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ABSTRACT

Conventional approach in single-chip digital cameras is a use of color �lter arrays (CFA) in order to sample
di�erent spectral components. Demosaicing algorithms interpolate these data to complete red, green, and blue
values for each image pixel, in order to produce an RGB image. In this paper we propose a novel demosaicing
algorithm for the Bayer CFA. For the algorithm design we assume that the initial interpolation estimates of color
channels contain two additive components: the true values of color intensities and the errors. The errors are
considered as an additive noise, and often called as a demosaicing noise, that has to be removed. This noise is
not white and strongly depends on the signal. Usually, the intensity of this noise is higher near edges of image
details. We use specially designed signal-adaptive �lter to remove the interpolation errors. This �lter is based
on the local polynomial approximation (LPA) and the paradigm of the intersection of con�dence intervals (ICI)
applied for selection adaptively varying scales (window sizes) of LPA. The LPA-ICI technique is nonlinear and
spatially-adaptive with respect to the smoothness and irregularities of the image. The e�ciency of the proposed
approach is demonstrated by simulation results.
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1. INTRODUCTION

The common approach in single-chip digital cameras is a use of CFA to sample di�erent spectral components
like red, green, and blue. The Bayer CFA patented in 19761 is widely exploited today (see Fig.1). Demosaicing
algorithm interpolates sets of complete red, green, and blue values for each pixel, to make an RGB image.
Independent interpolation of color channels usually leads to drastic color distortions. The way how produce
e�ectively a joint color interpolation plays a crucial role for demosaicing.

The modern e�cient algorithms exploit two main facts. The �rst is that for natural images there is a high
correlation between the red, green, and blue channels. As a result all three color channels are very likely to have
the same texture and edge locations. The second fact is that digital cameras use the CFA in which the luminance
(green) channel is sampled at the higher rate than the chrominance (red and blue) channels. Therefore, the green
channel is less likely to be aliased, and details are preserved better in the green channel than in the red and blue
channels2:

1.1. Correlation models

There are two basic interplane correlation models in the literature: the color di�erence rule4;5 and the color ratio
rule6;7:

The �rst model asserts that intensity di�erences between red, green, and blue channels are slowly varying,
that is the di�erences between color channels are locally nearly-constant3;4;5;8;9;10;11;12;13;14: Thus, they contain
low-frequency components only, making the interpolation using the color di�erences easier10:

The second correlation model is based on the assumption that the ratios between colors are constant over
some local regions6;7: This hypothesis follows from the Lambert's law that if two colors have equal chrominance
then the ratios between the intensities of three color components are equal10: According to this model, the
intensity of each color channel is calculated as a projection of the normal vector to the object surface onto the



Figure 1. Bayer color �lter array.

light source direction, multiplied by the surface albedo. The albedo captures the characteristics of the object's
material, and is di�erent for each of the spectral channels. It is assumed that the material, and therefore the
albedo, are locally the same within the given object in the image.

The �rst di�erence-based correlation model is found to be more e�cient than the ratio-based model and,
therefore, exploited more often in practice. Moreover, the color-di�erence rule can be implemented with a lower
computational cost and better �ts linear interpolation models8:

1.2. Demosaicing methods

Many demosaicing algorithms4;5;6;15;16;18;19 incorporate edge directionality in interpolation. Interpolation along
object boundaries is preferable as compared with interpolation across these boundaries for the most image models.

We will classify the demosaicing techniques into two categories: noniterative3;4;5;9;11;12;13;19;20;21;22; and
iterative2;6;7;8;10: There are also alternative ways of this classi�cation, for instance proposed in23:

Noniterative demosaicing techniques basically rely on the idea of edge-directed interpolation. The exploitation
of this sort of intraplane correlation typically is done by estimating local gradients under the main assumption
that locally the di�erence between colors is nearly constant. At each pixel the gradient is estimated, and the
color interpolation is carried out directionally, based on this estimated gradient. Directional �ltering is the
most popular approach for color demosaicing that produces competitive results. The best known directional
interpolation scheme is perhaps the method proposed by Hamilton and Adams5: The authors use the gradients
of blue and red channels as the correction terms to interpolate the green channel. Once the green samples are
�lled, the red and blue samples are interpolated in analogous way11: Similar idea is exploited e�ectively in4;9;13

with the di�erence in fusing of vertical and horizontal estimates.

