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Abstract- -A method for suppression of electromyogram (EMG) interference in 
electrocardiogram (ECG) recordings is presented. By assuming that the EMG is 
long-term non-stationary Gaussian noise, two successive decomposit ions were 
proposed, and the data transformed for Wiener filtering. Successive ECG cycles 
were rearranged and al igned by the R-wave, forming a matr ix containing separated 
heart cycles in its rows. A short-window discrete cosine transform (DCT) was applied 
to the columns of the matr ix for inter-cycle de-correlation. Next, Wiener fi l tering in a 
translation-invariant wavelet domain was performed on the DCT-transformed matr ix 
rows for de-correlation of the data into each ECG cycle. The method resulted in an 
improvement in the signal-to-noise ratio of more than 10 dB, a threefold reduction in 
mean relative ampli tude errors and reduced ripple artifacts around the signal 
transients, thus preserving the waveform in diagnostical ly important signal 
segments. 
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1 Introduction 

ONE OF the most serious problems in the acquisition and 
recording of electrocardiogram (ECG) signals is the presence 
of unwanted interference signals. Power-line noise and the 
baseline can be strongly suppressed by different filtering 
procedures, but superimposed electromyogram (EMG) signals 
require special attention. They behave like random wide-band 
spectrum signals, considerably overlapping the ECG spectrum. 
Most of the ECG signal energy is concentrated in the QRS 
complex, but there are diagnostically important changes in the 
low-amplitude PQ and ST intervals, the P- and T-waves, that 
could be completely masked by EMG noise. 

The problem of EMG noise suppression becomes extremely 
important when ECGs are recorded during physical exercise, for 
long-term recording by portable devices (for example, ambula- 
tory Holter-type recording) or for ECG recording of children or 
of people with injured extremities etc. in such cases, it is not 
possible to ensure relaxed conditions for the patient, and the 
muscular activity is reflected in high-amplitude EMG noise. 
Thus automatic interpretation, which is strongly dependent on 
accurate detection of characteristic ECG points and waves and 
measurement of signal parameters, becomes an extremely 
difficult, and often virtually impossible, task. 

Adequate ECG denoising algorithms and procedures should 
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(a) improve the signal-to-noise ratio (SNR) to obtain clean and 
readily observable recordings, allowing the subsequent use 
of straightforward approaches for correct automatic detec- 
tion of characteristic points in the ECG signal and recogni- 
tion of its specific waves and complexes 

(b) preserve the original shape of the signal and especially the 
amplitudes of sharp Q, R and S peaks, without introducing 
distortions in the low-amplitude ST-segment and P- and 
T-waves. 

The use of low-pass (smoothing) filtering for EMG noise sup- 
pression is not a good solution as it reduces the sharp wave 
amplitudes and could also produce ripple effects around QRS 
complexes. 

A noise suppression filter, namely a time-domain Wiener 
filter, can be designed as adaptive (THAKOR and ZHU, 1991). The 
adaptation requires preliminary knowledge of the second-order 
statistics of the EMG noise and the ECG signal, in the time 
domain, an additional EMG input as a reference signal is needed. 
This limits the application of the method. Another drawback is 
that the procedure needs a time-delay for adaptation. 

A method using approximation filtering with a dynamically 
varied number of samples and weighting coefficients depending 
on the ECG signal slope has been proposed (CHRISTOV and 
DASKALOV, 1999). The results reported show adequate preser- 
vation of the QRS complex amplitudes and reduction in the 
EMG noise. The drawback is a possible slight widening of some 
QRS complexes. 

Several transform domain methods for suppression of 
unwanted signal components have been proposed in the litera- 
ture (LANDER and BERHANI, 1997; ACAR and KC)YMEN, 1999; 
PAUL et al., 2000). ACAR and K~SYMEN (1999) proposed to 
exploit the redundancy in a 12-lead ECG and to separate the 
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multichannel signals into two time-orthogonal sub-spaces (one 
containing the information signal and the other containing the 
unwanted components) by singular value decomposition (SVD). 
A similar idea of reducing the signal space by applying an SVD 
smoothing on a discrete cosine transform (DCT) matrix of the 
ECG signal appeared in Paul et al. (2000). The method works for 
a single-lead ECG recording and it has been compared with sub- 
optimum DCT domain Wiener filtering. The performance of the 
Wiener filtering for ensemble-averaged high-resolution ECGs 
has been extensively studied by LANDER and BERHANI (1997). 

