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ABSTRACT variability or detail level of the labels, and thus transfioan-
notations by automatically re-labeling the data to a caests
format.

This paper studies the relationship between the audio sim-
ilarity and semantic similarity of annotated data. The gsal
to determine whether it is possible to automatically reslab
audio database by processing audio and semantic informa-
n available in order to discover a different set of latzaisl
associate them to groups of sounds. This would provide a
Rethod to reorganize any publicly available database to the
desired level of detail. Our focus is on the area of soundteven
detection, and concentrates on one specific database.
Sound event detection is part of computational auditory
ne analysis (CASA). This area has produced applications
to detecting significant sound events in movie soundtracks

Index Terms— sound events, audio similarity, semantic [2], sports videos [3], surveillance recordings [4, 5], Cfi6]
similarity and other everyday environments [7, 8]. Unfortunately the
databases used in these studies are not shared between teams
and therefore the results are not always easy to compare. An
effort to create a public database for sound event detection
H]as resulted in the DARES database [9], containing record-

Databases are a significant aspect in any research prOblemgs from everyday environments and a variety of labels. The
data used in training and testing of algorithms must be com- e . .
g 9 g uthors note the difficulty of choosing the level of detail in

rehensive, general enough to ensure that the develo al X . i
P g 9 ped abeling sound events: too general labels will lose theildeta

rithm generalizes well, and of satisfactory detail to thelpr ; .
lem at hand. When collecting data for a specific applicationtoo detailed labels will fragment the classes and render the
tatabase unusable.

the resulting annotation serves the purpose of the plarated r Aut fic t dation based dio similarit
search but comes with a cost of large collection efforts. On utomatic tag recommendation based on audio simiarity

the other hand, user contributed data is publicly available was presented by Martinez et al. [10] to overcome some of

annotations usually contain homonyms (words with multiplethe problems related to collaborative tagging. In [10]stéy

meanings), synonyms (different words with the same mea an audio file were suggested based on a kNN classifier that se-

ing), plurals, etc. This brings up the question how to anieota ected the closest neighbors based on audio §imilarity. _drrum
a database consistently both in detailed and meta dataslevel assessment was used to evaluate the perceived quality of the

that it is useful for a variety of tasks and for many researc andidate tags and in 77% of the sounds used, the annotations
teams, rather than oriented to a certain narrow applicatiobgave been successfully extended with the proposed tags. The

[1]. Evidently there is a need for methods for refining themethOd was proposed forgnhancing the semantic annotations
annotations automatically, as this would solve the prolém of scarcely tagged audio files. L
In the present study we propose a study based on objective
This work was financially supported by Academy of Finland urtie ~ and automatic measures. The study is based on the assump-
grants 136209 (Paloaki) and 251170 (Mesaros) Finnish Centre of Excel- tion that acoustically similar sound events are annotatiga w

lence Program (2012-2017) and by TEKES FuNeSoMo projedbiif¥ki). ; . ; ; _
This work was supported in part by the IST Programme of the Eaanp semantically similar terms. These assumptions will be ver

Community, under the PASCAL2 Network of Excellence, IST-2a1886.  111€d by evaluating the labels of acoustically similar egent
This publication only reflects the authors’ views (Paiki). using an objective semantic similarity measure insteadsef u

A common problem of freely annotated or user con-
tributed audio databases is the high variability of the Ilsbe
related to homonyms, synonyms, plurals, etc. Automaticall
re-labeling audio data based on audio similarity couldradfe
solution to this problem. This paper studies the relatigmsh a
between audio and labels in a sound event database, by evag
uating semantic similarity of labels of acoustically sianil
sound event instances. The assumption behind the study
that acoustically similar events are annotated with seimant
cally similar labels. Indeed, for 43% of the tested datarghe
was at least one in ten acoustically nearest neighbors gavin
synonym as label, while the closest related term is on aeerag, .
one level higher or lower in the semantic hierarchy.

