
χΩ, which is 1 over Ω and 0 elsewhere. By means of S, we can split
the spectrum in two complementary parts as

θ = S · θ|{z}
θ1

+ (1− S) · θ| {z }
θ2

,

where θ1 and θ2 are the observed (known) and unobserved (unknown)
portion of the spectrum θ, respectively. Our goal is to recover an
estimate ỹ of the unknown underlying magnitude y from the observed
noisy measurements θ1. Note that if we had the complete spectrum
θ, we could trivially obtain ỹ by applying a volumetric denoising
filter, such as BM4D, on the (exact) noisy magnitude z =

˛̨
T −1(θ)

˛̨
.

However, since only a small portion of the spectrum θ is available and
since such portion contains noisy measurements, the reconstruction
task of the magnitude y is an ill-posed problem.

In Section IV-C, we first introduce the algorithm in its more general
form, suitable for data having non-zero phase. Then, in Section IV-D,
we consider the simplifications to the algorithm that are relevant to
the special case where the phase component is zero. In both cases,
the ultimate goal consists in reconstructing the magnitude of the
incomplete volumetric image.

C. Reconstruction of Volumetric Data with Non-Zero Phase

The reconstruction is carried out by an iterative procedure where
the estimate of the unobserved spectrum θ2 is improved via a
stochastic search driven by the action of an adaptive denoising filter
[5], [6], [24]. Specifically, we denote such filter as Φ(·, ·) whose
inputs are the (real) noisy data to be filtered and the assumed noise
standard deviation of this data. In what follows, we consider Φ to be
the BM4D filter.

At first, the estimate of the unobserved spectrum θ2 is set to zero
to generate the initial back-projection T −1 (θ1 + (1− S) · 0) which
is then used to obtain the magnitude and phase components as

ŷ(0) = ỹ(0) = ŷ
(0)
excite =

˛̨̨
T −1

“
θ1 + (1− S) · 0

”˛̨̨
,

φ̂(0) = φ̃(0) = φ̂
(0)
excite = ∠T −1

“
θ1 + (1− S) · 0

”
.
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1ŷ(0) = ỹ(0) = ŷ
(0)
excite =

˛̨̨
T −1

“
θ1 + (1− S) · 0

”˛̨̨
2φ̂(0) = φ̃(0) = φ̂

(0)
excite = ∠T −1

“
θ1 + (1− S) · 0

”
3k = 1

4whi le k ≤ kfinal

5θ̂2
(k)

= T
“
ŷ(k−1)eφ̃

(k−1)
”
· (1− S)

6θ̂
(k)
excite = θ1 + θ̂2

(k)
+ (1− S) · η(k)

excite

7ŷ
(k)
excite =

˛̨̨
T −1

“
θ̂
(k)
excite

”˛̨̨
8φ̂

(k)
excite = ∠T −1

“
θ̂
(k)
excite

”
9ŷ(k) = VST−1

“
Φ

“
VST

“
ŷ

(k)
excite, σ

(k)
excite

”
, σVST

”
, σ

(k)
excite

”
10φ̂(k) = mod

“
Φ

“
mod

“
φ̂

(k)
excite+ζ

(k), (−π, π]
”
, σ

(k)
excite

”
− ζ(k), (−π, π]

”
11λk =

„
λ−1
k−1σ

(k−1)−2

excite + σ
(k)−2

excite

«−1

σ
(k)−2

excite

12ỹ(k)eıφ̃
(k)

= λkỹ
(k−1)eıφ̃

(k−1)
+ (1− λk) ŷ(k)eıφ̂

(k)

13k ← k + 1
14end

Algorithm 1. Pseudo-code of the iterative reconstruction algorithm. The input
parameters are the available spectrum θ1, the 3-D trajectory S, the excitation
noise ηexcite, and the number of iterations kfinal. By Φ we denote the denoising
algorithm used during the reconstruction, and VST is a variance-stabilization
transformation for Rician-distributed data.