An algorithm for ECG signal denoising in the wavelet domain 
was proposed by NIKOLAEV and GOTCHEV (1998). The signal 
was decomposed in a wavelet domain, and the coefficients were 
shrunk by applying a time- and frequency-dependent threshold. 
The approach preserved the amplitudes of the QRS complexes 
and considerably reduced the noise in the 'flat' TP area, but some 
artifacts could arise in the transient PQ and ST areas. The 
problem was partially avoided by applying wavelet domain 
Wiener filtering (NIKOLAEV and GOTCHEV, 2000) and denoising 
in the translation invariant wavelet domain (NIKOLAEV et al., 
2000), which led to a reduction in the oscillations around the 
QRS onset and offset. 

in the present work, we have extended the above-mentioned 
methods (NIKOLAEV and GOTCHEV, 2000; NIKOLAEV et al., 
2000) by embedding an inter-cycle decorrelation scheme as the 
first step of the denoising algorithm. Split and merge operators 
have been designed to form two-dimensional data by a beat- 
synchronous approach. The horizontal dimension represents the 
cycle interval, and the vertical one is formed by the successive 
cycles, further designated as 'channels'. The decorrelation trans- 
form redistributes the information between the channels, 
forming one 'most' important cycle-length channel and several 
'less but still important' supplementary channels. They all form 
the input for the next transform domain Wiener filtering. The 
experimental results obtained showed improved performance 
both in SNR and subjective visual evaluation. 

2 Method 

We consider the signal/noise mixture r formed of the 
informative ECG signal vector x and the EMG interference 
vector e 

r = x + e  r , x ,  e E R  N (1) 

Here, the EMG noise is assumed to be short-term stationary 
Gaussian noise. 

Our basic idea is to apply some transforms aimed at efficient 
signal decorrelation. Given well decorrelated data, an approx- 

imate Wiener filter, being optimum in the mean-squared error 
(MSE) sense, can be applied in the transform domain to suppress 
the undesired noise components (GHAEL et al., 1997). We 
recognise two types of signal correlation, namely inter-cycle 
and intra-cycle correlations. Our technique is oriented towards a 
rearrangement of the data in a way that helps to handle those 
correlations in a separate manner. 

The block diagram of the method is presented in Fig. 1, and 
the different modules are described below. 

2.1 Cycle splitting and alignment 

We establish a cycle-splitting operator B that forms two- 
dimensional data segments from M heart cycles with maximum 
L samples 

B ( , ' )  = y = 

s + n =  

':!i 
YM(1) 

Sl(1 --- 

' i i i  

LSM(1) - - -  

... yl(L) 

. . .  yM(L) 

sI(L) 
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+ 
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" ' "  /~I(L) 

- - -   M(L) 
( 2 )  

Here, L is the length of the longest cycle among the M successive 
cycles. 

Let us designate by QRSi the position of the R peak in the ith 
QRS in the signal x. The beginning of each cycle is calculated 
according to its position 

yi(a) = r (QRS  i - Lo) (3) 

where L0 = to Fs. The constant to represents the distance between 
the R-wave peak and the region in the beginning of the cycle 
where no heart activity could exist (in practice, we have set 
to = 200 ms); Fs is the sampling rate. The end of the cycle is 
taken with respect to the beginning of the next cycle 

Yi(JEND) = r(QRSi+I - Lo - 1) (4) 

To align the separated cycles, we concatenate to the end some 
number of zeros determined by the longest cycle {Yi(JEND) 
. . . y i ( L ) }  = {0}. Thus, we can obtain a two-dimensional 
matrix with successive cycles at each row, aligned by R peaks, 
and with some possible zeros at the end of shorter cycles. 

