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ABSTRACT
This paper offers a new technique for spatially adaptive
Þltering. The Þtted local likelihood (FLL) statistics is pro-
posed for selection of an adaptive size estimation neigh-
borhood. The algorithm is developed for quite general
observation models subject to the class of the exponen-
tial distributions. This algorithm shows a better perfor-
mance than the intersection of conÞdence interval (ICI) al-
gorithm, in particular, for Poissonian data. Another prin-
cipal advantage of the novel technique is that it is non-
recursive and does not require knowledge of observation
variance.

1. INTRODUCTION

The nonparametric local regression originated in math-
ematical statistics offers an original approach to signal
processing problems (e.g. [1], [2]). It basically results in
linear Þltering with the linear Þlters designed using some
moving window local approximations. The Þrst local point-
wise (varying window size) adaptive nonparametric re-
gression statistical procedure was suggested by Lepski [3],
[4] and independently by Goldenshluger and Nemirovsky
[5]. This approach has received further development as
the intersection of conÞdence interval (ICI) rule in appli-
cation to various signal and image processing problems
[6], [7], [8]. The algorithm searches for a largest local
vicinity of the point of estimation where the estimate Þts
well to the data. The estimates are calculated for a set of
window sizes (scales) and compared. The adaptive win-
dow size is deÞned as the largest of those in the grid which
estimate does not differ signiÞcantly from the estimators
corresponding to the smaller window size.
In many applications the noise that corrupts the sig-

nal is non-Gaussian and signal dependent. There are a
lot of heuristics adaptive-neighborhood approaches to Þl-
tering signal and images corrupted by signal-dependent
noise. Instead of using Þxed-size, Þxed-shape neighbor-
hoods, statistics of the noise and the signal are computed
within variable-size, variable-shape neighborhoods that are
selected for every point of estimation.
The Lepski approach allows a regular and theoreti-

cally well justiÞed methodology for design of estimates

with adaptive neighborhood. Unfortunately, it is origi-
nated from the Gaussian observation model and its modi-
Þcation to the signal dependent noise meets some princi-
pal difÞculties. Another problem with applications of the
Lepski method in practical situations is the choice of tun-
ing parameters, especially of the threshold used for com-
paring two estimates from different scales. The theory
only says that this threshold has to be large enough (loga-
rithmic in the sample size) and the theory only applies for
such thresholds. At the same time, the numerical experi-
ments indicate that a logarithmic threshold recommended
by the theory is much too high and leads to a signiÞcant
oversmoothing of the estimated function. Reasonable nu-
merical results can be obtained by using smaller values of
the threshold which shows the gap between the existing
statistical theory and the practical applications.

The contribution of this paper is twofold: Þrst, we pro-
pose a novel approach to design of the pointwise adaptive
estimates especially for non-Gaussian distributions. Sec-
ondly, we address in details the question of selecting the
parameters of the procedure and prove the theoretical re-
sults exactly for the algorithm we apply in numerical Þnite
sample study.

The procedure is given for observations subject to the
class of exponential distributions which includes the Pois-
sonian model as an important special case. The Þtted lo-
cal likelihood is developed as statistics for selection of an
adaptive size of this neighborhood. The estimated sig-
nal can be uni- and multivariable. The varying thresh-
olds of the test-statistics is an important ingredient of ap-
proach. Special methods are proposed for selection of
these thresholds. The Þtted local likelihood approach is
founded on theory justifying both the adaptive estimation
procedure and the varying threshold selection.

The proposed adaptive technique is applied for high-
resolution imaging in a special form of anisotropic direc-
tional estimates using the size adaptive sectorial windows.
The performance of the algorithm is illustrated for image
denoising with data having Poissonian and Gaussian ob-
servations. Simulation experiments demonstrate a quite
good performance of the new algorithm.



2. OBSERVATIONS AND NONPARAMETRIC
MODELING

This section describes our model and present some basic
fact about nonparametric local maximum likelihood esti-
mation.

2.1. Stochastic observations

Suppose we have independent random observations {Zi}ni=1
of the form Zi = (Xi, Yi). Here Xi denotes a vector of
�features� or explanatory variables which determines the
distribution of the � observation� Yi. The d-dimensional
vector Xi ∈ Rd can be viewed as a location in time or
space and Yi as the �observation at Xi� . Our model as-
sumes that the values Xi are given and a distribution of
each Yi is determined by a parameter θi which may de-
pend on the location Xi, θi = f(Xi). In many cases
the natural parametrization is chosen which provides the
relation θi = E{Yi}. The estimation problem is to recon-
struct f(x) from the observations {Zi}i=1,...,n for x =
Xi.
Let us illustrate this set-up by few special cases.

1. Gaussian regression. Let Zi = (Xi, Yi) with Xi ∈
Rd and Yi ∈ R obeying the regression equation
Yi = f(Xi) + εi with a regression function f and
i.i.d. Gaussian errors εi ∼ N(0, σ2). This obser-
vation model is standard one for many problems in
signal and image processing.

