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Abstract

Vision is the most important source of information for humans and the acquisition
of images has numerous applications in science, engineering, medicine and also in
consumer devices such as cameras, mobile phones, etc. Digital image acquisition,
in particular, has become the most common means of producing images; it has
almost fully replaced image acquisition on …lm. A typical digital acquisition device
contains lens and a solid-state image sensor. The scene radiance is focused by the
lens to the sensor, which integrates the irradiance at its surface during the exposure
time and produces a 2-D array of digital values (i.e. a raw image). The lens and the
sensor introduce a variety of degradations such as geometrical distortions, blur, and
noise. In addition to inherent technological factors that cause these degradations,
there are external factors such as scene illumination and a motion within the scene
or between the scene and the lens. In order to obtain images that can be visualized,
raw images typically undergo some image processing such as denoising, color-…lter
array interpolation (demosaicking), enhancement (sharpening), color correction,
and white balancing.
This thesis deals with the problems of denoising, deblurring, and enhancement

of images and video. We propose a particular …ltering algorithm, called BM3D, as
the basic tool for approaching these problems. Among the multitude of existing
…ltering algorithms, BM3D is the …rst to exploit simultaneously:

² sparse transform-domain representations (i.e. a transform spectrum charac-
terized by few high-magnitude coe¢cients)

² nonlocal image modeling (manifested by self-similarity between image sub-
sets).

We show that the BM3D …lter not only outperforms works that are based on either
one of the above two approaches but is currently one of the best image-denoising
methods. The main goals of this thesis are to present and study the BM3D …lter
and to show that denoising is a fundamental tool in image processing, which can
be applied to various image processing problems. We accomplish these goals by
…rst studying the BM3D …lter and some of its extensions and then presenting its
application to:

² image deblurring,

² video denoising,
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² image sharpening,

² raw-image denoising,

² RGB-image denoising.
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Chapter 1

Introduction

1.1 Background and motivation

Digital image acquisition is becoming increasingly widespread, evidenced by a con-
stant growth in the production of image sensors. About 2.6 billion [Gro08] image
sensors were sold in year 2008. In addition to traditional applications in digital
cameras, image sensors …nd a wide range of applications in devices used in medi-
cine, automation, astronomy, military and automotive industries, and increasingly
in communication devices such as mobile phones [Pub09] which alone consumed
the largest portion of all manufactured image sensors in year 2008.

The acquisition of a digital image (i.e. a 2-D array of numbers) from a physical
scene is a process [The95, RSYD05, KWCL06] that typically involves lens and a
solid-state image sensor. The scene radiance is focused by the lens to the sensor,
which is a 2-D array of optoelectronic semiconductor elements (possibly covered
by microlens array and a color-…lter array). During the exposure, each element
of the array absorbs photons, which (if their energy is high enough) generate
electrons and these electrons (or electrical charge) are accumulated. Subsequently,
the accumulated electrical charge is converted to voltage, ampli…ed, and converted
to a digital number. The digital image coming from a sensor is referred to as raw
image throughout this thesis. Image acquisition is inevitably an imperfect process
and raw images contain a plethora of degradations among which are various types
of noise (illustrated in Fig. 1.1), blur, and geometrical distortions. In addition,
a raw image typically cannot be directly visualized due to, e.g., application of
CFA and uncalibrated color response. Therefore, digital postprocessing [RSYD05]
is applied on a raw image in order to correct the degradations and to produce
an image that corresponds to the physical scene and is suitable for visualization.
Some typical postprocessing operations (illustrated in Figure 1.2) are: denoising,
color-…lter array interpolation, enhancement (sharpening, contrast improvement,
etc.), color correction, white balancing, and correction of lens distortions.

1



2 CHAPTER 1. INTRODUCTION

Original image Noise Denoised image

¡ =

¡ =

Figure 1.1: Illustration of images distored by noise. The …ltered images are ob-
tained after using the denoising algorithm that we discuss in Section 5.2. The
original images are fragments of 5 MPix images taken with Nokia N95 mobile
phone.

1.2 Objectives and scope of the research

The work done for this thesis is a contribution to image processing in general,
and to image denoising and enhancement in particular. The structure of the
presentation is brie‡y described below and is also illustrated in Fig. 1.3.

² First, we present and study a novel grayscale-image denoising …lter, termed
BM3D …lter, and present the scienti…c background of works that it is related
to.

² Second, we study various applications of the BM3D …lter to other image-
processing problems, including:

– video denoising,

– denoising of raw sensor images,

– denoising RGB images

– non-blind image deblurring

– image sharpening

By including the above applications of the BM3D, we aim to show that image
denoising is a fundamental tool in image processing, which can be applied to solve
other (often more practical) image processing problems.
In order to represent image structures underlying the noise as sparsely as possi-

ble, the BM3D …lter brings together two groups of existing …lters — nonlocal …lters
and transform-domain …lters. We use the term sparse representation throughout
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Figure 1.2: Simpli…ed ‡owchart of a typical image-acquisition process and of some
common postprocessing operations performed on raw images. Note: the particu-
lar order of most of the postprocessing operations may vary; e.g., denoising can
be performed either on a raw image or on a RGB image (obtained after CFA
demosaicking).