We have used a QRS detector based on signal rectifying, 
amplitude clipping and threshold comparison with the ampli- 
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Fig. 1 Block diagram o f  proposed method 
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tudes of the first derivative on the rectified and clipped signal 
(FRADEN and NEUMAN, 1980). This QRS detector has shown 
very good performance in the presence of EMG noise (FRIESEN 
et al., 1990). After finding the QRS positions, the operator B 
splits the signal into two-dimensional segments, each containing 
M = 8 aligned beats considered as different channels (see Fig. 2). 
Each segment overlaps the previous one by seven channels, 
meaning that the first two-dimensional segment contains the first 
Mcycles, the second segment contains the cycles 2 - M ÷  1 and 
so on. 

We can assume the noise to be stationary in every cycle of the 
signal, i.e. E Ln i n [ ]  = K i, n i being the ith row of the matrix n 
and K being the noise autocorrelation matrix. 

2.2 Inter-cycle decorrelation 

We apply a linear transform T1 on each of the columns ofy to 
decorrelate the information between the different signal beats 

z = T l y  = T l s  + T i n  (5) 

As the data are highly correlated column-wise, the DCT is a 
proper choice as a de-correlating transform (RAO and YIP, 1990). 
Fig. 2 shows the content of each row ofz after the DCT is applied 
to the columns ofy. it can be seen that the information about the 
signal is concentrated in the first row of z, as it contains the 
lowest-frequency components of the DCTs of each column and 
can be viewed as an averaged signal cycle. Hence, the noise 
variance there is already reduced by the factor w/M (JANSEN and 
BULTHEEL, 1999). The next plots, showing the remaining rows 
of z, contain information about the details in each cycle that are 
not presented in the first row ofz. The advantage is that we keep, 
not only the average component, but also the details with 
information about the local changes in each cycle. 

2.3 Intra-cycle decorrelation 

According to Fig. 2, the intra-cycle decorrelating transform/'2 
should have good time-localising capabilities to keep the 
localised details in each row ofz. The wavelet transform (WT) 
is a good choice 

U = T2 zT = Tz (T IS )  T ÷ T z ( T l n )  T (6) 

columns 

rows 1 

2 ~ 

4 ~  

5 " 

6 ~  

7 ~  

8 
i i t L i i i i 

Fig. 2 Eight channels of  matrix z ff?om top to bottom) obtained after 
DCT on columns o f  matrix y 
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2.4 Wiener f i l ter ing in transform domain 

The Wiener filter has been widely applied for noise suppression 
as it provides optimum signal estimation in the MSE sense 
(MERTINS, 1999). in general, it demands knowledge of the 
second-order statistics of the information signal and of the 
noise, represented by their corresponding correlation matrices 
(JAIN, 1989). The filtering manipulations can be simplified if the 
signal correlation matrix is diagonalised by a transform matrix 
formed by its eigenvectors, the so-called Karhunen-Loeve 
transform (KLT); for details, see JAIN (1989). 

Unfortunately, the KLT is signal-dependent and not compu- 
tationally acceptable, and hence, other linear transforms, i.e. 
near-optimum ones, have been investigated as approximates to 
the KLT, such as the DCT and WT (RAO and YIP, 1990; 
MALLAT, 1999). Choosing a transform that is near-optimum 
compared with the KLT, we can realise an approximate Wiener 
filtering (GHAEL et al., 1997). For this sub-optimum filtering, the 
filter coefficients in some transform domain are given by 

~2(i) 
hwi . . . .  (i) -- ~2(i) ÷ q2(i) (7) 

Here, ~(0 is the ith transform domain coefficient of the signal (ith 
spectral line), and t/(i) is the ith transform domain noise 
component. 

ha practice, we do not know the true signal and noise statistics 
nor their transform domain expansions. Hence, we have to deal 
with their estimates, i.e. to make an empirical transform-domain 
Wiener filtering (GHAEL et al., 1997). 

ha our case, we need signal and noise estimates when working 
in the T2 transform domain. 