2. Poisson model. Suppose that the random Yi is a
nonnegative integer subject to the Poisson distribu-
tion with the parameter f(Xi), i.e., Yi ∼ P (f(Xi)).
The probability that Y takes the value k provided
that Xi = x is deÞned by the formula P (Yi =
k|Xi = x) = fk(x) exp(−f(x))/k!. This model
occurs in digital camera imaging, queueing theory,
positron emission tomography, etc.

3. Bernoulli (binary response) model. Let again Zi =
(Xi, Yi) with Xi ∈ Rd and Yi ∈ R be a Bernoulli
random variable with parameter f(x), that is a prob-
ability that depends on Xi = x that the random Yi
takes a value equal to one. It means that P (Yi =
1|Xi = x) = f(x), where P (Yi = 1|Xi = x) is a
conditional probability. Such models arise in many
econometric applications, and they are widely used
in classiÞcation and digital imaging.

Now we describe the general setup. Let P = (Pθ, θ ∈
Θ ⊆ R) be a parametric family of distributions dominated
by a measure P . By p(·, θ) we denote the corresponding
density. We consider the regression-like model in which
every �response� Yi is, conditionally on Xi = x, distrib-
uted with the density p(·, f(x)) for some unknown func-
tion f(x) on X with values in Θ. The considered model
can be written as Yi ∼ Pf(Xi).This means that the distri-
bution of every �observation� Yi is described by the den-
sity p(Yi, f(Xi)). In the considered situations with the
independent observations Yi, the joint distribution of the

samples Y1, . . . , Yn is given by the log-likelihood L =Pn
i=1 log p(Yi, f(Xi)). In the literature similar regression-

like models are also called varying coefÞcient or nonpara-
metrically driven models.
Suppose for a moment that given y, the maximum of

the density function p(y, θ) is achieved at θ = y. This is
the case for the above examples. Then the unconstrained
maximization of the log-likelihood L w.r.t. the collection
of parameter values θ = (θ1, . . . , θn)> obviously leads to
the trivial solution �θ = argmax{θi}

Pn
i=1 log p(Yi, θi) =

Y , where Y means the vector of observations. Thus, there
is no smoothing and noise removal in this trivial estimate.
It can be introduced assuming the correlation of the obser-
vations {Zi}ni=1 or by use some model of the underlying
function f(x). The last idea is the most popular and ex-
ploited in a number of quite different forms.

2.2. Local likelihood modelling

In the simplest parametric setup, when the parameter θ
does not depend on x, i.e., the distribution of every � ob-
servation� Yi is the same, the invariant θ can be estimated
well by the parametric maximum likelihood method �θ =
argmaxθ

Pn
i=1 log p(Yi, θ).

In the nonparametric framework with varying f(x),
one usually applies the local likelihood approach which
is based on the assumption that the parameter is nearly
constant within some neighborhood of every point x in the
�feature� space. This leads to considering a local model
concentrated in some neighborhood of the point x.
We use localization by weights as a general method

to describe a local model. Let, for a Þxed x, nonnegative
weights wi,h(x) be assigned to the observations Yi. The
weights wi,h(x) determine a local model corresponding
to the point x in the sense that, when estimating the local
parameter f(x), the observations Yi are used with these
weights. This leads to the local maximum likelihood esti-
mate

�θh(x) = argmax
θ

X
i

wi,h(x) log p(Yi, θ), (1)

where the weight wi,h(x) usually depends on the distance
between the point of estimation x and the locationXi cor-
responding to the �observation� Yi. The index h means a
scale (window size) parameter which can be a vector, see
Section 4 for an example. Usually the weights wi,h(x)
are selected in the form wi,h(x) = w

¡
h−1(x − Xi)

¢
,

where w(·) is a Þxed window function in Rd and h is
the scale parameter. This window is often taken either in
the product form w(x) =

Qn
i=1wi(xi) or in radial form

w(x) = w1(kxk). We do not assume any special structure
for the window function except that w(0) = maxx w(x).
It means that the maximum weight is given to the obser-
vation withXi = x.

2.3. Properties of the local MLE for a varying coefÞ-
cient exponential family model

The examples of random observations considered above
are particular cases of the exponential family of distrib-
utions. This means that all distribution densities in (1)



are of the form p(y, θ) = p(y) exp(yC(θ) − B(θ)), θ ∈
Θ, y ∈ Y . Here C(θ) and B(θ) are some given non-
negative functions of θ and p(y) is some non-negative
function of y. A natural parametrization for this family
means the equality EθY =

R
yp(y, θ)P (dy) = θ for all

θ ∈ Θ. This condition is useful because the weighted
average of observations is a natural unbiased estimate of
θ. This section presents some results for on the proper-
ties of such local ML estimates. If P = (Pθ) is an ex-
ponential family with the natural parametrization, the lo-
cal log-likelihood and the local maximum likelihood es-
timates admit a simple closed form representation. For a
given set of weights {w1,h, . . . , wn,h} with wi,h ∈ [0, 1],
denote Nh =

Pn
i=1wi,h, Sh =

Pn
i=1wi,hYi . Note that

the both sums depend on the location x via the weights
{wi,h}.