Subsequently, for each iteration k ≥ 1, which we shall denote by
a superscript (k), the reconstruction is carried out through three
cascading steps:

1) Noise Addition (Excitation): The estimate of the unobserved
portion of the spectrum is first extracted as

θ̂2
(k)

= T
“
ŷ(k−1)eφ̃

(k−1)
”
· S, (16)

where ŷ(k−1) and φ̃(k−1) are the denoised magnitude and
regularized phase produced in the previous iteration (k − 1).
Subsequently, we synthetically generate the excited spectrum

θ̂
(k)
excite = θ1 + θ̂2

(k)
+ (1− S) · η(k)

excite, (17)

by injecting (16) with i.i.d. complex Gaussian noise η
(k)
excite

with zero mean and standard deviation σ(k)
excite. Eventually, the

volumetric (excited) magnitude

ŷ
(k)
excite =

˛̨̨
T −1

“
θ̂

(k)
excite

”˛̨̨
(18)

and (excited) phase

φ̂
(k)
excite = ∠T −1

“
θ̂

(k)
excite

”
(19)

are obtained by extracting the absolute value (modulus) and
angle from the inverse-transformed spectrum (17), respectively.

2) Volumetric Filtering: The missing coefficients of the spectrum
θ, previously excited in (17), are then modified by the action
of the independent denoising of the excited magnitude (18) and
excited phase (19). Intuitively, whenever the excited coefficients
correspond to features that satisfy the sparsification induced by
the grouping and collaborative filtering, these features will be
preserved or enhanced, otherwise they will be attenuated.
The excited magnitude (18) is distributed accordingly to the
Rician observation model as in (13) because the noise in the
corresponding excited spectrum (17) is i.i.d. complex Gaussian.
Thus, we need to apply a variance-stabilization transform
(VST), analogously to (14), during the filtering of (18) as

ŷ(k) = VST−1
“

Φ
“

VST
“
ŷ

(k)
excite, σ

(k)
excite

”
, σVST

”
, σ

(k)
excite

”
,

where σ(k)
excite is the standard deviation of the excitation noise

added in (17).
On the other hand, for the sake of simplicity, the phase is
assumed to follow the Gaussian observation model (1) with
noise standard deviation σ

(k)
excite. To ensure proper filtering, in

particular along phase-jumps, we add before denoising and then
subtract after denoising a random phase shift ζ(k) as

φ̂(k)=mod
“
Φ
“
mod

“
φ̂

(k)
excite+ζ

(k),(−π,π]
”
, σ

(k)
excite

”
−ζ(k),(−π,π]

”
,

where ζ(k) ∼ U(−π, π) is a random variable uniformly
distributed between −π and π defining the phase shift applied
to every voxel of φ̂

(k)
excite, and mod(·, (−π, π]) realizes the

wrapping on the interval (−π, π]. Such phase-shift moves
the position of the phase jump at different spatial positions
at each instance of filtering and in this way φ̃(k) eventually
approximates, modulo 2π, the result of filtering the absolute
unwrapped phase.

3) Data Reconstruction: The sequence of estimates ŷ(k) might get
trapped in local optima because the data that pilots the regu-
larization, i.e. the available spectrum θ1, is corrupted by noise.
Thus, in order to escape from possible degenerate solutions, we
aggregate the estimates ŷ(k) and φ̂(k) in a complex recursive
convex combination as

ỹ(k)eıφ̃
(k)

= λkỹ
(k−1)eıφ̃

(k−1)
+ (1− λk) ŷ(k)eıφ̂

(k)
, (20)

where ỹ(k) >= 0, and −π < φ̃(k) ≤ π for all k ≥ 0. The
aggregation weights 0 ≤ λk ≤ 1 are recursively defined as

λk =
“
λ−1
k−1σ

(k−1)−2

excite + σ
(k)−2

excite

”−1

σ
(k)−2

excite , (21)

with initial condition λ0 = 1. The explicit formulae for (20)

ỹ(k)eıφ̃
(k)

=

 
kX
i=0

σ
(i)−2

excite

!−1 kX
i=0

σ
(i)−2

excite ŷ
(i)eıφ̂

(i)
,

and for (21)

λk =

 
kX
i=0

σ
(i)−2

excite

!−1

σ
(k)−2

excite ,

illustrate that each estimate ŷ(i) contributes to the combination
(20) with a weight inversely proportional to the variance σ(i)2

excite
of its excitation noise.