2.4.1 Noise  estimate: Passing through the linear system T1, 
the noise remains stationary in each row i of z. Then it can be 
proven that, after the transform /'2, the resulting noise 
T z ( T l n )  T is stationary for each column and for each scale 
of the wavelet decomposition (JANSEN and BULTHEEL, 1999). 
We estimate the noise variance in each column i of u and for 
each time position k and scale positionj as 

a2(j)  = E[u2(j,  k -- 1)] 

= E[u2(j,  k)]; k E [1, 2%L1] U [2%L2, 2%L] (8) 

where L1 and L 2 are indexes, marking the regions where no 
coefficients corresponding to the QRS components are present. 

2.4.2 Filtering o f  the transform coeJficients: The one-tap 
transform-domain Wiener filter is established as follows, 
according to eqn 7: 

~2(j, k) 
HWF(i)(j, k) ~2(j, k) + a i (j) = ^2 • (9) 

Here, ~i are the transform coefficients of the pilot signal 
estimates for each row i of the transformed matrix z. They are 
obtained by applying preliminary wavelet shrinkage in the Tp 
wavelet domain (NIKOLAEV and GOTCHEV, 2000) 

V i = T 2 Tp  11~HT(i ) Tp (Zi) T (1 O) 

Here, zi is the ith row of the matrix z, and HHT(i ) are diagonal 
matrices performing hard thresholding 

HHT(i)(j) = ~iai(j) (11) 

~i are empirically found constants (NIKOLAEV and GOTCHEV, 
1998). As suggested by CHOI and BARANIUK (1998), Tp should 
be different from/'2, and, for the case of ECG signals, it was 
found that the most localised wavelet bases (e.g. Daubechies4 or 
Haar) give the best results (NIKOLAEV and GOTCHEV, 2000). 
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(We have adopted the wavelet notations used in Wavelab 
toolbox, see BUCKHEIT et al. (1995).) The effects of  the 
shrinkage operation HwF (ripples around the PQ and ST areas) 
can be reduced by applying a translation-invariant wavelet 
transform (TIWT) for /'2 (NIKOLAEV et al., 2000). Fig. 3 
represents Wiener filtering in the translation-invariant wavelet 
domain for each channel ofz. 

For the pilot signal estimate stage (Tp transform), we have 
used wavelet decomposition with a Daubechies4 wavelet invol- 
ving a hard-threshold shrinkage scheme. For the Wiener filtering 
stage (T2-transform) we have applied a Symmlet4 wavelet. 

The final signal estimate is obtained by applying the inverse 
transforms T2 -1, T71 and the merging operator B -1 

Sc = B 1 T l l ( T z l H w F u ) T  (12) 

2.5 Parameters f o r  assessment o f  the results 

To evaluate quantitatively the proposed method, we have 
examined several measures on the denoising results. We have 
measured the following parameters: 

(i) signal-to-noise ratio SNR, calculated as 

1 S TD(x) 
S N R  = 20 g)~--~--_&) (13) 

(ii) maximum relative error in the QRS a r e a s  Emean averaged 
over all beats, calculated as 

I max(xk - xk) - min(xk - ~)l 
E k = 100 (14) 

I max(xk) - min(~k)l 

where 

x k = {x(QRS k - A), x ( Q R S  k - A + 1) . . . .  

x(QRSk+l - A - 1)} 

1 /( 
E . . . . .  = - -  ~ E k (15) 

Kk=l  

(iii) maximum relative error in QRS areas Emax 

E .... ---- rnkax(Ek) k ---- 1 . . . .  K (16) 

We have set A = 20, which corresponds to a 50 ms interval. 
We evaluate the amplitude measures, comparing them with 

the initial maximum relative amplitude ratio of  the noise and the 
clean signal in the QRS a r e a s  Einit 

E i n i t  : E . . . . .  12=r (17) 

3 Experimental results 

To test the proposed method, we have used three ECGs repre- 
senting different heart pathologies and recorded from different 
patients. The records are from the standard lead ii and are 
referred to as r0002, r0138 and r0352. The signals are 150 s 
long and sampled at 400 Hz, with a resolution of 4.88 ~tV bit -1 . 
The EMG noise has been recorded from two ECG electrodes 
placed on the forearm during sustained voluntary effort 
(CHRISTOV and DASKALOV, 1999). As the EMG signal was 
shorter than the ECG records, we concatenated several EMG 
segments to reach the ECG recordings' length. Then, the noise 
signal was filtered by a high-pass filter, with cutoff frequency of 
1 Hz, to avoid the influence of baseline drift. Fig. 4 shows the 
spectrum of the EMG noise thus obtained. 