Lemma 1 (Polzehl and Spokoiny [9]) It holds

Lh(θ) =
nX
i=1

wi,h log p(Yi, θ) = ShC(θ)−NhB(θ)+Rh

where Rh =
Pn
i=1wi,h log p(Yi). Moreover,

�θh = Sh/Nh =
nX
i=1

wi,hYi

Á nX
i=1

wi,h (2)

and

Lh(�θh, θ) := Lh(�θh)− Lh(θ) = NhK(�θh, θ)

whereK(θ, θ0) is the Kullback-Leibler divergence between
two distributions with different θ and θ0 parameter val-
ues deÞned as K(θ, θ0) = Eθ log(p(Y, θ)/p(Y, θ

0)) =R
p(y, θ) log(p(y, θ)/p(y, θ0))dy.

Here Lh(�θh, θ) is a "Þtted log-likelihood" deÞned as
a difference between the maximized log-likelihood at θ =
�θh and the log-likelihood with an arbitrary θ, Lh(�θh, θ) ≥
0. Table 1 providesK(θ, θ0), C(θ),B(θ) for special cases
of the exponential distribution considered above.

Table 1. The Kulback-Leibler divergence for the particu-
lar cases of the exponential families.
Model K(θ, θ0) C(θ) B(θ)

Gaussian (θ − θ0)2/(2σ2) θ/σ
2

θ2/(2σ
2
)

Bernoulli
θ log

θ

θ0
+(1−

θ) log
1− θ
1− θ0

log
θ

1− θ log
1

1− θ

Poisson θ log
θ

θ0
−(θ − θ0) log θ θ

Nowwe present some rather tight exponential inequal-
ities for the Þtted log-likelihoodLh(�θ, θ) in the parametric
situation θi ≡ θ∗ for i = 1, . . . , nwhich apply to the arbi-
trary sample size and arbitrary weighting scheme. These
results are essential for explaining our adaptive estimation
procedure.

Theorem 2 (Polzehl and Spokoiny [9]) Let {wi,h} be a
localizing scheme such that maxiwi,h ≤ 1. If f(Xi) ≡
θ∗ for allXi with wi,h > 0 then for any z > 0

P θ∗(Lh(�θh, θ
∗) > z) = P θ∗

³
NhK(�θh, θ

∗) > z
´
≤ 2e−z.

In the regular situation, the Kullback-Leibler diver-
gence K fulÞlls K(θ, θ∗) ≈ Iθ∗ |θ − θ∗|2 for any point
θ in a neighborhood of θ∗, where Iθ∗ is the Fisher infor-
mation at θ∗, see e.g. [10] or [11]. Therefore, the result
of Theorem 2 guarantees that |�θh−θ∗| ≤ CN−1/2

h with a
high probability. Theorem 2 can be used for constructing
the conÞdence intervals for the parameter θ∗.

Theorem 3 If zα satisÞes 2e−zα ≤ α, then Eh(zα) =
{θ : NhK

¡
�θh, θ

¢
≤ zα} is an α-conÞdence set for the

parameter θ∗.

Theorem 3 claims that the estimation loss measured
by K(�θh, θ) is with high probability bounded by zα/Nh
provided that zα is sufÞciently large. Similarly, one can
establish a risk bound for a power loss function.

Theorem 4 Let Yi be i.i.d. from Pθ∗ . Then for any r > 0

Eθ∗
¯̄
Lh(�θh, θ

∗)
¯̄r ≡ Eθ∗

¯̄
NhK(�θh, θ

∗)
¯̄r ≤ rr ,

rr = 2r

Z
z≥0

zr−1e−zdz = 2rΓ(r).

Proof. By Theorem 2

Eθ∗
¯̄
Lh(�θh, θ

∗)
¯̄r ≤ −Z

z≥0
zrdP θ∗(Lh(�θh, θ

∗) > z)

≤ r
Z
z≥0

zr−1P θ∗(Lh(�θh, θ
∗) > z)dz ≤ 2r

Z
z≥0

zr−1e−zdz

and the assertion follows.

3. LOCAL SCALE SELECTION ALGORITHM

Let H = {h1, . . . , hK} be a set of different scales or-
dered by the smoothing parameter h, and let �θh = Sh/Nh
for h ∈ H be the corresponding set of estimates. For con-
ciseness we use the notation �θk = �θhk , Sk = Shk and
Nk = Nhk . We also denote by Lk(θ) the log-likelihood
for the scale hk, k = 1, . . . ,K. We assume that the scale
setH is ordered in the sense that the local sample sizeNk
grows with k.
The presented procedure aims at selecting one esti-

mate �θk out of the given set in a data driven way to provide
the best possible quality of estimation. This explains the
notion of local scale selection. The Þtted local likelihood
(FLL) scale selection rule can be presented in the form
[12]:

�k = max{k : Tlk ≤ zl, l < k}, (3)
Tlk = Ll(�θl, �θk) = NlK(�θl, �θk).

