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ABSTRACT 

Local adaptive image de-noising in transform domain is a 
powerfull tool for adapting to unknown smoothness of the 
images. In this work we propose to perform local adaptive 
denoising with adaptively varying local transform support 
size rather than using a transform with fixed size. We use 
a special rule (Intersection of Confidence Intervals - ICI) 
to select the optimum window sizes locally. The algorithm 
provides significant improvements in the de-noising perfor- 
mance. 

1. INTRODUCTION 

Signal and image processing in a transform domain rather 
than in a spatial domain has certain advantages of incorpo- 
rating a priori knowledge on images into design of process- 
ing algorithms and in terms of computational expenses. The 
transfer from the spatial domain into the transform domain 
is especially useful if it is applied locally rather than glob- 
ally. 

Local adaptive filters [2] work in the domain of an or- 
thogonal transform in a moving window and non-linearly 
modify the transform coefficients in order to obtain an esti- 
mate at the central pixel. Nonlinear filtering in the wavelet 
transform domain were introduced in terms of wavelet de- 
noising by Donoho and Johnstone [3, 41 and has been ex- 
tended by several authors. In [l, 51 translation invariant 
wavelet denoising algorithms were introduced and tested 
on different one dimensional signals and SAR images, re- 
spectively. In [6] wavelet transform domain denoising was 
combined with the empirical Wiener filtering for a better 
performance. 

In [7] the local average transform domain denoising 
was presented. The difference between this filter and the 
one in [2] is that the nonlinear modification of the trans- 
form coefficients within a window gives an estimate of the 
overall subimage within the window and not only at the 
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central pixel. Thus, it makes an overlap of the estimates 
in the neighboring windows and the multiple estimates are 
obtained for each pixel. All of the above estimates are aver- 
aged in order to obtain the final estimate for these pixels. In 
this work we will use this filter as a prototype filter and add 
some additional features to implement within varying size 
locally optimum windows. 

In [SI another local adaptive filter fitting the samples 
within a local window to a local polynomial was introduced. 

When a locally applied transform is used the perfor- 
mance highly depends on key parameters, especially the 
window (transform support) size. When a local signal model 
is considered the neighborhood within which the model is 
valid has a crucial importance. In this paper we will inves- 
tigate the performance of the filters by selecting the locally 
optimal window size for each location rather than a global 
optimum. 

2. FILTERING IN TRANSFORM DOMAIN 

A noise model for images is considered as: 

Y ( i , j )  = .( i>j) + e ( i , j ) ,  (1) 

where x = (z(i ,  j ) )  is a matrix of a noise-free image and 
e = (e( i , j ) )  is a Gaussian noise, e ( i , j )  N N(0,o:)with 
zero mean and variance of. 

In an obvious vector-matrix notation both formulas have 
a form 

y = x + e ,  (2) 

where the corresponding y, X, e are matrices. 
The main reason to make filtering in a transform domain 

rather than in spatial domain is due to decorrelating proper- 
ties of transforms. 

Let the orthogonal transform be defined by a N x N 
matrix H. The observation model (2) in a transform domain 
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has a form 

Y= H Y H ~ ,  x = H X H T ,  E = H ~ H ~  

where Y ,  X are observed and noise-free images and E is 
noise in the transform domain. 

The optimum Wiener filter coefficient 77 can be found 
by minimizing the _expected value of the quadratic error be- 
tween a spectrum X == Y @ 7, where @ stays for a element- 
by-element product, of estimated output and the spectrum 
X of the noise-free image: 

i = arg xnin,E{l x - ji; 1 1 2 } ,  i< 
11 x - x 112= (XZ, - X Z J 2 .  

t - 3  

From this one can get an estimate of the Wiener filter 
coefficients: 

Using (2) we obtain [!3] 

(3) 

(4) 

Thus, the filtering procedure can be done by the so-called 
rejective filter [9], defined by 

(5) 

It was shown in [9] that this filter can be adapted to different 
noise distributions (e.g. to multiplicative noise) by adjusting 
the rejection rule (thrwhold). For a Gaussian noise the rule 
(5) is quite similar to ,the standard wavelet shrinkage. 

2.1. Local Versus Global Filtering in Transform Domain 

Before doing a filtering by (5) we need to compute the spec- 
trum Y of the observed signal y. How to do it - locally 
or globally? One thing is clear that the basis functions of 
the transform should be compactly supported in order to 
achieve a reasonable decorrelation of the observed image. 
There are two alternative solutions reported in literature: ap- 
ply a wavelet transform or a local sliding window transform. 

In the first case we make a fit of the image by decom- 
posing it into a linear combination of the scaled and shifted 
wavelet basis functions known as the "mother" wavelets. In 
second case, we also fit an image by locally supported and 
shifted basis functions which could have supports of dif- 
ferent scales. Thus, the only difference between these two 
cases is in the used basis functions. It deserves to be men- 
tioned that the local fiinctions used in the latter case can be 
interpreted as the wavelet frames. 

In the case of the wavelet transforms the overall filtering 

1. Compute a transform of noisy observations: Y = HyHT.  
2. Apply a filtering procedure: 

procedure [3, 51, consists of the following three steps: 

3. Transform back to the original domain: 

b = H ~ X H  

For the local sliding window transform based filtering 
we perform the same 3 steps as described above but for ev- 
ery sliding window location k, I ,  obtaining the matrix of the 
local estimates: b = [bk,~]. It is emphasized that the sizes 
of the matrix b are uniquely defined by the sizes of the win- 
dows used for the estimation. As the sliding windows are 
overlapped, we have multiple estimates for every k or k ,  1. 
The simplest way to deal with these multiple estimates and 
obtain the final result is to calculate the sample average over 
the all available overlapped estimates for every i, j. 