In our experimental setup, we have mixed the 'clean' (noise- 
free) ECG signals with the EMG noise, achieving SNRs of 10, 
15 and 20 dB. This is usually the case for ECG recordings under 
physical exercise conditions (the so-called stress-test ECG). 

The results ofdenoising a part of  the signal r0138 are shown in 
Fig. 5. The traces, from top to bottom, represent the signal-noise 
mixture, the clean signal, the signal after denoising and the 
residual (difference between clean and denoised signal). The 
initial SNR was set at 10 dB. 

Fig. 6 shows the results after the denoising of a part of  the 
signal r0352, a normal signal with sharp Q and R peaks. The 
traces are the same as in Fig. 5, and the initial SNR is 10 dB. 

For comparison, we have suppressed the noise in the same 
signals by applying a fifth-order bi-directional low-pass 
Butterworth filter with cutoff frequency of 35Hz 
(SUBCOMMITTEE, 1967). The results for the same part of  the 
signal r0352 as in Fig. 6 are shown in Fig. 7. 

Some quantitative results using the measures defined in 
Section 2.5 are shown in Table 1 for the proposed method and 
in Table 2 for the low-pass filtering. 

4 Discussion 

In our experiments we have tried to use ECG signals with 
some typical phenomena to check the applicability of  the 
proposed denoising method. For example, in the signal in 
Fig. 5, the important detail, masked by the EMG artifact, is the 
slight ST depression. The noise in the important ST segment is 
completely removed, and its change can be easily detected. 
Some of the shapes of  the extrasystoles are slightly distorted, but 
the effect is of  no diagnostic significance. 

The signal in Fig. 6 is characterised by very sharp Q and R 
peaks and a low-amplitude T-wave. it can be seen from the 

Fig. 3 
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F i g .  5 Denoising results" for signal r0138 with proposed method." 
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F i g .  7 Denoising results" for signal r0352 with fifth-order Butter- 
worth filtering. (a)-(d) as in Fig. 5 

Figure that the noise is reduced and, at the same time, the 
amplitudes of  the sharp Q- and R-waves are preserved. The low- 
amplitude T-wave, completely masked in the first trace, can be 
detected in the denoised signal, and the ST-segment can be 
easily assessed, in Fig. 7, the traditional low-pass filter almost 
completely failed, significantly reducing the sharp Q- and 
R-waves and moderately suppressing the noise in the 'flat '  
signal intervals. The QRS offset, the T-wave onset and the ST 
amplitude cannot be accurately detected. 

A limitation of  the proposed method is the limited ability to 
suppress low-frequency noise components. This effect can be 
observed in Figs 5 and 6, where some periodical artifacts are 
present in the denoised signals. The spectrum of  these artifacts is 
concentrated in the 8-12 Hz band, which coincides with the peak 
at about 10Hz in the noise spectrum (Fig. 4). The method 
limitation is due to the fact that the wavelet domain Wiener 
filtering procedure processes only the first four wavelet scales 
(the highest-frequency ones, above 12.5 Hz), and the fifth scale 
(below 12.5 Hz) is left unchanged. We did this with the aim not 
to disturb the low-frequency content o f  the P- and T-waves. 
Making this compromise, we obviously left unchanged the noise 
components below 12.5 Hz. 
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Table 1 Objective measures" o f  denoising results" using proposed method 

r00022 r0138 r0352 

Initial SNR, dB SNR, dB El.it, % Em~, % Em . . . .  % SNR, dB Ei.it, % E ~ ,  % E~ . . . .  % SNR, dB E#,it, % E ~ ,  % E~ . . . .  % 