1. INTRODUCTION




ing judgments of human listeners as Martinez et. al. [10]. eventinstance extraction based on annotations

We calculate the semantic similarity between the label ef th | [ Auo fle N
test audio example (ground truth label) and the labels of th ‘Audf;"fﬁfzﬁ'” —
acoustically closest neighbors, to assess the possibility- Audio;uei : — i |
labeling data based on the labels of neighbors. _Q_ Cilis
: — | J J o o
v v v v '
2. SYSTE M OVERV' EW Feature extraction and model estimation

DA o

This study consists of linking the two sides of a database:

the audio similarity of sound event examples and the seman-  Fig. 1. Block diagram of audio processing chain
tic similarity of the labels they are annotated with. Audio

similarity can be measured using objective measures based.

on distance metrics between frame-based representations eoxISt for the divergence [15]. A computationally efficient

the signals or between statistical models of the signalk [11\?vrr)irt)tre0r)1(llrjns?r:lort1hlz ;gﬁmlgg'%?ltff:I(I)bbicel:/:et;glnersgl\aerge?e
For calculating audio similarity between sound events, wi 9 P quence

will model the event instances using Gaussian mixture nsde engthV that were used to train the distributipfiz|),,).

(GMM), use Kullback Leibler divergence as distance metric 1 p(Xn|An)

between event-GMMs and finally will judge similarity using Demp(p(x|An)[[p(x[Am)) = Nlogm-

a k nearest neighbors (kNN) approach. Piinldm
Semantic similarity is measured using tools from naturalThe empirical symmetric Kullback-Leibler Divergence is

language processing [12] and WordNet [13]. Labels of soungherefore calculated as:

events usually describe the source of the sound, be it an ob-

ject, action, or both (car horn, knocking, chair squeaking) E(X,, X,,) = llogM + ilogM. (3)

Because there is an infinite amount of sound sources, pro- N "p(XalAm) M7 p(Xm|An)

ducing a variety of sounds, labeling these sounds is usaally The distance&(X,,, X,), collected into a similarity ma-

matter of personal life experience and perception [14]. trix .S, can be used directly for clustering or classification. We
o use a dimensionality reduction method, by randomly select-
2.1. Audio similarity ing a number of; sound events from the data set that are used

In order to obtain models for each individually labeled sun &S @nchor points indexed lay Then we construcg dimen-
onal feature vectorg, for each sound evemtby measuring

event in the database, we extracted audio segments accorio"n?
ing to the annotations, between the annotated start time aIJiBe distance(X,,, X,) from the sound event to the anchor

end time for each labeled event. Each extracted segment re (_)lnt_s [_16]_‘ This t_ranslat_es |_nt0 usw_a;grandom colu_m_ns of
resents a sound event instance, for which 20 mel frequend}f Similarity matrixs, which in practice means avoiding the

cepstral coefficients (MFCC) were calculated in 40 bandsgalculation of the full similarity matrix. In other wordsaeh

with 20 ms length window and 50% overlap. Based on th&vent instance will be characterized by a feature vector con

static, delta and acceleration coefficients, a GMM with 5.com [@ining the KL divergence between its GMM and a number of

ponents was estimated and the distances between each t ther event instance GMMs. The nearest neighbors will be
GMMs were calculated. These steps are illustrated in Fig. 1¢@lculated based on these feature vectors.

The similarity between sound events is characterized us-
ing the empirical symmetric Kullback Leibler divergencd]1 2.2. Semantic similarity
between event GMMs. The Kullback Leibler divergence isS
a measure of difference between two distributigiis|\,,)
and p(z|\,,), where )\, and )\,, are GMMs modeling two
sequences of features,, and X,,, corresponding to sound
eventsn andm.

)

emantic similarity calculations are based on WordNet.[13]
WordNet is a lexical database for English language that
groups words into sets of synonyms called synsets. The
relationships between synsets are represented through hi-
erarchies, separately for differeplarts of speechnouns,
p(z|An) verbs, adjectives, adverbs). For nouns, the relationships
D(p(z[An)lIp(z[Am)) = / P($|)\n)logmdiﬂ (1) are: hypemym/hyponym ("dog” is a type of “canine”),
" meronym/holonym (“finger” is part of "hand”), coordinate
In order to obtain a distance measure, the divergence i®rms (that share a hypernym — "dog” and "wolf” are both
symmetrized by adding the ter®(p(x|\.,)||p(z|A,)). The  "canine”).
symmetric divergence can be solved in a closed form when These relationships can be used for example to group co-
p(z|A\,) andp(z|\,,,) are modeled using a single Gaussianordinate terms from labels into more general concepts based
distribution. For multiple Gaussians, several approxior&e on their common hypernym or to link terms to each other



dog, domestic dog, Canis familiaris carnivore

—» canine, canid feline, felid canine, canid
->» carnivore v v
—» placental, placental mammal, eutherian, eutherian mammal cat dog
—>» mammal
—> vertebrate, craniate Fig. 3. The path between the most common meaning of "cat”
—» chordate and the most common meaning of "dog” in WordNet
—>» animal, animate being, beast, brute, creature, fauna
multi-word expressions with a certain meaning that caneot b
Fig. 2. WordNet hierarchy for "dog” described by the component words separately. In such cases,
when the collocation was found in WordNet, it was kept as
such.