The iterative procedure can be either stopped after a pre-specified
number of iterations kfinal, or when two magnitude estimates produced
at subsequent iterations do not significantly differ from each other.
For instance, this can be done via the normalized p-norm as

|X|−
1
p ·
˛̨̨˛̨̨
ỹ(k) − ỹ(k−1)

˛̨̨˛̨̨
p
≤ ε,

where |X| is the cardinality of the domain X , and ε ∈ R+ is the
desired tolerance value. The pseudo-code of the iterative procedure
is shown in Algorithm 1.

To illustrate the role of the two separate recursive volumetric
estimates ŷ(k) and ỹ(k), let us assume that Ω $ X and that
σ

(k)
excite → σ. There are essentially two cases. First, if σ > 0,

the system is kept permanently under excitation, which means that
in practice ŷ(k)eıφ̂

(k)
is not able to converge. However, under the

same assumptions, we have that λk ≈ k−1 for large k, and thus
ỹ(k)eıφ̃

(k)
approaches the sample mean of ŷ(k)eıφ̂

(k)
over k. Thus,

ỹ(k)eıφ̃
(k)

can be interpreted as an approximation of the expectation
of ŷ(k)eıφ̂

(k)
over k (i.e. over the excitation noise). Second, if σ = 0,

then ŷ(k)eıφ̂
(k)

can converge to some estimate ŷeıφ̂ and ỹ(k)eıφ̃
(k)



8

will eventually converge to the same estimate. In summary, in the
ideal case where the observed spectrum θ1 is noise-free, the two
estimates ỹ(k)eıφ̃

(k)
and ŷ(k)eıφ̂

(k)
become equivalent; conversely,

when observed spectrum is noisy, ỹ(k)eıφ̃
(k)

plays a crucial role
in enabling convergence to the expectation of the non-convergent
ŷ(k)eıφ̂

(k)
.

Even though in principle, for an arbitrary operator Φ, the existence
of the expectation of ŷ(k) can be guaranteed only if the excitation
noise vanishes sufficiently fast with k, we note that in practice, due
to the denoising and to the given observations θ1, such expectation
is typically well defined, leading to a stable convergence of ỹ(k).

We observe also that if the spectrum θ of the noisy phantom is
completely available (i.e. θ1 = θ, Ω = X , and thus no subsampling
is performed) and σ(k)

excite = σ for all k, Algorithm 1 coincides with
a one-time application of the filter Φ on ŷ

(0)
excite =

˛̨
T −1 (θ)

˛̨
with

assumed noise standard deviation σ, because the inputs y(k)
excite of each

iteration do not vary with k. On the other hand, if the whole spectrum
is not available (i.e. Ω $ X) and σ(k)

excite → σ = 0, as observed above
we have that ỹ(k)eıφ̃

(k)
approaches ŷ(k)

excitee
ıφ̂(k)

. Thus, Algorithm 1
generalizes both the iterative reconstruction algorithm implemented
in [5], [6] to the case of noisy observations, as well as the BM4D
filter to the case of incomplete measurements.

D. Reconstruction of Volumetric Data with Zero Phase

In this section we discuss the reconstruction of volumetric data
under the assumption that its phase component is null, i.e. φ = 0.
Since in such case the magnitude

˛̨
yeıφ

˛̨
is equal to the real com-

ponent Re(yeıφ) = y, the reconstruction procedure described in the
previous section can be greatly simplified.

Initially, we set the initial estimate of the missing portion of the
spectrum to zero, then we extract the back-projection as

ŷ
(0)
excite = Re

“
T −1(θ1 + (1− S) · 0)

”
.

Note that the extraction of the absolute value is no longer needed
because the underlying data y is real; however since the output of
T −1 is in general complex due to the noise in the data or numerical
errors of the computation, we still need to extract the real component
after the inverse transformation because the denoising filter Φ is
implemented for real inputs.