10 22.5 35.0 9.0 7.4 20.2 23.3 12.7 10.4 21.3 31.0 16.7 9.0 
15 25.5 20.8 8.9 6.3 22.3 13.8 10.8 8.2 23.4 18.4 12.6 7.9 
20 27.8 11.7 7.1 5.1 24.0 7.8 9.0 7.1 24.5 10.3 8.9 6.4 

Table 2 Objective measures" o f  denoising results" obtained by low-pass filtering with bi-directional fifth-order Butterworth filter 

r00022 r0138 r0352 

Initial SNR, dB SNR, dB Ei,it, % Emax, % Em . . . .  % SNR, dB Ei,it, % Emax, % Em . . . .  % SNR, dB Ei, it, % Em~, % Em . . . .  % 

10 17.0 35.0 14.7 10.2 18.1 23.3 20.8 10.2 15.5 31.0 24.0 18.9 
15 21.7 20.8 11.7 8.2 22.2 13.8 12.2 7.3 17.3 18.4 22.0 18.6 
20 25.0 11.7 10.0 7.6 26.1 7.8 6.1 6.1 18.2 10.3 20.7 18.4 

Finally, to prove that the above-mentioned periodical artifacts 
are noise components only and are not introduced by the 
proposed procedure, we performed the following experiment: 
we filtered the EMG noise by a high-pass filter with cutoff 
frequency of  20 Hz and then added it to the clean ECG signal. 
Performing our denoising procedure on this new mixture, we 
observed no periodical components in the denoised signal. 

As far as the quantitative results are concerned, the SNR was 
improved by more than 10 dB, and the mean relative amplitude 
error in the QRS Emean was reduced by more than three times for 
r0002 and r0352 and twice for r0138. However, E .. . .  remains 
relatively high for r0138 and r0352, which means that some QRS 
complexes were more corrupted by noise (and, hence, not so 
well denoised). 

The results for lower noise levels (initial SNR = 15 and 20 
dB) are quite acceptable as well, although the advantages o f  the 
method are not so well emphasised in these cases and they are 
comparable with bi-directional filtering by a fifth-order low-pass 
Butterworth filter. For those noise levels, the low-pass filtering 
o f  the signal r0138 seems to perform better than the proposed 
algorithm. This is owing to the fact that the proposed procedure 
assumes that the successive beats are highly correlated. The 
presence o f  extrasystoles makes this assumption less adequate. 
The algorithm can recognise the extrasystoles as normal QRS 
complexes or not, but anyway, after the rearrangement, the two- 
dimensional data in matrix y are not as highly correlated column- 
wise, and the algorithm fails to concentrate the signal energy 
mostly into the first row of  the matrix z (see eqn 5). As a result, 
the noise suppression thresholds ei are not as well adapted to the 
signal energy distribution, which results in some increased 
distortion. On the other hand, ventricular extrasystoles have 
lower-frequency content than normal QRS complexes or supra- 
ventricular extrasystoles, and the low-pass filtering for those 
areas results in lower distortions (see Table 2). 

5 Conclusions 

By establishing the inter-cycle and intra-cycle processing in 
separate procedures, we can choose the most appropriate 
decorrelating decompositions for each stage. Thus, the DCT 
worked quite well on the aligned beats, producing channel 
signals that were very susceptible to the subsequent, adequately 
designed wavelet domain Wiener filtering. As a consequence, 
we achieved very effective suppression of  the EMG noise and, at 
the same time, good preservation o f  the shapes and amplitudes o f  
diagnostically important ECG waves. The method has shown its 
efficiency, especially for signals o f  high-frequency content and 
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ones contaminated by high-amplitude noise, and the perform- 
ance for low noise levels is comparable with simpler methods. 
A drawback could be the requirement for an efficient and 
fast-operating QRS detector. Otherwise, the decompositions 
proposed are fast, and, in the second stage, the data channels 
are processed separately, which is useful for parallel implemen- 
tation in an ECG recording system. 
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