The procedure (3) can be interpreted as follows. The
Þrst estimate �θ1 is always accepted and (3) starts from



k = 2. For the current estimate �θ2 is checked whether
it belongs to the conÞdence set Eh1(z1) of the previous
step estimate �θ1, see Theorem 3. If not, the estimate �θ2 is
rejected and the procedure terminates selecting �θ1. If the
inequality T12 = L1(�θ1, �θ2) ≤ z1 is fulÞlled then �θ2 is ac-
cepted and the procedure considers the next step estimate
�θ3. At every step k, the current estimate �θk is compared
with all the previous estimates �θ1, . . . , �θk−1 by checking
the inequalities (3). We proceed this way until the current
estimates is rejected or the last estimate in the family for
the largest scale is accepted. The adaptive estimate is the
latest accepted one.
The proposed method can be viewed as a multiple test-

ing procedure. The expressions Tlk = Ll(�θl, �θk) is un-
derstood as test statistics for testing the hypothesis Hlk :
E �θl = E �θk, and zl is the corresponding critical value.
At the step k the procedure tests the composite hypothesis
E �θ1 = . . . = E �θk. The choice of the z�s is of special im-
portance for the procedure and it is discussed in the next
section.
The random index κ means the largest accepted k.

The adaptive estimate �θ is �θκ , �θ = �θκ .We also deÞne the
random moment κk meaning the largest index accepted
after Þrst k steps and the corresponding adaptive estimate:
κk = min{κ, k}, �θk = �θκk .
The ICI rule mentioned above can be presented in the

sequential form (3) provided that the inequality Tlk ≤ zl
is replaced by |�θl − �θk| ≤ (σ�θl + σ�θk)z where σ�θl and
σ�θk are standard deviations of the estimates

�θl and �θk and
z is the parameter similar to the varying zl in (3). Thus, to
compare the estimates of different scales one has to addi-
tionally estimate their variances which in general, in par-
ticular for Poisson models, depend on unknown f(x) and
requires some recursive calculations, e.g. [8], [13]. Note,
that the proposed procedure (3) does not need the estimate
variance and the recursive calculations.

3.1. Choice of the parameter zk

Following [12], the critical values z1, . . . , zK−1 are se-
lected by the reasoning similar to the standard approach of
hypothesis testing theory: to provide the prescribed per-
formance of the procedure under the simplest (null) hy-
pothesis. In the considered set-up, the null means f(Xi) ≡
θ∗ for some Þxed θ∗ and all i. In this case it is natural to
expect that the estimate �θk coming out of the Þrst k steps
of the procedure is close to the nonadaptive counterpart
�θk. This particularly means that the probability of reject-
ing one of the estimates �θ2, . . . , �θk under the null hypoth-
esis should be very small.
Now we give a precise deÞnition. Similarly to The-

orem 4 the risk of estimation for an estimate �θ of θ∗ is
measured by E

¯̄
K(�θ, θ∗)

¯̄r for some r > 0. Under the
null hypothesis f(Xi) ≡ θ∗, every estimate �θk fulÞlls by
Theorem 4 for every r > 0

Eθ∗
¯̄
Lk(�θk, θ

∗)
¯̄r
= Eθ∗

¯̄
NkK(�θk, θ

∗)
¯̄r ≤ rr

for the Þxed absolute constant rr. We require that the para-
meters z1, . . . , zK−1 of the procedure are selected in such

a way that for k = 2, . . . ,K

Eθ∗
¯̄
Lk(�θk, �θk)

¯̄r
= Eθ∗

¯̄
NkK(�θk, �θk)

¯̄r ≤ αrr , (4)

Here α is the preselected constant having the meaning of
the conÞdence level of procedure. This gives us K − 1
conditions to ÞxK − 1 critical values.
The condition (4) will be referred to as the propaga-

tion property. The meaning of �propagation� is that in the
homogeneous situation the procedure passes with a high
probability at every step from the current scale k− 1 with
the corresponding parameter hk−1 to a larger scale k with
the parameter hk. This yields that the adaptive estimate �θk
coincides with the nonadaptive counterpart �θk in the typ-
ical situation. These two estimates can be different only
in the �false alarm� when one of the test statistics Tlm ex-
ceeds the critical value zl for some l < m ≤ k. The loss
associated with such �false alarm� is naturally measured
by
¯̄
NkK(�θk, �θk)

¯̄r and the condition (4) gives the upper
bound for the corresponding risk.
Our deÞnition still involves two parameters α and r.