Subsequently, for each iteration k > 1, the following steps are
performed:

1) Noise Addition (Excitation): The estimated unobserved part
θ̂2

(k)
of the spectrum is excited to produce the excited spectrum

θ̂
(k)
excite = θ1 + θ̂2

(k)
+ (1− S) · η(k)

excite, (22)

where η(k)
excite is again i.i.d. complex Gaussian noise with zero

mean and standard deviation σ(k)
excite. Then, the (spatial-domain)

excited volumetric data is obtained by taking the real part of
the inverse transformation T −1 applied to the excited spectrum
(22) as

ŷ
(k)
excite = Re

“
T −1

“
θ̂

(k)
excite

””
. (23)

2) Volumetric Filtering: The volumetric excited data (23) is de-
noised by the filter Φ as

ŷ(k) = Φ
“
ŷ

(k)
excite, σ

(k)
excite

”
, (24)

being σ
(k)
excite is the standard deviation of the excitation noise

in (22). Observe that the application of the VST is no longer
needed because (23) takes the real part and not the modulus
of T −1

“
θ̂

(k)
excite

”
, and thus its excited observation model agrees

with (1).

Fig. 3. Original phase φ used for the reconstruction experiments (black and
white correspond to −π and π, respectively).

3) Data Reconstruction: The volumetric reconstruction is eventu-
ally produced by the convex combination

ỹ(k) = λkỹ
(k−1) + (1− λk) ŷ(k), (25)

whose weights λk are defined as in (21). Observe that, (25)
is the particular case of (20) obtained by setting to zero every
phase estimate φ̂(k).

V. VOLUMETRIC RECONSTRUCTION EXPERIMENTS

We show the reconstruction results of the iterative procedure
described in Section IV, recalling that BM4D is used in place of
the generic volumetric filter Φ. The parameters of the filter are the
same reported in Section III-A, but only the hard-thresholding stage
is performed during the reconstruction.

As already said, the excitation noise η(k)
excite is chosen to be i.i.d.

complex Gaussian noise with zero mean and variance

σ
(k)
excite = α−k−β + σ (26)

where α > 0 and β > 0 are parameters chosen so that the excitation
noise lessens as the iterations increase, and σ is the standard deviation
of the noise η in (15). The variance (26) (exponentially) decreases in
order to diminish the aggressiveness of the filtering as the iterations
increase. Moreover, the additive term σ ensures that the excitation
noise level in (16) converges to the initial noise level in (15). In
this manner, the noise standard deviation assumed by the denoising
filter is never smaller than that of the noise corrupting the observed
measurements.

In our experiments we consider volumetric data having either zero
or non-zero phase φ. We synthetically generate φ by first applying
a low-pass filter to a 3-D i.i.d. zero-mean Gaussian field, and then
wrapping the result to the interval (−π, π]. Fig. 3 illustrates the so-
obtained phase φ. Note that the sharp variations from black to white
correspond to phase jumps from −π to π.

Considerable freedom is given for the design of the 3-D sampling
operator S, which can be either a multi-slice stack of identical 2-D
trajectories, or a single 3-D sampling trajectory. In the former case the
measurements are taken as a multi-slice stack of 2-D cross-sections
transformed in Fourier (k-space) domain, each of which undergo
the sampling induced by the corresponding 2-D trajectory of S. In
the latter case, the observation is directly sampled in 3-D Fourier
transform domain. The sampling trajectories are in general classified
as Cartesian and non-Cartesian. Cartesian trajectories are extremely
popular as they are less susceptible to system imperfections, and
the relative reconstruction task is simple. On the other hand, non-
Cartesian trajectories usually require more complicated reconstruction
algorithms, but they allow for a higher under-sampling and faster
acquisition times [29]. For these reasons, in our experiments we
use the non-Cartesian trajectories Radial, Spiral, Logarithmic Spiral,
Limited Angle and Spherical. Examples of such trajectories are
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Radial Spiral Logarithmic Spiral Limited Angle Spherical

Fig. 4. Examples of different sampling trajectories. These trajectories define which k-space coefficients will be retained during the MR acquisition process.
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Fig. 5. Standard deviation σexcite of the excitation noise (26) for noisy (left)
and noise-free (right) data of parameters α = 1.01, β = 500, and σ = 5%.

illustrated in Fig. 4. The rationale behind these settings is to sim-
ulate the acquisition process of the most common medical imaging
applications [29].