based on their semantic relationships. An example of Word-

Net hierarchy is presented in Figure 2. Words at the same

level are synonyms, each lower level is a type of the upper:

dog” IS-A "canine” IS-A carnivore ar_1d so on. Verbs are 3 1. Database
also grouped based on IS-A relationships.

Measures of similarity use information from this IS-A hi- The database used in this study is DARES [9], recorded with
erarchy, to quantify how much a concept A is like (or is sim-focus on everyday sound events research. The database pro-
ilar to) a concept B. Similarity measures can be calculatedides detailed annotation that describes the source tlaat pr
only between pairs of nouns or pairs of verbs — they do notluced the sound. Each recording is accompanied by a de-
cross the part of speech boundaries. scription of the content and the location, and timed annota-

There are a number of similarity measures based on thgons of the sound sources present in the signal.
path length between a pair of concepts [17]. We choose to The database consists of 123 recordings of length 60
use a measure namedth similarity, that is calculated as the seconds. The annotations consist of a label in English, and
inverse of the shortest path between the two compared comhe starting and end time. The database contains 765 unique
cepts. For example, considering the most common meaningabels, containing some duplicates (title case), speliing
for nouns “cat” and "dog” presented in Figure 3, the path-rors and sometimes lengthy and complex descriptions. In
based similarity between them is 0.2 (inverse of the path cortotal there are 3214 annotated event instances. More eketail
taining 5 nodes). The value of the path similarity is boundedtatistics about the frequency of these labels are precsémte
between 0 (not the same part of speech) and 1 (synonyms).Table 1.

In this study we deal with labels that can contain mul-
tiple concepts, therefore we extend the abpagh similar- no.of labels| 429 | 122 | 94 | 20 3
ity measure by considering each meaning of each concept. | frequency | 1 | 2 | >5| >20 | >100

For consistency we will refer to it throughout this paper-sim )
ply assemantic similarity For example, the noun "cat” has Table 1. Number of annotated labels and their frequency: out

eight meanings (a type of whip, among others), while the®f 765 unique labels, only 20 appear at least 20 times.

noun "dog” has seven meanings (hot dog, among others). The

shortest path is evaluated from each meaning of "cat” to each  Simplification of the labels by extracting the nouns results
meaning of "dog”, resulting in 56 values. Out of these, thein @ number of 443 unique labels containing combinations of
maximum value is chosen, representing the closest possib887 unique nouns. Examples of the results of this process-
meanings of the two compared words. When the label conng are shown in Table 2. Labels containing no nouns re-
tains more words, this process is done for each meaning @ult in empty strings; this does not change the applicgtolit
each word, and the maximum value from the entire set of rethe method, it simply reduces the number of sound events for
sults is considered as the semantic similarity betweentbe t which the similarity is calculated. From 3214 event ins&s)c
labels. only 2881 are left to be evaluated for audio and semantic simi
larity, as 333 out of 3214 do not contain nouns. The frequency
of the simplified labels is presented in Table 3.

3. EVALUATION

2.3. Labels processing

A simplification of the labels is needed for calculating se-
mantic similarities, as the chosen similarity measure chas
cross the part of speech boundaries and is not directly-appliThe relationship between audio similarity and semantic sim
cable to labels composed of multiple words. We reduce théarity is evaluated for each event instance individualior
labels to the noun(s) that it contains, converted to thecbasifinding similar audio events for a given test event, kheear-
form by stemming. In some cases the labels are collocationsest neighbors are sought basedjaiimensional audio feature

3.2. Experimental results



original label simplified label | explanation neighborhood is 0.51(two nodes). This means that on average
washing machine washing machine collocation each event has at least one of ten acoustically closest-neigh
putting lid on pan| lid, pan nouns bors having as label a direct hyponym or hypernym of its own
scratching (none) no nouns label.