It is important to mention that their choice is subjective
and there is no way for an automatic local rule. In this
paper we present a simpliÞed procedure which is rather
simple for implementation. It suggests to select zk linearly
decreasing with k. This simpliÞed selection of zk is based
on the upper bound that there are constants a0, a1, and a2
such that it holds for every k ≤ K

zk ≤ a0 + a1 logα−1 + a2r log(NK/Nk). (5)

This result justiÞes the linear rule

zk = z1 − ι(K − k) (6)

in the case when the local sample size measured by the
value Nk grows exponentially with k. Then we only need
to Þx two parameters, e.g. the Þrst value z1 and the slop
in a such a way that the condition (4) holds.

4. APPLICATION TO NON-GAUSSIAN IMAGE
DENOISING

Points, lines, edges, textures deÞned by position, orien-
tation and scale even being of small size encode a great
proportion of information contained in images. In many
cases the image intensity is a typical anisotropic function
demonstrating essentially different nonsymmetric behav-
ior in different directions at each pixel. It follows that a
good local approximation can be achieved only in a non-
symmetric neighborhood.
To deal with these features oriented/directional esti-

mators are used in many vision and image processing tasks,
such as edge detection, texture and motion analysis, etc.
To mention a few of this sort of techniques we refer to
classical steerable Þlters [14] and recent new ridgelet and
curvelet transforms [15].



Figure 1. A neighborhood of the estimation point x: a)
the best estimation set U∗, b) the unit ball segmentation,
c) sectorial approximation of U∗.

In this paper in terms of the considered nonparamet-
ric regression approach we exploit starshaped size/shape
adaptive neighborhoods built for each estimation point.
Figure 1 illustrates this concept and shows sequentially:
a local best ideal estimation neighborhood U∗ (Þgure a)
, a sectorial segmentation of the unit ball (Þgure b), and
the sectorial approximation of U∗ using the scales h∗α =
h∗(α) deÞning the length of the corresponding sectors
(Þgure b) in the direction α from the Þnite set of direc-
tions A. Varying size sectors of the length h∗α enable one
to get a good approximation of any neighborhood of the
point x provided that it is a starshaped body. This leads to
the problem of simultaneous data-driven choice of the set
of parameters h∗α, α ∈ A. This is, however, a difÞcult task
encountering some technical and principal points. To be
practical we use a procedure with independent selection
of the parameters h∗α for each direction α ∈ A. The adap-
tive procedure applied to the directional estimates �θα,h(x)
deÞned as

�θα,h(x) =
X

i∈Iα(x)
wi,h(x)Yi

. X
i∈Iα(x)

wi,h(x) (7)

where wi,h(x) = w(|Xi − x|/h) for some univariate ker-
nel w(·) and Iα(x) is the sectorial set in direction α.
With a given set of bandwidths h1, . . . , hK we come

back to the problem of selecting for every direction α one
of them in a data driven way. The adaptive procedure de-
scribed in Section 3 leads to the value �hα(x).
When these adaptive scales �hα(x) are found for all

α ∈ A, the Þnal estimate is calculated as the weighted
mean of the observations included in the support of the
neighborhoods:

�θ(x) =
X
α∈A

0X
i∈Iα(x)

wi,�hα(x)(x)Yi

.X
α∈A

0X
i∈Iα(x)

wi,�hα(x)(x).

(8)
The sets Iα(x) have as a common point (intersection

of the sets) at least the origin. The prime (0) in the formula
(8) means that the estimate is calculated over the union
of the directional supports Iα(x). Thus each observation
enters in this formula only ones.
In (8) the argument x for �hα(x) indicates that the adap-

tive scales can be varying for each x. In the estimate (8)
the adaptive procedure is used only in order to generate
the adaptive neighborhood and the estimate is calculated
as the weighted mean of the observations in this neighbor-
hood.

There is another approach to the estimation problem.
Let �θα(x) be the directional adaptive estimate calculated
for the corresponding directionα, that is, �θα(x) = �θα,�hα(x)(x),
see (7). DeÞne also �σ2α(x) = σ2α,�hα(x)(x)where σ

2
α,h(x) =P

iw
2
i,h

±
(
P
iwi,h)

2 is the variance of �θα,h from (7). Then
the Þnal estimate can be yield by fusing of the directional
ones as follows

�θ(x) =
X
α∈A

λα(x)�θα(x), λα = �σ
−2
α (x)

.X
α∈A

�σ−2α (x),

(9)
The FLL adaptive window sizes enable nearly con-

stant value of θ in the starshaped neighborhood. It means
that the observations in this neighborhood have equal vari-
ances and the variances �σ2α in (9) can be calculated assum-
ing that these variances of the observations are equal to
one. The inverse variance weighting in (9) assumes that
the directional estimates are unbiased and statistically in-
dependent. The estimate (8) is quite different from (9). In
particular the origin is used here T = #(A) times while
it enters in (8) only ones. These estimates are quite com-
petitive. In different cases one or another gives a better
result.
The described adaptive starshaped neighborhood es-

timates are originated in the works [8], [16], where it is
successfully exploited with the ICI adaptive scale selec-
tion for different image processing problems.
Formulas (8)-(9) make clear the algorithm. We intro-