In a variety of color demosaicing techniques the gradient estimates analysis plays a central role in recon-
structing sharp edges. A new idea in this �eld has been proposed and e�ectively used in the papers8;11 in 2005,
where the authors �lter the di�erences between the color channels.

Since the color channels of a natural image are highly correlated, the di�erence signal between the green
channel and the red or blue channels constitutes a smoother (low-pass) process. Furthermore, it is observed
that this color di�erence signal is largely uncorrelated to the interpolation errors of the gradient-guided color
demosaicing methods, which are band-pass processes. The authors exploit linear minimum mean square-error
estimation (LMMSE) for estimating the color di�erence signals. The LMMSE estimates are obtained in both
horizontal and vertical directions, and then fused optimally to remove the demosaicing noise. Finally, the full-
resolution three color channels are reconstructed from the LMMSE �ltered di�erence signals11:

In20 the method is proposed, where the green channel is used to determine the pattern at a particular pixel,
and then a missing red (blue) pixel value is estimated as a weighted average of the neighboring pixels according
to this pattern.



In addition, there are pattern recognition26; restoration-based21;27; and sampling theory point of view3;12

approaches (see23 for more details).

Methods called template matching have been put forth in26: They estimate edges in the Bayer CFA image
and change the interpolation procedure according to edge behavior. This approach works quite well, despite the
problem with selection of the threshold for estimation. The algorithm varies with the content of a particular
image and can become computationally heavy25:

Methods using the regularization theory28 or the Bayesian approach29 have also been developed. Taubman21

proposed a preconditioned e�cient approach of Bayesian demosaicing that is used in some digital cameras today.

Alleysson et al.24;25 proposed a model showing that luminance and opponent chromatic signals are well local-
ized in the Fourier spectrum. This spatial Fourier-transform information is used to develop a color demosaicing
algorithm by selecting appropriate spatial frequencies corresponding to luminance and opponent chromatic sig-
nals.

Iterative demosaicing techniques have also been proposed recently2;6;8;10: The re�nement of green pixels and
red/blue pixels are mutually dependent and jointly bene�cial to each other. It is natural to introduce an iterative
strategy to handle such type of problem8:

Kimmel6 in 1999 proposed one of the �rst methods where the iterative approach was introduced and described.
According to this method green and red/blue channels are iteratively updated by enforcing the color ratio rule.

Gunturk et. al. proposed in 2002 an approach using �lter-bank for decomposition an image to low- and high-
frequency subbands2 that performs undecimated wavelet transform. This is done in both vertical and horizontal
directions. The result is four subbands which contain low- and high-frequency components (LL, LH, HL, HH).
Because of the fact that the LH, HL, HH components of di�erent channels are highly correlated they are replaced
by the corresponding components of another channel, but at unknown positions only.

Xin Li8 proposed an iterative color-di�erence interpolation. This approach successively re�nes the estimate
of missing data by enforcing the color-di�erence rule at each iteration.

Three inherent problems often associated with demosaicing algorithms that incorporate directional two-
dimensional interpolation are misguidance color artifacts, interpolation artifacts, and aliasing. The proposed
in10 demosaicing algorithm, which also adopts the directional interpolation approach, addresses these problems
explicitly. In the process of estimating the missing pixel components, the aliasing problem is resolved by applying
�lterbank techniques to directional interpolation. This interpolation procedure produces two images: horizontally
interpolated and vertically interpolated ones. The level of misguidance color artifacts present in these images is
compared by a color image homogeneity metric. The misguidance color artifacts are minimized by only keeping
the pixels interpolated in the direction with fewer artifacts. The interpolation artifacts are reduced using a
nonlinear iterative procedure10:

In30;31 authors propose to use directional estimates under assumption that color-di�erence is constant. These
estimates are fused together by means of weighted average which gives some advantages over usual use of just
vertical and horizontal estimates. However, the authors also propose the method of postprocessing based on the
assumption that the localized color-ratio is constant7:

It has been observed that iterative demosaicing techniques are capable often of achieving higher quality in
the reconstructed images than noniterative ones at the price of increased computational cost8:

This work was inspired by11 where the authors proposed to �nd estimates of di�erence between luminance and
chrominance channels as the result of denoising procedure. In the paper11 the concept of directional "demosaicing
noise" was introduced for the interpolation errors. A �ltering procedure is exploited to remove this noise. In
this paper, in order to remove the interpolation errors we exploit the spatially-adaptive LPA-ICI denoising
technique32;33;34 instead of the �x-length �lter used in11: The ICI rule applied for selection adaptively varying
scales (window sizes) of LPA. The LPA-ICI algorithm is nonlinear and spatially-adaptive with respect to the
smoothness and irregularities of the image. The e�ciency of introducing this step is shown by simulation results.