this work to denote a linear-transform (e.g., DCT, DFT, etc.) representation char-
acterized by having few high-magnitude coe¢cients and plenty of low-magnitude
coe¢cients. This term is a synonym for transform-domain energy compaction and
transform-domain decorrelation, both of which are commonly used terms in image
processing and in image coding, in particular. By exploiting sparse image repre-
sentations, the BM3D …lter is shown to be highly e¤ective for denoising of additive
white Gaussian noise (AWGN).
The second main goal of this work is to show how the BM3D …lter can be ap-

plied to solve various image-processing problems which are more practical than the
denoising of AWGN. In particular, we address some of the standard postprocessing
operations performed in digital image-acquisition devices. These postprocessing
applications include denoising of raw sensor data, sharpening, and deblurring. In
addition, we consider the application of the BM3D …lter to video denoising and
to denoising of color RGB images. A peculiarity of all these applications is that
they inherit the e¤ectiveness of the BM3D …lter and produce results that are
competitive with the state-of-the-art.

1.2.1 Link to publications

It is important to give an explicit link between the eight publications assembled
in this thesis and the particular parts where they are introduced. Publications
[P1],[P2],[P7], and [P8] are considered in Chapter 4; they present the BM3D image-
denoising …lter and its extensions, i.e. the main contribution of this work. The very
…rst work on image denoising based on collaborative 3-D …ltering and grouping
was done in [P1], which can be considered as a preliminary version of the BM3D
…lter. Subsequently, the BM3D …lter was developed in the full-length article [P2].
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Figure 1.3: The main contributions of the thesis with links to their corresponding
sections.

Extension of the BM3D …lter to adaptive-shape neighborhoods was proposed in
[P7], which is introduced in Section 4.5.1. Further extension of the BM3D to
shape-adaptive PCA was developed in [P8], which is introduced in Section 4.5.2.
Publications [P6],[P5],[P4], and [P3] consider various applications of the BM3D

…lter and form the basis of Chapter 5. In particular, the image deblurring method
from [P6] is considered in Section 5.4, the joint sharpening and denoising of images
from [P5] is given in Section 5.5, the video denoising …lter developed in [P4] is
considered in Section 5.1, and the RGB-image denoising from [P3] is presented in
Section 5.3.

1.3 Thesis outline

Chapter 2 contains preliminaries about statistics of natural images and about the
image-noise models considered in this work. In particular, prior knowledge of
natural-image statistics is of paramount importance for understanding how and
why any image denoising method works. A somewhat brief introduction of the
otherwise vast …eld of image denoising is given in Chapter 3. In particular, we
consider a rough classi…cation into spatial- and transform-domain …lters. The
main contribution of this thesis, the BM3D …lter, is presented in Chapter 4, which
comes as a logical continuation of the introduction. The application of the BM3D
…lter to various practical image processing problems is considered in Chapter 5.
Illustration of how these contributions are structured is given in Fig. 1.3.



Chapter 2

Preliminaries:
Natural-Image Statistics and
Image Noise Models

Proper understanding of the image-restoration problem (i.e. properties of both
image scenes and degradations) is an important step towards its solution. There-
fore, in the sequel of this chapter we present the following relevant preliminary
information:

² a brief overview of some important developments in the …eld of natural-image
statistics (Section 2.1) and

² the considered image noise models and links to applications that they are
used in (Section 2.2).

2.1 Natural-image statistics

Natural images contain redundant information. This claim is implicitly or explic-
itly assumed in any image processing application. Image coding and compression,
in particular, almost entirely depend on image redundancies to reduce the bit size
of image representation. Not surprisingly, all image restoration methods are also
based on implicit or explicit assumptions of the true images that are underlying
the degradations. Thus, knowledge of natural-image statistics is fundamental not
only for understanding how the image denoising method proposed in this thesis
works but also for understanding any other image restoration method.
The link between natural-image statistics and the human visual system has

been established long ago [Bar61]. Vision, the most important source of informa-
tion to humans, has evolved for millions of years to accommodate to the natural
visual environment. It is agreed upon [Bar61, Bar72] that the visual processing in
the brain has evolved to minimize the redundancy in representing natural images
in order to achieve metabolic e¢ciency, as well as representational and learning

5



6 CHAPTER 2. NATURAL-IMAGE STATISTICS AND NOISE MODELS

e¢ciencies according to a more recent work [GF07]. Therefore, the modeling of
natural images is traditionally studied in the context of image formation in the
brain. However, to this date, there are no ground-truth models of either natural
images or the human vision — due to their very high complexity. However, there
is a vast amount of work on these topics and we shall follow some of the develop-
ments and draw some important conclusions, to which we shall refer later in the
thesis in the context of image restoration. Before we proceed on this topic, we
brie‡y introduce the basics of the visual formation in the brain. The light incident
on the photoreceptors in the retina is converted to electrical impulses, processed,
and then fed to the ganglion cells whose long axons (i.e. outputs) form the optic
nerve which is capable of transmitting impulses over relatively long distances in
the brain. The visual signals are next transmitted to the lateral geniculate nu-
cleus of the thalamus (which serves as a relay for the sensory information) and
subsequently they are transmitted to …rst layer (V1) of the visual cortex, which is
the main processing unit for visual information in the brain. Simple cells in the
V1 of the visual cortex, in particular, are among the very …rst processing units of
visual information in the cortex. In this context, the receptive …eld of a cortical
cell is the visual stimulus that triggers maximal response of the cell in terms of
frequency of …rings. In particular, the receptive …elds of simple cells in the V1
were shown [HW62] to be edge-like patterns with various scales and orientations.
Readers interested in in-depth coverage of visual neuroscience are referred to e.g.
[CW03, HHH09].