duce the directional estimates �θα(x), optimize the scalar
scale parameter hα for each of the directions (sectors) and
use these adaptive directional sectors or directional esti-
mates in order to calculate the Þnal fused estimates.
Two points are of the importance here. First, we are

able to Þnd good approximations of estimation supports
which can be of a complex form. Second, this approxima-
tion is composed from the univariate scale optimizations
on h, thus the complexity is proportional to the number of
sectors.
Multiple studies show that the Þnite sample perfor-

mance of estimators based on bandwidth or model se-
lection is often rather unstable, e.g. [17]. It is true for
the local pointwise model selection considered in this pa-
per. In spite of nice theoretical properties the FLL rule
the resulting estimates suffer from a high variability due
to a pointwise model choice, especially for a large noise
level. In order to reduce the stochastic variability of the
estimates the FLL algorithm is completed by special Þl-
tering of the adaptively selected �hα. For this Þltering we
use a weighted median Þlters specially designed for each
direction of the sectorial starshaped neighborhood. Thus,
the adaptive directional estimates are deÞned as those after
this median Þltering. In the aggregation formulas (8)�(9)
these Þltered FLL estimates are used.

5. EXPERIMENTAL STUDY

In these simulation experiments we demonstrate the per-
formance of the developed algorithm for Poissonian and



Gaussian image observations. It is assumes that the para-
meter θ is a deterministic unknown image intensity f(x).
The image and the observations are deÞned on the Þ-

nite discrete grid x ∈ X = {k1, k2 : k1 = 1, 2, ..., n1, k2 =
1, 2, ..., n2} of the size n1×n2. It is assumed that the ob-
servations for each pixel are statistically independent. The
problem is to reconstruct the image f(x) from the obser-
vations Y (x), x ∈ X . The following standard criteria are
used: (1) Root mean squared error (RMSE):

RMSE =

r
1

n1n2

P
x∈X(f(x)− �θ(x))2; (2) Signal-to-

noise ratio (SNR) in dB:
SNR = 10 log10(

P
x∈X |f(x)|2/

P
x∈X |f(x)−�θ(x)|2);

(3) Improvement in SNR (ISNR) in dB: ISNR =
20 log10(�σz/RMSE), where �σz is an estimate of the ob-
servation standard deviation; (4) Peak signal-to-noise ra-
tio (PSNR) in dB: PSNR = 20 log10(maxx∈X |f(x)|
/RMSE). For our experiments we use the MATLAB
texture test-images (8 bit gray-scale): Boats (512× 512),
Lena (512×512), Cameraman (256×256), Peppers (512×
512) and two binary test-images: Testpat (256× 256) and
Cheese (128× 128). For the texture images we use eight
line-wise directional estimators diagonal, vertical and hor-
izontal with windowing function w. The line-wise sup-
ports enable high level of directional sensitivity of the
adaptive estimators. The sectorial windows (of the angu-
lar size∆α ' 33.750) work better then the line-wise ones
for the images with comparatively large areas of constant
or slowly varying intensities, in particular for the binary
images considered in our simulation.
For every direction α, we apply the adaptive proce-

dure for the set of window sizesH with a relatively small
number of scales K = 7. For a linewise uniform window
w(u) = 1(u ≤ 1) the scale parameter h is integer with
the set of values deÞned as H = {b1.5kc, k = 1, ..., 7} =
{1, 2, 3, 5, 7, 11, 17}. Then Nk = hk for all k ≤ K.
A special study has been produced for testing the pro-

cedures presented in Section 3.1 for zk selection. For cal-
culation of the expectations in the corresponding formulas
we use Monte-Carlo simulation runs. In implementation
of these calculations we accurately imitate the work of the
adaptive FLL algorithm and use the adaptive estimates in-
stead of the random event B(j)k introduced to check the
inequalities Tlk > zl.
The developed algorithms for selection of zk give the

results which depend on the parameters r and α, where r
is the power of the used criterion functions and α is a para-
meter, similar to nominal rejection probability in hypoth-
esis testing. These parameters are of purely mathematical
origin, our default choice is r = 1/2 and α = 1. These
theoretical recommendations work surprisingly well giv-
ing the sets of zk universally good for quite different im-
ages and different distributions.
In what follows we use the sets zk obtained by the

simpliÞed threshold parameter choice with r = 1/2 and
α = 1. Of course, further optimization of zk can be pro-
duced for particular images or set of images but in any
case what is found for r = 1/2 and α = 1 can be treated

as a good initial guess quite useful for further improve-
ment.