In many applications the observed data is noisy. We refer reader to35 where similar idea is exploited to design
a technique that performs both denoising and interpolation of noisy Bayer data.



The structure of the paper is the following. In Section 2 we introduce the considered Bayer pattern image
formation model. The initialization step of the proposed algorithm is described in Section 3. The LPA-ICI
�ltering is presented in Section 4. In Sections 5-7 the interpolation algorithm of color channels is given. The
simulation results are shown in Section 8.

2. IMAGE FORMATION MODEL

We follow the general Bayer mask image formation model:

zBayer(i; j) = 	fyRGB(i; j)g; (1)

where 	f�g is a Bayer sampling operator1

	fyRGB(i; j)g =

8>><>>:
G(i; j); at (i; j) 2 XG1

;
G(i; j); at (i; j) 2 XG2

;
R(i; j); at (i; j) 2 XR
B(i; j); at (i; j) 2 XB

(2)

and zBayer is an output signal of the sensor, yRGB(i; j) = (R(i; j); G(i; j); B(i; j)) is a true color RGB obser-
vation scene, X = f(i; j) : i = 1; :::; 2N; j = 1; :::; 2Mg are the spatial coordinates and R (red); G (green); and
B (blue) correspond to the color channels. For two available green channels we will use notations G1(i; j);
such that (i; j) 2 XG1 = f(i; j) : i = 1; 3; :::; 2N � 1; j = 1; 3; :::; 2M � 1g; and G2(i; j); such that (i; j) 2
XG2

= f(i; j) : i = 2; 4; :::; 2N; j = 2; 4; :::; 2Mg. Spatial coordinates for the red R(i; j) and blue B(i; j) color
channels are denoted XR = f(i; j) : i = 1; 3; :::; 2N � 1; j = 2; 4; :::; 2Mg and XB = f(i; j) : i = 2; 4; :::; 2N;
j = 1; 3; :::; 2M � 1g, respectively.
Demosaicing attempts to invert 	f�g in order to reconstruct R(i; j); G(i; j); and B(i; j) intensities from the

observations zBayer(i; j).

The algorithm consists of the following steps: initialization, �ltering, and interpolation. At the initialization,
the approximate color estimates are obtained and directional di�erences between G�R and G�B are calculated.
These di�erences are considered as degraded by noise and �ltered. The modi�ed LPA-ICI algorithm32;33;34 is
used for this �ltering. Finally, the obtained estimates are exploited to calculate missing color values at each
pixel.

3. INITIALIZATION

Firstly we calculate the directional (horizontal and vertical) estimates of green channel at every point (i; j) 2 X
following the rules of Hamilton-Adams algorithm5: Interpolation of G at R positions (i; j) 2 XR is done as
follows:

Ĝh(i; j) =
1

2
(G(i+ 1; j) +G(i� 1; j)) + 1

4
(�R(i� 2; j) + 2R(i; j)�R(i+ 2; j)) ; (3)

Ĝv(i; j) =
1

2
(G(i; j + 1) +G(i; j � 1)) + 1

4
(�R(i; j � 2) + 2R(i; j)�R(i; j + 2)) : (4)

Here h and v stay for horizontal and vertical estimates. Similarly to (3)-(4), the initial directional estimates for
the red channel R at green positions G ((i; j) 2 XG1

or (i; j) 2 XG2
) are interpolated as:

R̂h(i; j) =
1

2
(R(i+ 1; j) +R(i� 1; j)) + 1

4
(�G(i� 2; j) + 2G(i; j)�G(i+ 2; j)) ; (5)

R̂v(i; j) =
1

2
(R(i; j + 1) +R(i; j � 1)) + 1

4
(�G(i; j � 2) + 2G(i; j)�G(i; j + 2)) : (6)



As a result we obtain at the every horizontal line of R values two sets of true and estimated green and red
values:

::: Ĝh G Ĝh G Ĝh :::

::: R R̂h R R̂h R :::
:

Similar calculations are produced for the vertical lines. At every point the di�erences between the true values
R(i; j) and G(i; j); and the directional estimates R̂h(i; j) and Ĝh(i; j); are calculates as follows:

~�hg;r(i; j) = G(i; j)� R̂h(i; j); (i; j) 2 XG1 ;

and
~�hg;r(i; j) = Ĝh(i; j)�R(i; j); (i; j) 2 XR;

for the horizontal direction. For the vertical direction the analogous computations are:

~�vg;r(i; j) = G(i; j)� R̂v(i; j); (i; j) 2 XG2
;

and
~�vg;r(i; j) = Ĝv(i; j)�R(i; j); (i; j) 2 XR:

We assume for further �ltering that these di�erences between the intensities of di�erent color channels can
be presented as the sums of the true values and the random errors:

~�hg;r(i; j) = �g;r(i; j) + "h(i; j); (7)

~�vg;r(i; j) = �g;r(i; j) + "v(i; j); (8)

where "h(i; j) and "v(i; j) are considered as random demosaicing noise11; �g;r(i; j) is the true di�erence between
green and red color channels:

The blue channel B is treated in the same way and as a result we calculate the directional di�erences ~�hg;b(i; j)

and ~�vg;b(i; j).

4. LPA-ICI FILTERING OF DIRECTIONAL DIFFERENCES

The LPA-ICI �ltering33;34 is used for all noisy estimates ~�hg;r(i; j), ~�
v
g;r(i; j) for R, and ~�

h
g;b(i; j),

~�vg;b(i; j) for
B. In order to introduce this �ltering in the form applicable for any input data assume for a moment that this
input noisy data have the form:

z(i; j) = y(i; j) + n(i; j); (9)

where (i; j) 2 X; z(i; j) is a noisy observation, y(i; j) is a true signal and n(i; j) is a noise.
The LPA is a general tool for linear �lter design, in particular for design of the directional �lters of the given

orders on the arguments i and j. Let gs;� be the impulse response of the 2D directional linear �lter designed by
the LPA34; where � is a direction of smoothing and s is a scale parameter (window size of the �lter)�. A set of
the image estimates of di�erent scales s and di�erent directions � are calculated by the convolution

bys;�(i; j) = (z ~ gs;�)(i; j), (10)

for s 2 S = fs1; s2; :::; sJg, where s1 < s2 < ::: < sJ , and � 2 �.
The ICI rule is the algorithm for a proper selection of the scale (close to the optimal value) for every pixel

(i; j)34: In the ICI rule a sequence of con�dence intervals is used

Ds =
�bys;� (i; j)� ��ŷs;� ; bys;�(i; j) + ��ŷs;�� ; s 2 S; (11)

�The MATLAB code that implements the LPA-ICI techique is available following the link: http://www.cs.tut.fi/
�lasip/.



where � > 0 is a threshold parameter for the ICI, the estimates and �ŷs;� is the standard deviation of the estimatebys;�.
In this paper this standard deviation for (11) is calculated as the weighted mean of the squared errors between

the estimates and the observations in the directional neighborhood of the pixel (i; j) :

�ŷs;� (i; j) =
q
((z � ŷs;�)2 ~ g2s;�)(i; j); (12)

where the weights are de�ned by gs;� used in (10). The rotated directional nonsymmetric kernel gs;� is used with
the angle � which de�nes the directionality of the �lter, and scale s is a length of the kernel support (or a scale
parameter of the kernel) in this direction.

Note that in the usual form of the ICI34 the standard deviation of the estimate is calculated as �ŷs;� (i; j) =q
(�2 ~ g2s;�)(i; j); where � is a given standard deviation of the additive signal-independent observation noise in

the model (9). However, in the considered model (7)-(8) we deal with the data where the noise is a convenient
form for modelling of the interpolation errors that are actually nonrandom. Thus, the standard deviation of the
estimate bys;� is estimated locally by (12) at every position (i; j) as an empirical sample mean calculated over the
directional local area.

The ICI rule de�nes the adaptive scale as the largest s+ of those scales in S which estimate does not di�er
signi�cantly from the estimates corresponding to the smaller window sizes. This optimization of s for each of the
directional estimates yields the adaptive scales s+(�) for each direction �. The union of the supports of gs+(�);�
is considered as an approximation of the best local vicinity of (i; j) in which the estimation model �ts the data.
The �nal estimate is calculated as a linear combination of the obtained adaptive directional estimates bys+;� (i; j) :
The �nal LPA-ICI estimate ŷ(i; j) combined from the directional ones is computed as the weighted mean

ŷ(i; j) =
X

�2�
ŷs+;�(i; j)w�; w� =

��2ŷs+;�P
�2� �

�2
ŷs+;�

(13)

with the variance �2ŷ of ŷ(i; j) computed for simplicity as �
2
ŷ =

�P
�2� �

�2
ŷs+(�);�

��1
.