3. THE ICI RULE FOR WINDOW SIZE 
SELECTION 

The following is the ICI statistic, which is used in order to 
test the very existence of this common point and in order to 
obtain the adaptive window size value. Since the transform 
we are using is separable, from the simplicity point of view 
we just describe the IC1 rule for 1-D case. 

Consider the intervals D ( j ) ,  j = 1,2,  ...,, and let k' be 
the largest value ofk for which the intervals D ( j )  , 1 5 j 5 
k ,  have a point in common. This k+  defines the adaptive 
window size and the adaptive estimate as folows 

The following algorithm implements the procedure (7). 
Determine the sequence of the upper and lower bounds of 
the confidence intervals D ( j )  as follows 

Let 

Lj+l = max[L,, Lj+l] ,  & + I  = min[uj, Uj+11, (9) 
j = 1 , 2  ,... , J ,  2.1 =L1, U1 =U1 

then the optimal window length N' comes for the largest 
j ,  k' for which the inequality 

L j  cJ3 (10) 
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is still satisfied. This k +  is the largest of those j for which 
the confidence intervals D ( j )  have a point in common as 
discussed above. This ICI window size selection proce- 
dure requires knowledge of the estimate i ~ ,  (2)  and its local 
variance only. 

The ICI rule is graphically illustrated into Figure 1, 
where the arrows show the successive intersections of the 
confidence intervals (1,2), (1,2,3), and (1,2,3,4). Assum- 
ing that the intersection with the forth confidence interval 
(corresponding h = h4) is empty we obtain the adaptive 
window size h' = h3. 

1CI RULE FOR A D M  WINDOW SIZE SELECTION 

I P 

m hl h?. rn h' w1ndmrsLV 

Figure 1: Graphical illustration of IC1 rule. 

3.1. DCT Based Local Transform Domain De-noising 
with IC1 Rule Adaptive Window 

When discussing transform domain denoising we have men- 
tioned that we were using the decorrelation property of some 
transforms. In particular, the Discrete Cosine Transform 
(DCT) is a good approximation of the ideal Karhunen Lo- 
eve Transform (K LT) for highly correlated data [ 101. When 
we treat a signal as composed of more or less correlated 
portions whose sizes are not known in advance (as is usu- 
ally the case) the selection of the transform support size 
becomes important. The de-noising performance increase 
with the increasing local transform size due to improved 
spectral resolution if the transform support is within the cor- 
related region. At the same time, the compaction property 
of the local transform (which was the main consideration of 
the transform domain de-noising algorithm) will be lost if 
the transform support is out of the correlated range which 
will lead to detail loss or poor noise removal depending on 
the threshold. In any case, the estimate of a particular refer- 
ence pixel will run out of the confidence interval when the 
transform size exceed the correlated region. On the other 
hand the introduced ICI rule helps to select the "optimum" 

window size as a smoothing parameter when the signal is 
behaving as a local polynomial [8] (which is generally valid 
for simple signals but not necessary to be hold for relatively 
complex signals). Even after replacing the local polyno- 
mial with an adaptive model allowing the preservation of 
relatively smaller details, ICI rule remains to be a valid 
tool for verifying the validity of the local model with in- 
creasing size. When we use ICI rule for selecting the lo- 
cal transform size we simply equip local transform domain 
de-noising algorithm by a tool for selecting the locally op- 
timum transform size for each window. Employing a lo- 
cal estimator adaptive to unknown smoothness instead of a 
local polynomial makes the adaptive bandwidth algorithm 
applicable for a larger range of images. 

In Figure 2 the varying size local DCT filter is com- 
pared with the same filter with an optimum fixed size for 
the "montage" image. On the top left the original montage 
image is shown. This 256 x 256 8-bit image is a composi- 
tion of 4 different types of images. On the top right of the 
Figure 2 the image corrupted by zero mean white Gaussian 
noise with a variance of 0.1 is shown. The root mean square 
error (RMSE) of the filtered image by DCT filter (bottom 
left) using adaptive window size was attenuated to 0.028 
while the same filter with optimum fixed window of 5x5  
attenuated the RMSE to 0.031 (bottom right). 

Figure 2: Comparison of adaptive and fixed window sizes 
in transform domain de-noising 

In the following Table 1 some of the results for the same 
"montage" image by different filters were tabulated. As it 
can be seen from the performance figures, Local Adaptive 
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DCT filtering with adaptive size selected by IC1 rule gives 
significantly better result than some other well known al- 
gorithms, namely, the classical Wiener filter, the wavelet 
shrinkage, wavelet packet shinkage and translation-invariant 
wavelet shrinkage using the Haar and Symmlet 8 filters [3, 
4, 51. as well as the Local Adaptive DCT filtering using 
fixed window size [7]. 

Tablel: Comparative results. 

I I 1 Wavelet TI Svm 8 f5 levels) I 0.0365 I 0.0261 1 
MAE=Maximurn Absolute Error 
PO= Periodic, TI= Translation invariant 

CONCLUSIOlNS 
A new local adaptive transform based de-noising technique 
for removing additive Gaussian noise has been proposed 
and studied in this paper. The transforms are equipped with 
a varying adaptive window size for which we use the IC1 
rule. Finally, we combine all the estimates for a pixel from 
neighboring window:; by weighted averaging them in or- 
der to produce the final estimate. Comparison of the algo- 
rithm with known techniques for noise removal from images 
shows the advantages of the new approach, both quantita- 
tively and visually. 
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