Starting from the most basic properties of natural images, local image corre-
lations have been among the …rst recorded statistics [Kre52] of natural images.
In particular, the study [Kre52] has been done on television scenes and involved
a derivation of single-pixel distributions and of correlations between neighboring
pixels. A variety of later works [Fie87, BM87, TTC92] have found that the expec-
tation of the Fourier spectrum magnitude of natural images follows a power-law
curve, i.e. E [jF f�g (�)j] / 1��� where � ¼ 1 and � is the radial component of
the spectrum when expressed in polar coordinates.

The Fourier spectrum alone does not o¤er good discrimination of spatially
localized features such as oriented edges and singularities, which instead are scat-
tered over a wide frequency range (i.e. they are not represented sparsely). Unfor-
tunately, these features are of utmost importance in the formation of early vision
since the receptive …elds of the simple cells in the V1 are comprised of localized
oscillations with various orientations and scales [HW62]. Following this obser-
vation, the time-frequency representations studied by Gabor [Gab46] have been
found appropriate [Mar82, Wat83, SB82, Fie87] in the modeling of the receptive
…elds of cortical cells. With the later development of the multiscale decomposi-
tions, the time-frequency representation were generalized by them and these mul-
tiscale decompositions (e.g. wavelet decompositions) became an important tool
in modeling both natural image scenes [Mal89b] and the receptive …elds of simple
cortical cells [Fie93]. The basis elements of the multiscale transforms are formed
by translations, dilations (scalings), and rotations of some particular generating
(e.g. wavelet) functions. In the context of natural image statistics, the following
observations about the multiscale decompositions were con…rmed in [Fie93]. First,
the contrast in natural images is constant across scales; which means that under
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magni…cation, the amount of contrast is likely to remain the same. Second, it
was shown that there exists correlation between structures across di¤erent scales.
It was also shown [Fie93] that these properties are in agreement with the 1��
modeling of the amplitude spectrum of natural images.
Self-similarity and scale-invariance of natural images have been the foundations

of fractal compression [Fis95] and of fractal image representations, in general. Ex-
pectably, natural images are never perfectly self-similar as they do not contain ex-
act copies of themselves at di¤erent scales but as stated in [Fis95], they do contain
a di¤erent, more relaxed form of self-similarity. That is, natural images contain
regions which are similar to other regions at the same scale/orientation and across
scales/orientations. This claim was supported by a recent study [AVT07] which
showed that there exists signi…cant a¢ne self-similarity between square blocks of
…xed size extracted from a single image. In particular, this work con…rmed the ex-
istence of mutual information between translated blocks and, while not surprising,
this result is fundamental for the development of the thesis as it is a manifestation
of what we term nonlocal image modeling. In particular, by nonlocal image mod-
eling we refer to modeling the structural similarities between image fragments at
a …xed scale. This term is closely related to self-similarity, which typically has a
more general interpretation that includes similarities across scales.
Following the observation that the human brain uses a sparse natural-image

representation, Olshausen and Field performed [OF96] a search for a basis that
maximizes the sparsity of representing square blocks extracted from natural im-
ages. The basis search was performed by minimization of a cost function with a
penalty for the sparsity, which is represented by a particular nonlinearity. This
approach produces bases whose elements are not necessarily orthogonal and in
addition can be overcomplete. The most interesting result of this work however
is that the resultant basis elements are comprised of localized and oriented oscil-
lations — strongly resembling the receptive …elds of simple cortical cells. This
work on maximizing the sparseness was further developed in [Ols03b] where also
space-time representations were considered. Assuming high-order non-Gaussian
statistics of natural images blocks, Bell at al. [BS97a] proposed to use Indepen-
dent Component Analysis (ICA) to represent local image neighborhoods. The
basis elements obtained by ICA therein appear similar both to the receptive …elds
of simple cells in the visual cortex and also to the basis elements obtained by the
sparseness maximization performed in [OF96]. In fact, the ICA algorithms also
exploit maximization of sparsity in a particular form, either as a Laplacian prior
[BS97a] or by maximizing the kurtosis when Fast-ICA [HO97] is used, where the
kurtosis is used as a measure of sparsity. For a thorough study of natural-image
statistics and ICA, the recent book [HHH09] is a recommended reference.
An interesting aspect of the representations that arise from maximization of

sparsity or from ICA is that they are typically overcomplete [Ols03b]. The over-
completeness is also characteristic of the visual cortex where, e.g., in monkey V1
alone there are on the order of 50 times more output …bres than input ones. In
addition, desirable basis properties (in terms of matching the receptive …elds of
simple cells) such as shift invariance [SFAH92b] and rotation invariance [GBP+94]
require overcompleteness. In fact, overcomplete linear representations have been
found [RP00] to produce sparser representation of natural images than critically-
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sampled counterparts.
Considering the above mentioned results, below we list some of the observations

about natural images, which we will make use of in the sequel of the thesis:

² there exists correlation between neighboring image pixels,

² images can be sparsely represented by multiscale transforms,

² there exists self-similarity between image subsets at a given scale (enabling
nonlocal image modeling),

² overcomplete linear image representations are sparser than non-overcomplete
ones.