It is convenient to treat this complex LPA-ICI multidirectional algorithm as an adaptive �lter with the input
z and the output ŷ. The input-output equation can be written as ŷ = LI fzg by denoting the calculations
imbedded in this algorithm as an LI operator.
Applying the ICI in the form (11), (12) to ~�hg;r(i; j) and ~�

v
g;r(i; j) we obtain the corresponding spatially adap-

tive estimates. Let us denote these estimates as �̂hg;r(i; j) = LI
n
~�hg;r(i; j)

o
and �̂vg;r(i; j) = LI

n
~�vg;r(i; j)

o
:

Combining these vertical and horizontal estimates we arrive to the �nal estimate �̂g;r(i; j) in the form

�̂g;r(i; j) =
��2
�̂h
g;r

��2
�̂h
g;r

+ ��2
�̂v
g;r

�̂hg;r(i; j) +
��2
�̂v
g;r

��2
�̂h
g;r

+ ��2
�̂v
g;r

�̂vg;r(i; j); (14)

where ��̂h
g;r
and ��̂v

g;r
are the corresponding standard deviations of �̂hg;r and �̂

v
g;r:

Note that in order to obtain the estimates for �̂hg;r(i; j) we use only two directions corresponding to the
directions of interpolation � = f0; �g (for horizontal left and right estimates), S = f4; 6; 8; 12g. For vertical
estimates �̂vg;r(i; j) we also use two directions corresponding to the directions of interpolation � = f�=2; 3�=2g
(for vertical up and down estimates):

Similar adaptive LPA-ICI �ltering is applied for the di�erences ~�hg;b(i; j),
~�vg;b(i; j) between G and B color

channels in order to obtain the estimate �̂g;b(i; j):



Figure 2. Fragment of the Lighthouse (19) test image (from left to right and from top to bottom): True image; Hamilton-
Adams interpolation5 PSNR=(36.67 38.34 37.09); Successive Approximation8 PSNR=(38.67 42.07 40.17); Alternating
Projections2 PSNR=(38.70 42.12 39.80); DLMMSE based interpolation11 PSNR=(39.83 42.77 40.93); Proposed LPA-ICI
based interpolation PSNR=(40.34 43.51 41.56).

5. INTERPOLATION OF G COLOR

The interpolated green color at R ((i; j) 2 XR) or B ((i; j) 2 XB) positions is calculated as follows:

Ĝ(i; j) = R(i; j) + �̂g;r(i; j); (i; j) 2 XR;
Ĝ(i; j) = B(i; j) + �̂g;b(i; j); (i; j) 2 XB ;

where �̂g;r is the estimate of G� R, and �̂g;b is the estimate of G� B; obtained using the LPA-ICI technique
(11)-(14) described in the previous section.

6. INTERPOLATION OF R/B COLORS AT B/R POSITIONS

For the interpolation of R=B colors at B=R positions we propose to use a special shift invariant interpolation
�lter giving the estimates by the standard convolution. This �lter has been designed using the LPA for the
subsampled grid which corresponds to R/B channel (Fig.1). A variety of polynomial orders and support sizes
have been tested. Finally, the second order polynomial interpolation �lter grb has been chosen

grb =

2666666664

0 0 �0:0313 0 �0:0313 0 0
0 0 0 0 0 0 0

�0:0313 0 0:3125 0 0:3125 0 �0:0313
0 0 0 0 0 0 0

�0:0313 0 0:3125 0 0:3125 0 �0:0313
0 0 0 0 0 0 0
0 0 �0:0313 0 �0:0313 0 0

3777777775
: (15)



Figure 3. Mean values of PNSR for the Kodak test set of 24 images. The following techniques are compared: HA5; LI9;
SA8; HD10; AP2; CCA15; CCA+PP is a demosaicing approach15 with postprocessing7; DLMMSE based interpolation11;
proposed LPA-ICI interpolation; "Oracle �" is the LPA-ICI interpolation with the optimal threshold parameter �.