5.1. Poissonian observations

To achieve different level of randomness (i.e. different
SNR) in the Poissonian observations we multiply the true
signal y by a scaling factor χwith the observations deÞned
according to the formula �z ∼ P (y · χ), where χ > 0 is a
scaling factor. Further, we assume the observations in the
form z = �z/χ in order to have the results comparable for
different χ as E{z} = E{�z}/χ = y for all χ > 0. The
scaling by χ allows to get the random data z with a differ-
ent level the random noise and to preserve the mean value
: var{z} = var{�z}/χ2 = y/χ. The signal-to-noise ratio
is calculated asE{z}/

p
var{z} = √yχ. Thus, for larger

and smaller χ we have respectively a larger and smaller
signal-to-noise ratio.
This scaled modelling of Poisson data is appeared in

a number of publications where the advanced performance
of the wavelet based denoising algorithms is demonstrated.
It is shown further in [13] that the ICI based adaptive algo-
rithms quite competitive and at least numerically demon-
strate a very good performance performance. In this paper
we compare of the novel proposed FLL technique versus
these ICI adaptive algorithms only.
In the scale selection the FLL technique is applied to

the Poissonian variables, i.e. to �z. However, our linear
estimates are calculated for the data z = �z/χ. It means
that in the formula for the Kullback divergence θ should
be replaced by θχ. Then the scale selection rule (3) for
the Poissonian data (see the Kullback divergence for Pois-
sonian distribution in Table 1) is modiÞed to the form
�k = max{m, Lm(�θ

(m)
, �θ
(l)
) ≤ zl/χ, l < m}.

In these experiments we use the line-wise nonsym-
metric windows of the scales H. The linear decreasing
threshold set obtained by the simpliÞed choice is as fol-
lows z = {1.2, 1.0, 0.8, 0.6, 0.4, 0.2} .
The numerical results in Table 2 are given for the bi-

nary "Cheese" image taking values θ = [0.2, 1.0]. The
criterion values for the fused (Þnal) estimate compared
with the eight directional sectorial ones show a strong im-
provement in the Þnal estimate. In particular, we have for
ISNR the values about 7 dB for the sectorial estimates
while for the fused estimate ISNR ' 16 dB. The fusing
works very well for all criteria in Table 2. Visually, the
improvement effects of the fusing are quite obvious.
Table 3 shows numerical criteria calculated for the test

images. Values before and after slash correspond to the
FLL and LPA�ICI recursive algorithms (after 7 iterations)
respectively. Numerically the FLL algorithm works bet-
ter for Cheese and Cameraman while for other images
the LPA�ICI algorithm gives better criterion values. How-
ever, visual comparison is always deÞnitely in favor of the
FLL algorithm as the recursive LPA�ICI estimates typi-
cally suffer frommultiple spot-like artifacts while the FLL
estimate is free from this sort of degradation effects. Frag-
ments of noisy and denoised (by FLL algorithm) images
are shown in Figure 2. Overall Table 3 conÞrms a very



good performance of the FLL algorithm for Poissonian
data.

5.2. Gaussian observations

We assume that the additive zero-mean Gaussian noise has
the variance σ2 = 0.01. For the scales H the linear de-
creasing thresholds are obtained by the simpliÞed choice
z = {2.5, 2.07, 1.64, 1.21, 0.78, 0.35} with r = 1/2 and
α = 1. Numerically (see Table 4) the performance of the
FLL algorithm is slightly better (Cheese, Peppers,Testpat)
or slightly worse than that for LPA�ICI algorithm. We
wish to note that the referred non-recursive LPA�ICI algo-
rithm is a specially designed for the Gaussian case while
the FLL is universally applicable for the class of exponen-
tial distributions.

6. CONCLUSION

A novel technique is developed for spatially adaptive esti-
mation. The Þtted local likelihood statistics is used for se-
lection of an adaptive size of this neighborhood. The algo-
rithm is developed for quite a general class of observations
subject to the exponential distribution. The estimated sig-
nal can be uni- and multivariable. The varying thresholds
of the developed statistical test is an important ingredi-
ent of the approach. Special techniques are proposed for
the pointwise and linear approximation selection of these
threshold. The developed theory justiÞes both the adap-
tive estimation procedure and the varying threshold selec-
tion. For high-resolution imaging the developed approach
is implemented in the form of anisotropic directional esti-
mation with fusing the scale adaptive sectorial estimates.
The performance of the algorithm is illustrated for im-
age denoising with data having Poissonian, Gaussian and
Bernoulli (binary) random observations. Simulation ex-
periments demonstrate a very good performance of the
new algorithm. A demo version of the developed adap-
tive FLL algorithm and the scale selection procedures are
available at the website www.cs.tut.fi/�lasip.

7. ACKNOWLEDGMENTS

This work was supported by the Academy of Finland, project
No. 213462 (Finnish Centre of Excellence program (2006
- 2011). In part, the work of Dr. Vladimir Katkovnik is
supported by Visiting Fellow grant from Nokia Founda-
tion.

8. REFERENCES

[1] J. Fan J. and I. Gijbels, Local polynomial modelling
and its application. London: Chapman and Hall,
1996.

[2] C. Loader, Local regression and likelihood, Se-
ries Statistics and Computing, Springer-Verlag New
York, 1999.