We note that the above properties are in no way su¢cient descriptors of natural
images nor are they independent from each other. The emphasis on the term
nonlocal image modeling is due to the fact that we shall often refer to it in the
sequel.

2.2 Considered image noise models

Since the main contribution of this work is an image denoising method, the
noise models are of particular importance. The random nature of noise is best
re‡ected by a probabilistic modeling. In a very general scenario, each pixel of a
noisy image is a realization of a RV with a PDF conditioned on realizations of
other RVs and on the (unknown) noise-free image. However, for practical image
denoising applications, parametric models (with few parameters) of the PDF are
most commonly used. The following sections introduce the noise models considered
in this thesis along with hints on the estimation of their parameters. These noise
models are relevant to the practical imaging problems considered in Chapter 5.

2.2.1 Additive white Gaussian noise

Additive white Gaussian noise (AWGN) with zero mean and …xed variance is
probably the simplest and most commonly used model in the image denoising
literature (Chapter 5.2.2 in [GW06]). The AWGN observation model in the case
of discrete images is given by

� (�) = � (�) + � (�) 	 (2.1)

where � (¢) is a noisy pixel, � (¢) » N
¡
0	 
2

¢
is independently distributed, � is the

unknown noise-free signal and � 2 � is an index (i.e. pixel coordinate) from the
…nite �-dimensional domain � ½ N�; if not explicitly speci…ed otherwise, in the
sequel of the thesis we assume � = 2.
It is worth discussing why AWGN has a particularly important role in image

denoising. Let us recall what the central limit theorem states: given indepen-
dent RVs 
�, � = 1	 � � � 	 �, with 0 � 
2� = ��� f

P�
�=1 
�g � 1 and under mild

hypotheses (see [Sha99] for details), for large �, the distribution of the standard-
ized average 1

��

P�
�=1 (
� ¡ Ef
�g) approaches the standard normal distribution
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N (0	 1). This theorem has signi…cant practical implication and is particularly
applicable to devices that contain a lot of independent additive noise contributors,
each having some arbitrary distribution that may well be unknown. In such a
scenario, the sum of these noise contributions is best described as normally dis-
tributed. In particular, AWGN is a good model [Nak06] of the inevitable thermal
noise, among other types of noise, in electronic devices.
The estimation of the standard deviation 
 from a noisy signal has some well-

established solutions such as the one proposed in [Don95] that uses the median
absolute deviation of the …nest-scale wavelet coe¢cients. This method however
tends to overestimate 
, especially when the noise-free image spectrum contains
signi…cant amount of high-frequency components. Recent methods that are more
robust in that regard can be seen in [DF09] and in the references therein.
Throughout the rest of the text, in the context of image denoising, unless

another model is explicitly speci…ed, we implicitly assume AWGN degradation.
In addition, we utilize the notation from Eq. (2.1); i.e. � is a noisy signal, � is
unknown noise-free signal and � is a white Gaussian noise realization.

2.2.2 Additive colored noise

Additive colored noise (Chapter 5.2.3 in [GW06]) model is considered in the thesis
in relation with the problem of regularizing inverse problems in imaging (Section
5.4). The additive colored noise model in pixel domain is given by

� (�) = � (�) + (� ¤ �) (�) 	 (2.2)

where ¤ denotes convolution, � is the impulse response that de…nes the noise
correlation and � (¢) » N

¡
0	 
2

¢
is independently distributed. We can express Eq.

(2.2) in Fourier domain as

F f�g = F f�g+F f� ¤ �g
= F f�g+F f�gF f�g

where the convolution becomes elementwise multiplication in Fourier domain, and
jF f�gj » N

¡
0	 
2

¢
is i.i.d. normally distributed just as �. We have omitted

any normalizing factors from the above equation and we otherwise assume F is
orthonormal. From the above equation, it can be seen that the noise can be
fully de…ned by its spectrum F f�g, which gives a meaningful interpretation to
noise colors in analogy with the spectral content of pure colors. That is, red
noise contains predominantly low-frequencies, blue noise contains predominantly
high-frequencies, and white noise contains equal contribution from all frequency
components. Naturally, white noise (jF f�gj2 = �����) is equivalent to the AWGN
model from Eq. (2.1).
The estimation of � (or, equivalently, F f�g) involves estimation of a signi…cant

number of elements and thus does not have well-established universal solutions as
in the case of variance estimation for AWGN. In the context of image deblur-
ring, the authors of [FDKE06] proposed an estimation of � which relies on prior
knowledge of the noise generation.
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2.2.3 Signal-dependent noise modeling of raw (sensor) im-
ages