Then, the interpolated estimates are computed as follows:

R̂(i; j) = Ĝ(i; j)� (�̂g;r ~ grb)(i; j); (i; j) 2 XB , (16)

B̂(i; j) = Ĝ(i; j)� (�̂g;b ~ grb)(i; j); (i; j) 2 XR, (17)

where �̂g;r is the estimate of G�R, and �̂g;b is the estimate of G�B:

7. INTERPOLATION OF R/B COLORS AT G POSITIONS

For interpolation of R/B colors at G positions ((i; j) 2 XG1
[XG2

) we use the simplest �rst order interpolation
kernel g:

g =

24 0 0:25 0
0:25 0 0:25
0 0:25 0

35 ;
because the higher order interpolation does not provide signi�cant improvement in performance. Then, the
interpolated estimates are computed as follows:

R̂(i; j) = G(i; j)� ((�̂g;r ~ grb)~ g)(i; j); (18)

B̂(i; j) = G(i; j)� ((�̂g;b ~ grb)~ g)(i; j): (19)

8. RESULTS

The proposed LPA-ICI based CFAI is tested on the Kodak set of color test-images. The numerical results are
summarized in Tables 1,2 for each of 24 images and ordered in the ascending order of mean PSNR values (the
last row). The diagram that illustrates mean values of PSNR for each color channel is shown in Fig. 3 for
the better visual perception. The PSNR criterion is calculated excluding 15 border pixels in order to eliminate
boundary e�ects.

The threshold � in (11) is an important design parameter of the ICI rule and of the algorithm overall. When
� is small the ICI selects only the estimates with the smallest scale s; while when � is large the ICI selects only
the estimates with the largest scale s: The best selection of � for each image can be found if the image is known.
We call these values of � "Oracles". They show the potential of the developed adaptive algorithm provided the
best selection of �. The corresponding PSNR values are given in the column "Oracle �" of Tables 1,2. It is
clearly seen that these oracle results are signi�cantly better then results for all other methods.



Figure 4. Di�erence between initial horizontal G and R estimates (G�R) (left) and LPA-ICI scales (�=0) of the �ltered
(G�R) (right).

We found an empirical formula giving the image dependent � with the values close to the oracle ones. Let
�f be standard deviation of high frequency components of G channel calculated as Median Absolute Deviation
(MAD).36 Then nearly oracle values of the threshold parameter can be calculated as � = 0:05�f + 0:33. The
results with this value of � are given in the "LPA-ICI" column of Tables 1,2.

It is clearly seen that the proposed technique ("LPA-ICI" column) gives about 0.4 dB better mean PSNR
value (the last row of Table 2) than DLMMSE11 that shows the best performance among the reviewed CFAI
methods. Analyzing the diagram in Fig. 3 it can be seen that this improvement is signi�cant.

Fig. 4a illustrates the di�erences ~�hg;r between horizontal estimates of green and red color channels obtained
for Lighthouse test-image (image number 19 in Table 2). The adaptive scales s for this image (direction � = 0)
are shown in Fig. 4b. It is seen that near vertical details the �ltering performed horizontally selects smaller
scales allowing to avoid oversmoothing of details. Our study shows that the "demosaicing noise" is not white
and strongly localized. At di�erent parts of an image the power of noise is di�erent. It justi�es the use of the
local estimates of the variance in (12). As a result, suppression of color distortions becomes much better in terms
of both numerical and visual evaluation.

Visual comparison of di�erent methods is presented in Fig. 2 for the fragment of Lighthouse image. The
color artefacts are removed almost completely by the proposed method (Fig. 2 bottom right image) what is
signi�cantly better than it is done by other methods.
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HA LI HD SA AP CCA CCA+PP DLMMSE LPA-ICI Oracle �

01

Red

Green

Blue

33.17

34.65

33.29

30.87

35.61

30.98

34.51

36.13

34.74

36.99

40.76

38.77

36.69

40.42

37.26

36.22

39.20

36.72

37.25

41.31

38.29

37.58

40.22

38.02

39.65

42.80

40.15

39.88

43.08

40.48

02

Red

Green

Blue

37.38

40.94

39.60

36.54

41.35

37.32

36.83

41.61

40.44

35.50

40.57

40.05

37.29

42.46

40.84

37.76

43.81

41.35

36.52

43.27

41.06

38.19

44.31

42.54

38.59

44.59

42.78

38.72

44.64

42.81

03

Red

Green

Blue

40.21

42.19

39.79

39.22

43.15

38.37

40.39

43.56

40.03

39.19

41.00

38.84

40.94

43.52

40.34

41.58

45.18

41.20

39.90

43.78

40.30

41.95

45.80

41.40

42.92

46.00

42.29

42.91

46.03

42.30

04

Red

Green

Blue

36.58

40.66

39.64

36.73

42.32

38.91

35.85

41.47

40.74

35.25

41.63

41.91

36.87

43.81

42.33

37.40

44.55

42.46

35.92

44.26

42.32

37.21

44.68

43.61

37.37

44.09

43.19

37.87

44.55

43.38

05

Red

Green

Blue

34.65

35.81

34.27

32.60

36.75

32.25

34.95

37.27

34.27

34.60

36.78

34.26

36.87

39.69

36.06

37.12

40.02

36.42

36.10

39.61

35.72

37.62

40.88

36.71

36.26

39.26

35.67

38.06

41.05

37.17

06

Red

Green

Blue

34.66

35.93

34.24

32.49

36.91

31.98

37.35

38.88

36.49

39.02

42.22

38.00

38.22

41.48

37.35

36.86

39.86

36.37

38.12

41.68

37.43

40.13

42.33

38.80

40.90

43.71

39.33

40.93

43.76

39.33

07

Red

Green

Blue

40.64

42.17

40.25

38.77

42.16

38.51

39.99

42.64

39.37

39.25

41.22

38.75

41.25

43.96

40.69

41.87

45.31

41.32

40.07

43.97

39.91

41.83

45.27

41.01

42.59

45.48

41.74

42.68

45.52

41.86

08

Red

Green

Blue

31.57

33.37

31.55

28.05

32.96

27.83

33.06

35.19

33.11

34.55

38.45

35.28

34.56

38.55

34.67

33.34

36.93

33.46

34.44

38.63

34.82

35.08

38.53

35.23

36.12

40.07

36.34

36.08

40.07

36.32

09

Red

Green

Blue

39.38

41.39

40.23

36.78

41.40

37.39

40.12

42.83

40.45

39.72

42.02

40.90

40.64

43.42

41.90

40.99

43.94

40.92

40.29

43.90

40.91

41.69

45.14

43.00

42.27

45.36

43.22

42.30

45.42

43.31

10

Red

Green

Blue

39.12

41.33

39.49

37.64

42.27

37.69

39.43

42.80

39.89

40.25

43.91

41.45

40.78

44.38

41.41

40.83

44.42

40.96

39.94

44.41

40.67

41.19

45.37

42.08

41.45

45.34

41.99

41.76

45.53

42.19
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Red

Green

Blue

35.50

37.03

35.87

33.71

37.90

33.65

36.44

38.76

37.25

37.43

41.20

39.03

37.96

41.64

38.92

37.71

41.25

38.70

37.69

42.15

39.32

38.75

42.03

39.87

39.03

42.81

40.19

38.97

42.81

40.16
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Red

Green

Blue

39.89

42.27

40.21

37.44

42.41

37.74

40.45

43.82

41.11

40.89

44.38

42.21

41.41

45.22

42.09

40.97

44.74

41.31

40.45

44.82

41.46

42.09

46.30

42.98

42.82

46.62

43.38

42.87

46.64

43.41

... ... ... ... ... ... ... ... ... ... ... ... ...

Table 1. PSNR comparison for di�erent demosaicing methods computed within 15 pixels border: HA5; LI9; HD10; SA8;
AP2; CCA15; CCA+PP is a demosaicing approach15 with postprocessing7; DLMMSE based interpolation11; proposed
LPA-ICI based interpolationin; "Oracle �" is the LPA-ICI based interpolation with the optimal threshold parameter �.