The metrics used to measure the performance of the reconstruction
are again the PSNR and SSIM. We present the reconstruction perfor-
mance after kfinal = 1000 iterations from a set of incomplete noisy or
noise-free k-space measurements. We also consider data having both
zero and non-zero initial phase. The trajectories have sampling ratio
|Ω||X|−1 = 30%, where |Ω| is the cardinality of the sampled voxels
and |X| is the total number of voxels in the phantom. The parameters
of the excitation noise (26) are α = 1.01 and β = 500, for all
experiments. Even though in principle different sampling strategies
could benefit from different excitation profiles, we use a fixed setting
for α and β to enable a more direct comparison between the various
experiments. Finally, we set the standard deviation of the noise in
the observed measurements as σ = 5%. Fig. 5 illustrates (26) used
for the noisy (left) and noise-free (right) case. The test data of our
experiment is the BrainWeb and 3-D Shepp-Logan phantom of size
128×128×128 voxels; cross-sections of both original phantoms are
shown in Fig. 7(b) and Fig. 7(a), respectively. The Shepp-Logan is
widely used in medical imaging [13], [34], [14] but, being a piecewise
constant signal, it admits a very sparse representation in transform
domain which can in turn ease the reconstruction task. Thus, we
also perform the reconstruction experiments on the more challenging
BrainWeb phantom, as it is a more realistic model of MR data.

Fig. 6 gives a deeper insight on the PSNR progression with respect
to the number of iterations. We first notice that, in every experiment,
the reconstruction algorithm is able to substantially ameliorate the
initial back-projections in terms of both objective and subjective
visual quality. We observe that in many cases, particularly those
where σ = 0, the PSNR grows almost linearly, in accordance with the
exponential decay of the standard deviation of the excitation noise.
Fig. 6 also empirically demonstrates that the ratio between the PSNR
of ỹ(k) and ŷ(k) approaches one, as motivated in Section IV-C.

The PSNR and SSIM performance of the reconstruction is reported

TABLE V
PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE

IN EACH CELL) RECONSTRUCTION PERFORMANCES AFTER kFINAL = 1000
ITERATIONS OF THE BRAINWEB AND THE SHEPP-LOGAN PHANTOM OF
SIZE 128× 128× 128 VOXELS. THE TESTS ARE MADE ON BOTH NOISY
(σ = 5%) AND NOISE-FREE MEASUREMENTS, HAVING SAMPLING RATIO

30%.

Traj. Data Zero phase Non-zero phase
σ = 0% σ = 5% σ = 0% σ = 5%

Radial
BrainWeb 37.22|0.97 31.00|0.91 41.00|0.99 30.57|0.91

Shepp-Log. 77.01|1.00 31.82|0.98 70.12|1.00 32.03|0.98

Spiral
BrainWeb 34.75|0.96 19.60|0.66 16.75|0.48 21.99|0.74

Shepp-Log. 58.23|1.00 21.22|0.55 24.27|0.65 26.22|0.92

Log. Sp.
BrainWeb 40.92|0.99 31.83|0.92 41.89|0.99 31.20|0.92

Shepp-Log. 77.51|1.00 32.04|0.98 69.36|1.00 31.91|0.98

Lim. An.
BrainWeb 32.48|0.94 27.17|0.85 17.93|0.54 20.74|0.65

Shepp-Log. 42.45|1.00 28.31|0.95 21.75|0.57 24.47|0.77

Spheric.
BrainWeb 41.67|0.99 32.46|0.93 42.99|0.99 31.88|0.93

Shepp-Log. 77.85|1.00 31.72|0.98 62.56|1.00 31.50|0.98

in Table V. As one can see, the objective performance is almost
always excellent; Additionally, the results for σ = 5% often approach
those obtained in the denoising experiments reported in Table II, that
correspond to the ideal conditions of complete sampling and zero
phase. Interestingly, the reconstruction performance of the BrainWeb
phantom under the Spiral and Limited Angle sampling are higher in
the noisy case. In fact, as the ill-conditioning of the reconstruction
problem increases, the best results can be achieved using excitation
schedule ηexcite characterized by larger values of standard deviation
because a larger variance in the excitation noise leads to a stronger
filtering and, consequently, a stronger regularization.

The visual appearance of the reconstructed BrainWeb and Shepp-
Logan phantoms with non-zero phase and initial noise σ = 5%
are shown in Fig. 9 and Fig. 10, respectively. Let us remark how
the reconstruction is always able to improve significantly the visual
appearance of the phantom, even in those cases when the image
information of the initial back-projection is extremely limited and
the phase is distorted by multiple erroneous jumps.