We start with a brief description of the image-acquisition process with solid-state
image sensors. The radiance (re‡ected or originating) from a scene is focused by
a lens to the sensor 2-D array of optoelectronic semiconductor elements. The irra-
diance at the surface of each element (pixel) of this 2-D array is integrated during
the exposure time and converted to electrical charge; this is accomplished by an
optoelectronic conversion of photons (whose energy is high enough) to electrons.
The charge is subsequently transformed to voltage, which is ampli…ed by a factor
termed analog gain and converted via ADC to a digital number, which is quan-
tized with precision in the range 8–16 bits. There exist two major image-sensor
technologies — CCD and CMOS. In a CCD sensor, the accumulated charge is
transported by shifting towards the end of each row (of the 2-D sensor array),
where conversion to voltage and ampli…cation are performed separately for each
row. On the other hand, in a CMOS sensor, the conversion to voltage and ampli-
…cation are performed at each pixel. A comparison of these two technologies can
be found in, e.g., [Nak06].
Regardless of the sensor technology (CCD or CMOS), the image acquisition

process is inevitably imperfect and raw images are degraded with various types
of noise [The95, BLIA97, Nak06]. In particular, we consider the following rough
classi…cation of noise sources;

² temporal signal-dependent noise: photon shot noise;

² temporal signal-independent noise: reset noise, thermal noise, 1/f (‡icker)
noise, dark current shot noise;

² …xed-pattern noise (FPN), i.e. having no temporal variation: dark FPN,
photo-response non uniformity (light FPN), defected pixels, hot spots.

For some of the above noise sources there exist e¤ective countermeasures; e.g., the
reset and the 1/f noise can be greatly reduced the correlated-double sampling tech-
nique [ET96]. In addition, the …xed-pattern noise can be reduced by subtracting
a pre-computed noise pattern (that does not vary in time but can vary with the
temperature, the input-signal, or the exposure time) from the raw image; also, the
quantization noise can be reduced by increasing the number of bits of the ADC
conversion. However, other noise types do not have e¤ective countermeasures; e.g.,
the photon shot noise (due to the photon-counting nature of the optoelectronic
semiconductor), the thermal noise (except if the temperature can be controlled),
and the dark current photon shot noise.
We are interested in an overall approximate model of the above noise sources.

The signal-dependent photon shot noise is manifested [The95, Nak06] by a Pois-
sonian distribution of the pixel intensities, which in turn can be approximated
by a normal distribution having variance proportional to its expectation. The
rest of the noise sources can be approximated by AWGN [Nak06] (with variance
dependent on the temperature and on the exposure time). According to these
considerations, we adopt the following approximate Poissonian-Gaussian model of
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the noise in raw sensor images,

� (�) = � (�) + 
 (� (�)) � (�) (2.3)

= � (�) + �p (� (�)) + �g (�) (2.4)

where � (¢) is statistically independent with unit variance and zero mean, 
 (� (¢))
is the standard deviation of the noise in �, which is a function of the unknown
intensity � (¢), �p is a signal-dependent white noise contributed by the photon
shot noise and �g is WGN contributed by all of the white noise sources mentioned
above. A detailed study of this noise model can be found in [FTKE08], which also
considers the e¤ect of the clipping (from above and from below); we shall mostly
follow the derivations considered therein. To derive a parametric model of Eq.
(2.4), we assume the following distributions,

�
¡
� (�) + �p (� (�))

¢
» P (�� (�))

�g (�) » N (0	 �) 	

where P stands for Poissonian distribution parametrized by � 2 R+ and the
parameter � 2 R+ [f0g is the variance of the AWGN component �g . After simple
calculations, the overall variance of the Poissonian-Gaussian noise model from Eq.
(2.4) can be expressed as


2 (� (�)) = �� (�) + �	 (2.5)

where � = 1
� . This model has only two parameters — � and �. An estimator of

these two parameters has been proposed in [FTKE08]; Figure 2.1 presents esti-
mated standard deviation by this method applied to a single raw image from four
di¤erent cameras. In fact, the Poissonian-Gaussian noise model is well established
[LSK+08, HDF10, TFG01, FAKE07, FTKE08] as a good model for the noise in
raw sensor images.
According to the Poissonian-Gaussian noise model, a pixel’s SNR grows ap-

proximately linearly with the increase of the intensity, i.e.,

SNR (� (�)) =
E f� (�)g2

��� f� (�)g =
�2 (�)

�� (�) + �
	

where at low intensities, the SNR is limited by the signal-independent component
� and at higher intensities by the signal-dependent photon shot noise component
�� (�). The more photons absorbed in the semiconductor optoelectronic element
of a given pixel, the higher the intensity and the higher the SNR of that pixel.
The amount of absorbed photons depends mostly on the following factors

² Physical and technological factors:

– pixel area (greater pixel area in general allows more sensed photons),

– color-…lter array (a …lter that attenuates certain spectral components),

– vignetting (gradual intensity decrease from the image center to the
boundaries).
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Figure 2.1: Illustration of the the noise standard deviation estimated by [FTKE08]
as a function of the pixel intensity for four di¤erent cameras using di¤erent ISO
values. The solid curves correspond to the Poissonian-Gaussian parametric model
of the noise from Eq. (2.4). These curves o¤er a good …t to the indivdual estimates
given by the red dots. The dashed lines represent the curves that take into account
the clipping at the boundaries 0 and 1.