5. J.F. Hamilton Jr. and J.E. Adams, "Adaptive Color plane Interpolation in single color electronic camera",
U.S. Patent 5 629 734, May 1997.
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HA LI HD SA AP CCA CCA+PP DLMMSE LPA-ICI Oracle �

13

Red

Green

Blue

29.53

30.58

29.10

28.86

32.53

28.36

31.32

32.18

30.43

36.00

38.38

34.05

34.04

36.83

32.86

34.07

36.02

32.97

35.84

38.13

34.00

34.98

36.09

33.56

36.39

38.13

34.27

36.48

38.14

34.37

14

Red

Green

Blue

34.81

37.14

35.02

33.74

37.72

33.31

33.82

37.73

34.62

31.59

34.98

32.64

34.57

38.04

35.11

35.68

40.25

36.42

33.77

39.00

35.11

35.53

40.28

36.25

34.87

38.98

35.70

36.53

40.55

37.03

15

Red

Green

Blue

36.08

39.51

37.96

36.50

41.56

37.57

35.69

40.62

38.82

35.68

40.59

39.78

36.79

42.29

40.22

36.95

42.79

40.59

36.10

42.32

40.62

37.22

43.23

41.24

37.55

42.94

41.10

37.74

43.13

41.18

16

Red

Green

Blue

38.09

39.55

37.88

35.44

40.01

35.30

41.20

42.66

40.41

42.11

45.46

41.08

41.56

44.82

40.85

39.73

42.87

39.49

41.14

44.60

40.49

43.60

45.75

42.49

44.06

46.51

42.86

44.23

46.83

42.84

17

Red

Green

Blue

38.41

39.19

37.74

36.95

40.38

36.67

38.93

40.36

38.32

40.88

43.17

40.52

40.79

43.03

40.31

40.77

42.94

39.92

40.06

43.22

39.80

41.38

43.15

40.83

41.28

43.40

40.72

41.38

43.42

40.81

18

Red

Green

Blue

33.91

35.24

33.75

33.40

36.92

33.00

34.21

36.12

34.26

35.32

38.36

36.41

36.23

39.46

36.86

36.56

39.42

36.71

35.90

39.73

36.88

36.69

39.41

37.27

36.27

39.30

36.90

36.75

39.54

37.23

19

Red

Green

Blue

36.67

38.34

37.09

32.61

37.24

32.64

37.60

39.51

37.86

38.67

42.07

40.17

38.70

42.12

39.80

37.90

41.08

38.16

38.41

42.25

38.85

39.83

42.77

40.93

40.34

43.51

41.56

40.32

43.53

41.57

20

Red

Green

Blue

38.75

39.82

37.31

36.98

40.57

35.72

39.29

40.85

37.55

40.54

42.79

38.12

40.96

43.50

38.71

41.17

43.76

39.24

40.66

43.87

38.98

41.80

43.86

39.27

41.94

44.10

39.67

41.97

44.27

39.68

21

Red

Green

Blue

35.04

36.29

34.48

33.40

37.47

32.74

36.46

37.76

35.41

38.86

41.92

37.50

38.47

41.57

37.19

38.31

40.90

37.16

39.14

42.32

37.70

39.14

41.22

37.65

39.93

42.31

38.12

40.00

42.45

38.09

22

Red

Green

Blue

35.80

37.72

35.60

34.90

38.44

33.84

35.41

38.22

35.48

36.53

38.69

36.18

37.03

39.72

36.71

37.22

40.58

37.13

36.06

39.88

36.55

37.60

40.86

37.42

37.41

40.53

37.27

37.73

40.91

37.67

23

Red

Green

Blue

41.06

43.30

41.54

39.83

43.71

40.27

40.31

43.92

41.15

38.50

41.44

39.51

40.76

44.03

41.61

41.48

45.60

42.40

39.25

44.03

41.02

41.78

46.24

42.78

42.69

46.28

43.25

42.78

46.36

43.39
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Red

Green

Blue

32.63

33.59

30.76

32.24

35.61

30.47

32.70

35.15

31.90

34.70

37.38

33.03

34.94

37.49

32.93

34.50

37.45

32.95

33.53

37.41

32.82

35.94

38.01

33.74

35.38

38.05

33.55

35.67

38.09

33.65

Mean PSNR

Red

Green

Blue

36.40

38.25

36.53

35.82

39.06

34.69

36.93

39.58

37.26

37.58

40.81

38.27

38.26

41.73

38.63

38.21

41.79

38.51

37.77

42.02

38.54

39.11

42.57

39.53

39.51

42.93

39.80

39.77

43.18

40.01

Table 2. PSNR comparison for di�erent demosaicing methods computed within 15 pixels border: HA5; LI9; HD10; SA8;
AP2; CCA15; CCA+PP is a demosaicing approach15 with postprocessing7; DLMMSE based interpolation11; proposed
LPA-ICI based interpolationin; "Oracle �" is the LPA-ICI based interpolation with the optimal threshold parameter �.
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