[3] O.V. Lepski, "One problem of adaptive estimation in
Gaussian white noise," Theory Probab. Appl., vol.
35, no. 3, pp. 459 - 470, 1990.

[4] O. Lepski, E. Mammen and V. Spokoiny, �Ideal spa-
tial adaptation to inhomogeneous smoothness: an
approach based on kernel estimates with variable
bandwidth selection,� The Annals of Statistics, vol.
25, no. 3, 929�947, 1997.

[5] A. Goldenshluger and A. Nemirovski, �On spatial
adaptive estimation of nonparametric regression�,
Math. Meth. Statistics, vol.6, pp.135-170, 1997.

[6] V. Katkovnik, �A new method for varying adaptive
bandwidth selection,� IEEE Trans. Sig. Proc., vol.
47, no. 9, pp. 2567-2571, 1999.

[7] V. Katkovnik, K. Egiazarian and J. Astola, �Adap-
tive window size image de-noising based on inter-
section of conÞdence intervals (ICI) rule,� Journal
of Math. Imaging and Vision, vol. 16, no. 3, pp. 223-
235, 2002.

[8] A. Foi, Anisotropic nonparametric image process-
ing: theory, algorithms and applications, Ph.D.
Thesis, Dip. di Matematica, Politecnico di Mi-
lano, ERLTDD-D01290, April 2005. Available:
www.cs.tut.fi/�lasip.

[9] J. Polzehl and V. Spokoiny, �Propagation-separation
approach for local likelihood estimation, Probab.
Theory Related Fields, vol. 135, no. 3, 335�362,
2005.

[10] I. Ibragimov and R. Khasminskii, Statistical estima-
tion. Springer-Verlag New York, 1981.

[11] S. Kullback, Statistics and Information Theory. Wi-
ley and Sons, New York, 1959.

[12] V. Spokoiny, Local parametric methods in nonpara-
metric estimation, Springer, 2006.

[13] A. Foi, A., R. Bilcu, V. Katkovnik, and K. Egiazar-
ian, �Anisotropic local approximations for pointwise
adaptive signal-dependent noise removal�, Proc.
XIII European Signal Process. Conf., EUSIPCO
2005, Antalya, September 2005.

[14] W.T. Freeman and E.H. Adelson, �The design and
use of steerable Þlters,� IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 13, no. 9, pp. 891-
906, 1991.

[15] J.L. Starck, E.J. Candes, and D.L. Donoho, �The
curvelet transform for image denoising,� IEEE
Trans. Image Processing, vol. 11, no. 6, pp. 670-684,
2002.

[16] V. Katkovnik, A. Foi, K. Egiazarian, and J. As-
tola, �Directional varying scale approximations for
anisotropic signal processing�, Proc. of XII Euro-
pean Signal Process. Conf., EUSIPCO 2004, pp.
101-104, 2004.

[17] L. Breiman, "Stacked regression," Machine Learn-
ing, 24 pp. 49-64, 1996.



Table 2. �Cheese� image: criteria values for the eight directional and Þnal estimates.

α1 α2 α3 α4 α5 α6 α7 α8 Fused
ISNR , dB 7.62 6.62 7.67 6.84 7.50 6.56 7.76 6.95 16.59
SNR , dB 19.42 18.42 19.47 18.64 19.31 18.35 19.55 18.72 28.22
PSNR , dB 27.06 26.02 27.12 26.27 26.93 25.99 27.19 26.38 35.60
RMSE 11.32 12.71 11.25 12.39 11.48 12.81 11.15 12.23 4.23

Table 3. Accuracy criterion for poissonian FLL imaging.

Test Image ISNR dB SNR dB PSNR dB RMSE
Cheese 16.40/10.68 28.04/22.47 35.42/30.1 4.32/7.97
Lena 10.65/11.9 22.17/23.58 27.85/28.92 10.32/9.13
Cameraman 9.38/9.20 21.17/21.04 26.75/26.52 11.71/12.03
Peppers 10.98/12.15 22.58/23.7 28.33/29.5 9.76/8.5
Boats 9.20/10.02 20.84/21.66 26.19/27.01 12.50/11.38
Testpat 9.64/10.17 23.31/23.88 24.93/25.53 14.45/13.5

Table 4. Accuracy criterion for Gaussian FLL imaging.

Test Image ISNR dB SNR dB PSNR dB RMSE
Cheese 15.71/15.26 28.33/27.81 35.71/35.19 4.18/4.43
Lena 9.26/9.41 23.59/24.08 29.27/29.42 8.77/8.62
Cameraman 8.00/8.04 22.38/22.53 27.97/28.01 10.18/10.13
Peppers 9.66/9.46 23.91/24.72 29.67/29.47 8.37/8.57
Boats 7.63/7.81 22.30/22.47 27.64/27.82 10.58/10.36
Testpat 8.05/7.60 26.4/25.95 28.02/27.57 10.13/10.66

Figure 2. Fragments of noisy and denoised Poissonian images: Cameraman, Peppers, Cheese, Testpat.