² Image-acquisition factors:

– scene illumination (the illumination can greatly vary; e.g., from bright
sun-light to dim indoor and dark-night conditions),

– exposure time (the average amount of sensed photons grows linearly
with the exposure time; short exposure times are preferred when there
can be relative motion between camera and object).

It is important to mention at this point that an image with signal-dependent
noise from Eq. (2.4) can undergo a variance-stabilizing transformation [Foi07,
Foi09] that transforms the noise variance to be close to a constant. The noise in
the resultant variance-stabilized image can then be treated as signal-independent
with constant variance. Subsequently, a denoising method for additive white noise
can be applied on such an image.



Chapter 3

Introduction to Image
Denoising

This chapter gives a rather limited introduction to prior works in image denoising,
a research topic that has attracted vast amount of contributions, particularly in
the past two decades. We consider exclusively methods for attenuation of AWGN
from images and we note that …lters for signal-dependent noise and for colored
noise can in many cases be obtained by extending an AWGN denoising method;
this is also what we do in this thesis. We consider a rough classi…cation into
spatial- and transform-domain …lters, based on whether these …lters exploit linear-
transform representations or not. Within each of these two major groups, we use
…ner classi…cation which is by no means exhaustive nor the boundaries between
the presented classes are well de…ned. In fact, there exist explicit links between
many of the works that we present. The order in which the prior works are
presented should logically lead the reader to the next chapters where we focus
on the contribution of the thesis, the BM3D …lter and the applications based on
it. In that regard, of particular interest are the nonlocal spatial …lters (Section
3.1.5), and the nonlocal transform-domain …lters (Section 3.2.4) as the BM3D …lter
belongs to the latter class.

3.1 Spatial-domain …lters

3.1.1 Local polynomial approximation

Among the earliest local estimators, the weighted average estimator was inde-
pendently developed by Nadaraya [Nad64] and Watson [Wat64] in the context of
nonparametric regression modeling. Assuming the AWGN model from Eq. (2.1),
the Nadaraya-Watson estimator can be interpreted as a minimizer for the following
weighted mean squares criterion

�̂N-W (�) = argmin
�2R

X
	2


�� (�¡ �) [� (�)¡ �]2 (3.1)

13
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where �� is a prede…ned window function and � is a bandwidth parameter (also
called scale or smoothing parameter) that controls the size of the local estimation
neighborhood. The minimizer of the above equation and output of the estimator
is given by

�̂N-W (�) = ( � ¤ �) (�) 	 8� 2 � (3.2)

where  � =
��P

	 �� (�)
and ¤ denotes convolution. The choice of �� is based

on desired properties of the estimator and, possibly, on a priori information of
the true data �; the Gaussian window is a common choice. In the context of
image denoising, the approximation with a constant in Eq. (3.1) corresponds to
assuming uniform pixel intensities in a local neighborhood de…ned by �� around
the estimated pixel. This corresponds to the simplest image model considered
in Section 2.1, for which the intensities of neighboring pixels are assumed locally
correlated. To use a more complex model, the minimization in Eq. (3.1) can
be done for a polynomial of degree ! ¸ 0, which results in a local polynomial
approximation (LPA) [CD88, FG96, KEA06, Foi05]. The LPA estimate can be
expressed by the following minimization problem

�̂LPA (�) = arg min
�2P�

X
	2


�� (�¡ �) [� (�)¡ " (�)]
2
	

where P
 is the set of 2-D polynomials of degree!. It is noteworthy that the LPA
estimator can be computed using convolution as in Eq. (3.2), where  � is derived
from the polynomial degree ! and the window ��; the derivation of  � as well as
a comprehensive study of the LPA estimators can be found in [KEA06]. From the
image modeling point of view, the LPA estimator allows a more complex model
of the signal within an image neighborhood as a polynomial. The idea of LPA is
also known by di¤erent names such as moving least-squares, Savitzky-Golay …lter,
reproducing …lter, moment …lters, and kernel regression.
The …xed estimation kernel  � (which depends only on the prede…ned parame-

ters �, !, and window ��) for the LPA estimators considered above, however, do
not allow image adaptivity. One approach to achieve adaptive neighborhoods is the
adaptive pointwise selection of the bandwidth � from the input noisy data, which
has become a signi…cant research topic [HSJM91, RSW95, JMS96, KEA06, Foi05].
One such adaptive bandwidth-selection procedure is the ICI rule [Kat99], which,
combined with the LPA estimator, was shown [KEA06, Foi05] to achieve point-
wise MSE that is close to the MSE when oracle bandwidth selection is used. In
order to achieve directional adaptation, in addition to bandwidth adaptivity, the
LPA-ICI has been extended by fusing individual directional LPA-ICI estimators
[KFEA04, KEA06, Foi05]. The resultant anisotropic LPA-ICI was shown in the
mentioned references to be very e¤ective for various image processing applications
allowing accurate reconstruction of edges and singularities with various orienta-
tions. Another estimator that exploits adaptive estimation kernel and LPA is the
data-adapted kernel regression proposed [TFM07]. The kernel used for this estima-
tor adapts to the local gradient orientation in order to avoid blurring of edges. The
adaptivity involves three possible transformations of an otherwise circular kernel:
elongation, scaling, and rotation, which are estimated from the local covariance.
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3.1.2 Range …lters