We stress that the sampling ratio |Ω||X|−1 is not a fair measure of
the difficulty of the reconstruction task, because different trajectories
having the same |Ω||X|−1 extract different coefficients from the
Fourier domain. As a matter of fact, the energy of MR images is
concentrated in the centre (DC term) of the k-space, thus trajectories
such as Spherical having denser sampling near the DC term are more
advantaged than others, such as Spiral or Limited Angle, not giving
any preference for the central part of the spectrum. Such differences
are clearly visible from the visual appearance of the back-projections
shown in Fig. 9 and Fig. 10 and from the final objective reconstruction
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ỹ

(k
)

/
P

SN
R

ŷ
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ỹ

(k
)

/
P

SN
R

ŷ
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Fig. 6. PSNR progression for the iterative reconstruction of the noisy and noise-free BrainWeb having zero or non-zero phase. The plots in the top row
illustrate the PSNR progressions of ỹ(k), whereas the plots in the bottom row illustrate the progression of the ratio between the PSNR of ỹ(k) and ŷ(k). The
sampling trajectories are Radial (◦), Spiral (+), Logarithmic Spiral (�), Limited Angle (4), and Spherical (×). The sampling ratio is in all cases 30%.

results reported in V, because, as expected, the worst objective and
subjective reconstruction results are obtained under the Spiral or
Limited Angle sampling, whereas the Spherical trajectory emerges
as the best-performing sampling strategy. However, a significant
drawback of the Spherical sampling is the higher scanning time
required to complete the acquisition process.

VI. DISCUSSION AND CONCLUSIONS

A. Video vs. Volumetric Data Filtering

Both volumetric data and videos are defined over a 3-D domain.
The first two dimensions always identify the width and the height
of the data, but the connotation of the third dimension embodies
completely different meanings. In the case of volumetric data the third
dimension represents an additional spatial dimension (the depth),
whereas in the case of videos it represents the temporal index along
the the frame sequence (the time). We remark the importance of

designing algorithms that are able to leverage the specific connotation
of the data to be filtered, i.e. the local spatial similarity in volumetric
data and the motion information of videos.

To support our claim, we apply BM4D and the state-of-the-art
video filter V-BM4D [35] to the BrainWeb phantom and the test
videos Tennis, Salesman, Flower Garden, and Miss America. For
all cases, the corrupting noise is i.i.d. Gaussian with zero mean
and standard deviation σ ∈ {7%, 11%, 15%, 19%}. We recall that
in V-BM4D mutually similar 3-D spatiotemporal volumes, built
concatenating blocks along the direction defined by the motion
vectors, are first grouped together and then jointly filtered in a 4-
D transform domain [35]. Analogously, each cube in BM4D can
be interpreted as a spatiotemporal volume built along null motion
vectors, i.e. a sequence of blocks extracted from consecutive frames
at the same spatial coordinate.

Table VI reports the PSNR and SSIM results of our tests. As
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TABLE VI
PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE

IN EACH CELL) DENOISING PERFORMANCES OF BM4D AND V-BM4D
[35] APPLIED TO THE BRAINWEB PHANTOM AND THE STANDARD VIDEO

TEST SEQUENCES Tennis, Salesman, Flower Garden, AND Miss America
CORRUPTED BY I.I.D. GAUSSIAN NOISE WITH DIFFERENT STANDARD

DEVIATION σ (%).