Table 2. Examples of labels processing outcome 4 DISCUSSION

no.of labels| 198 | 68 | 88 29 4

Based on the presented evidence, we observe that in many
frequency 1 2 | >5| >20| >100

cases the acoustically similar neighbors had semantisiatly

ilar labels. It is reasonable to say that re-labeling a dielyr
annotated sound events according to their acousticalliyesim
neighbors would provide acceptable outcome for databases
like DARES, most probably resulting in a more compact set

vectorsf,. Then the semantic similarity between the groundOf new labels. In 43% of the cases there is at least one of ten
truth (simplified) label of the tested event and the (simgdiji nearest neighbors Wh'c_h -ha.s the same label or a synonym.
labels of thesé neighbors is calculated. Different values for Overall the semantic similarity was on average 0.5, which
k andq were used in the experiments. Table 4 presents thE1€ans a distance of two nodes. In WordNet, the synsets that
results, average percentage of event labels amongigh- have a distance of two nodes are direct hypo/hypernyms. This
bors that have a synonym as a label, and averaged semaneans that the terms used in the labels are very close to each
similarity between the label of the test event and semahytica ©ther. and the re-labeling would on average result in a term
closest label among theneighbors. Averages are calculated which is one level higher or lower In semantic hierarchy.
over all the events in the database . Based on the results presented in Table 4, we can observe
A baseline value for this system is the semantic similaritythat when more neighbors are evaluated, or a higher number

between the label of the tested sound event and the label 8f 2nCNOrS is chosen, the cha.nce :‘)or finding synonym labels
the acoustically closest event. Usipng-= 10 randomly chosen n thg ?ef;ok/)ofrhoodl |slg|ghgrh;17/o f?]r 20 n_elghlk())ors cr(])m—
anchors, the acoustically closest neighbor has the sareé laParecd to o for only 1Uneighbors when using 10 anchors,

0, 0,
as the tested event or a synonym term in 10% of the cases. Tﬁ /IO fc;.r Solgnchors f[:ompﬁlr)ed tOH43 % for tﬁo anchors, when
average semantic similarity between the label of the testtev evaluating 10 hearest neighbors. HOWeverine average seman

and the label of the closest neighbor is 0.25, which means Otlilc similarity of the closes_t label from this neig_hborhooum
average 4 nodes including the tested concepts. not change that much with the number of neighbors. For the

We calculate the average semantic similarity of the (Sim_enwsmned application, of re-labeling data, we considiet t

plified) ground truth label to the labels of tihe= 10 acous- !t 1S |mportapt (o use moderate!y small number of neighbors,
in order to find a good acoustic match as well as a closely

tically closest audio segments, in line with [10] where tags elated label. Instead of extending the annotations asij [1
were recommended if found to characterize at least 4 of 1 is system Would be used in a different way, by imposing a
nearest neighbors. The semantic similarity within a suétab set of labels and re-labeling the diversely anr;otated e
number of nearest neighbors could be used as an objecti\{ﬁe chosen reduced set of labels

measure for recommending labels for sound events, and the '

common label could be recommended for acoustically sim-

ilar sound events. When usirlg = 10 nearest neighbors, 5. CONCLUSIONS

43% of the points have at least one out of the 10 acousticall*

closest examples with the same or synonym label. The avef-"iS Paper presented a study of the semantic similarity be-
age semantic similarity of the best semantic match withim th tween the labels of a diversely annotated database withdsoun

event examples. We verified the assumption that acousticall
similar events are labeled with semantically similar teramsl

Table 3. Number of simplified labels and their frequency: out
of 443 labels, 29 appear at least 20 times.

q k averaged semantic  conclude that it is a valid assumption. In most cases there
anchors| neighbors| synonyms similarity was at least one in ten acoustically closest neighbors #tht h
10 1 10 % 0.25 a synonym label, and on average all had a neighbor which is
10 10 43% 0.51 one level of detail higher or lower in the semantic hierarchy
10 20 47% 0.53 Planned future work includes developing strategies for se-
50 10 48% 0.58 lecting new labels. For each sound event a new label could be

chosen based on the combined audio and semantic similarity.

Table 4. Evaluation results using anchors and: acousti-  Such a system also needs a mechanism for discarding sound
cally closest neighbors: synonyms and best semantic matevent examples, and methods for dealing with verbs and com-

between neighbors, averaged over the database binations of verbs and nouns.
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