Data Filter σ

7% 11% 15% 19%

BrainWeb
BM4D 34.38|0.95 32.28|0.92 30.82|0.90 29.70|0.87

V-BM4D 33.41|0.93 31.25|0.89 29.80|0.86 28.71|0.83

Tennis
BM4D 31.75|0.84 29.69|0.78 28.22|0.73 27.36|0.70

V-BM4D 32.00|0.85 29.88|0.78 28.56|0.73 27.59|0.70

Salesm.
BM4D 34.48|0.91 32.29|0.87 30.72|0.83 29.86|0.81

V-BM4D 34.28|0.90 32.01|0.85 30.50|0.81 29.38|0.78

Fl. Gard.
BM4D 28.42|0.93 25.90|0.88 22.96|0.81 22.37|0.77

V-BM4D 29.21|0.93 26.60|0.89 24.79|0.84 23.34|0.79

Miss Am.
BM4D 38.47|0.92 37.00|0.91 35.75|0.90 35.30|0.90

V-BM4D 38.13|0.92 36.57|0.90 35.37|0.88 34.40|0.86

expected, for volumetric data the PSNR performance of BM4D is
consistently about 1dB higher than those of V-BM4D; conversely, as
for video denoising, an interesting behavior occurs. We observe that
the BM4D model is more effective whenever the corrupted video is
characterized by low motion activity and the standard deviation of the
noise is large. In fact, when the signal-to-noise ratio is very low, the
motion estimation is likely to match the random patterns of the noise
rather than the underlying structures to be tracked. For this reason,
the zero-motion assumption, intrinsically enforced by BM4D, is an
effective prior for the motion estimation of stationary videos, such as
Miss America and Salesman, especially when σ is large. However,
as motion activity gets higher, e.g., in Tennis and Flower Garden,
V-BM4D clearly emerges as the best filtering paradigm.

B. Conclusions

The contributions of this work are twofold: first, we have intro-
duced a powerful volumetric denoising algorithm, termed BM4D,
which embeds the grouping and collaborative filtering paradigm;
second, we have presented an iterative system for the reconstruction
of incomplete volumetric data, enabled by the action of the afore-
mentioned BM4D filter.

Experimental results on simulated brain phantom data show that
the proposed BM4D filter significantly outperforms the current state
of the art in volumetric data denoising. In particular, the denoising
performance on MR images corrupted by either Gaussian- or Rician-
distributed noise demonstrates the superiority of the proposed ap-
proach in terms of both objective (PSNR and SSIM) and subjective
visual quality [4]. BM4D has been also successfully tested on the
denoising of real MRI data, made publicly available by the OASIS
database [12].

The viability of the volumetric reconstruction procedure has been
tested using different volumetric phantoms measured in transform
domain according to various sampling trajectories. The reconstruction
has been evaluated using data with either zero or non-zero phase
from incomplete, and possibly noisy, Fourier-domain (k-space) mea-
surements. Experimental results on the Shepp-Logan and BrainWeb
phantoms demonstrate the objective (PSNR and SSIM) and subjective
effectiveness of the proposed method applied to under-sampled data.

Additional features, which can be embedded in BM4D, as is
done for BM3D, include sharpening (α-rooting), non-white noise

removal (thus leading to a 3-D deblurring procedure as in [36]), and
multichannel/multimodal filtering.
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(a) 3-D Shepp-Logan phantom
[13], [14].

(b) BrainWeb phantom [7]. (c) Noisy BrainWeb phantom
(Gaussian noise σ = 15%).

(d) OASIS phantom [12].

Fig. 7. Volumetric phantoms used in the denoising and reconstruction experiments. The 3-D and 2-D transversal cross-section of each phantom are presented
in the top and bottom row of each subfigure, respectively.

OB-NLM3D OB-NLM3D-WM ODCT3D PRI-NLM3D BM4D

Fig. 8. From left to right, denoising results of the OB-NLM3D, OB-NLM3D-WM, ODCT3D, PRI-NLM3D, and the proposed BM4D filter applied to the
BrainWeb phantom corrupted by i.i.d. Gaussian noise with standard deviation σ = 15% (top) and the OASIS phantom (bottom) corrupted by Rician noise
with standard deviation σ ≈ 4% estimated as proposed in [16]. The corresponding noisy phantoms can be seen in Fig. 7(c), and Fig. 7(d), respectively. For
each algorithm and phantom, both the 3-D and 2-D transversal cross-section are presented.
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ỹ(kfinal)

Radial Spiral Logarithmic Spiral Limited Angle Spherical

Fig. 9. Initial back-projections and final estimates of the magnitude and phase after kfinal = 1000 iterations of the noisy reconstruction of the BrainWeb
phantom (σ = 5%) subsampled with ratio 30%. The original magnitude and phase volumes are shown in Fig. 7(b) and Fig. 3, respectively.
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Fig. 10. Initial back-projections and final estimates of the magnitude and phase after kfinal = 1000 iterations of the noisy reconstruction of the Shepp-Logan
phantom (σ = 5%) subsampled with ratio 30%. The original magnitude and phase volumes are shown in Fig. 7(b) and Fig. 3, respectively.