Another approach to make the estimation neighborhoods adaptive to the image
data was employed by the range …lters. In the class of range …lters we include the
bilateral …lter [TM98], the sigma …lter [Lee81], the Yaroslavski …lter, the SUSAN
…lter, and other related works. The range …lters use weighted averaging with
adaptive weights that depend not only on the spatial distance to the estimated
pixel but also on the distances between the pixel intensities (i.e. the image range).
A general expression for the above de…nition of the range …lters is

�̂RF (�) =
X
	2


� (�)  sp (�¡ �)  rng [� (�)¡ � (�)] 	 (3.3)

where the kernel  sp depends on spatial distance, just as in the LPA estimator, and
 rng contributes the range …ltering by considering distances between intensities. It
is the  rng term that enables adaptivity to image data and allows to better pre-
serve salient details such as edges without blurring; e.g., this can be achieved by
using a smaller weight  rng when the intensity di¤erence is big. This corresponds
to averaging over local neighborhoods with relatively homogeneous intensities and
thus avoiding averaging across sharp edges. However, when the magnitude of the
noise is comparable with or greater than the magnitude of edges, then the simi-
larities between individual noisy pixels are not reliable to measure the similarities
between their noise-free counterparts. One approach to overcome this drawback is
to use similarities between image neighborhoods, as in the case of nonlocal …lters,
which will be discussed in Section 3.1.5.

3.1.3 Bayesian …lters

Bayesian estimation [KR96, BS07] is a notable approach to image restoration. A
very general formulation of the image-restoration problem in the Bayesian estima-
tion framework is: given the observed noisy image � and prior information of the
noise and of the noise-free image, …nd an estimate of the noise-free image. Let us
consider the Bayes formula for the posterior probability

"post (# j �) =
"¯t (� j #) "prior (#)

"� (�)
	 (3.4)

where # is an estimate of the noise-free image �, the image prior "prior (#) is
the probability that # belongs to the class of noise-free images, the data …t (or
likelihood) "¯t (� j #) is the conditional probability that � has been generated ac-
cording to the assumed noise model from #, and "� (�) is the marginal probability
of obtaining the particular noisy realization �; since "� does not depend on #, it
can be treated as a normalizing constant in most situations. Bayesian estimation
deals with …nding a solution # using the posterior "post (# j �) from Eq. (3.4). A
commonly used Bayesian estimator is the conditional mean of the posterior, i.e.,

�̂CM =

Z
#"post (# j �) �#	

which involves integration in a high dimensional space and for most useful image
priors, does not have a closed-form solution. In practice, the problem is often dis-
cretized and solved by numerical integration. The Maximum A Posteriori (MAP)



16 CHAPTER 3. INTRODUCTION TO IMAGE DENOISING

estimator is another important Bayesian estimator, which attempts to …nd a so-
lution # that maximizes the posterior, i.e.,

�̂MAP = arg max
�

"post (# j �) � (3.5)

In the case when the posterior "post (# j �) is characterized by one main lobe (e.g.,
a unimodal distribution), then the MAP estimator is a good choice.
By far, the biggest challenge [She03] in Bayesian estimation in general and in

image processing in particular is the derivation of good (image) prior "prior. This
problem is equivalent to obtaining a good model of natural-image statistics, a topic
discussed in Section 2.1, which is mostly unsolved problem due to the very high
complexity of natural images. Various image priors have been proposed in the
form of particular parametric models of images or of image patches. In this thesis,
we mention various priors of the transform spectra of natural images in Sections
3.2.1 and 3.2.2; other image priors can be found, e.g., in Chapter 3 of [CS05], in
Chapter 1.3 of [KR96], in [RB05, WG04], and in the recent [WF07].

3.1.4 Variational and PDE-based …lters

The variational approach [CS05] to image restoration can be considered as a de-
terministic interpretation of the Bayesian MAP estimation from Eq. (3.5), where
the restoration result is the argument of an iterative minimization of a particular
functional, i.e.,

�̂VAR = argmin
�

$ (#	 �)

where the functional $ (#	 �) can typically be written as a sum of two terms,

$ (#	 �) = $…t (#	 �) +$pen (#) , (3.6)

where $…t is a …delity term that restricts the solution not to deviate from the input
data and $pen is a regularization penalty that imposes some useful prior model on
the solution. If we make analogy to the Bayesian framework, the regularization
term can be interpreted as the image prior and the …delity term can be interpreted
as the data …t. In fact, for particular parametric PDF models of the image prior
and data …t (such as e.g. the Gaussian distribution), the MAP estimation given by
Eq. (3.5) in the Bayes framework is exactly equivalent to solving a minimization
of the form given in Eq. (3.6). Typically, $…t (#	 �) = k# ¡ �k�

0

� , i.e. the …delity
term is the "¡norm of the di¤erence between the input noisy image and the
current solution #. The standard Tikhonov regularization [Tik63] corresponds to
$…t (#	 �) = k# ¡ �k22 and $pen (#) = k#k22, where the regularization term imposes
image smoothness — i.e. the energy (2-norm) of the solution is minimized. A
widely used penalty in image processing that avoids smoothing of salient details
is the total variation (TV) penalty proposed in [ROF92], which is given as the
1-norm of the gradient of the solution. Regularization with the TV penalty results
in smoothing of weakly varying details and preservation of salient (having strong
variation) details such as edges.
Closely related to the variational framework discussed above, partial di¤erential

equations (PDEs) are yet another tool that have found a very wide application
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[Sap06, AK06, CS05] in image processing and in image denoising in particular.
Indeed, a PDE formulation of an image denoising problem can emerge from the
Euler-Lagrange equations of a particular variational formulation or from applying
the gradient descent method to minimize a functional of the form given in Eq.
(3.6). Given a particular PDE model, the solution is given by an iterative (over
time) process where the number of iterations (elapsed time) determines the degree
of smoothness of the solution. The selection of optimal number of iterations (stop-
ping time) is a key issue [CS05] in PDE based image processing. The anisotropic
di¤usion proposed in [PM90] is one of the widely adopted nonlinear PDE formula-
tions in image processing, where the smoothing is guided by the spatial derivative,
so that there is no smoothing across edges. Various applications of PDEs to image
processing can be found in [GMM01, Sap06, AK06, CS05] and in the references
therein. It is worth mentioning that a link between PDE methods, variational
methods, and adaptive …lters has been studied in [SKB01] and also the relation
between anisotropic smoothing and the bilateral …lter has been studied in [Bar02].

3.1.5 Nonlocal spatial …lters

Nonlocal …ltering is a relatively recent development in image processing. In this
class we include …lters that exploit the nonlocal modeling de…ned in Section
2.1. That is, a nonlocal …lter exploits similarities between image neighborhoods
(patches) from various spatial locations, hence the name nonlocal. To the author’s
knowledge, the NL-means proposed by Buades [BCM05b] used for the …rst time
the term nonlocal in the context of image denoising. The NL-means estimates
a pixel as the weighted average of pixels with weights that depend solely on the
similarity between neighborhoods centered at these pixels and the neighborhood
centered at the estimated pixel. Before we proceed, let us de…ne of the NL-means
estimator in case of discrete noisy observation (Eq. 2.1), which is given as a
standard weighted averaging

�̂NL (�) =

P
	2
  (�	 �) � (�)P

	2
  (�	 �)
	

with particular weight that manifests the nonlocal modeling, de…ned as

 (�	 �) = exp

Ã
¡
P

�2� %� (�) j� (� + �)¡ � (� + �)j2

�2

!
	 (3.7)

where & is a prede…ned support of a square block, %� is a 2-D Gaussian with
standard deviation �, and � is a …ltering parameter. A data-adaptive selection
of the …ltering parameter has been proposed in [VDVK09, DC09]. In the context
of the NL-means, the notion of similarity between image neighborhoods can be
interpreted as proportional to the weight given in Eq. (3.7). The key idea of the
NL-means and the nonlocal …lters in general is that they do not assume local in-
tensity smoothness nor any particular local neighborhood model — unlike the local
estimators considered in Section 3.1.1, which are essentially based on speci…c local
models. Indeed, the NL-means estimator can be considered as a generalization of
the range …ltering concept (considered in Section 3.1.2) but whereas range …lters
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exploit similarities between individual pixels, the NL-means exploits similarities
between surrounding neighborhoods. Extensive study of the NL-means …lter along
with various extensions can be found in [BCM05b].
The optimal spatial adaptation (OSA) method [KB06] is a sophisticated nonlo-

cal spatial estimator which is based on adaptive estimation neighborhoods. Thus,
a pixel is estimated by a weighted sum of pixels within an adaptive neighborhood,
where both the weights and the adaptive neighborhoods depend on similarities be-
tween image patches, i.e. exploiting nonlocal modeling. In contrast with the …xed
estimation neighborhoods used for the NL-means, the estimation neighborhood of
OSA …lter is adaptively selected from a prede…ned set of local neighborhoods, using
a change-point detection procedure similar to [Lep90] and to the ICI rules that we
considered in Section 3.1. The overall OSA method delivers very good denoising
performance [KB06] in terms of both PSNR and visual quality. It is worth dis-
cussing the fact that this otherwise nonlocal-based method exploits adaptive local
estimation neighborhoods, where the largest possible neighborhood is not neces-
sarily the optimal choice at every pixel location. This means that the non-local
modeling of particular image details can be locally constrained.

Nonlocal variational formulation

The variational formulation of nonlocal priors has recently become and very ac-
tive research topic [KOJ05, GO08, GO07, PBC08, ELB08]. These works have
expressed the nonlocal image modeling as particular regularization functionals,
which can be used as part of the overall variational minimization functional given
in Eq. (3.6). This formulation is an important development since it allows to ap-
ply nonlocal …ltering to variety of problems that exploit the variational framework,
such as deblurring [KOJ05, Mig08], inpainting [PBC08], super-resolution [PBC08],
compressive sensing [PBC08], image colorization [LTE08], and tomographic recon-
struction [CMF+08].

3.2 Transform-domain …lters

In Section 2.1 we stated that linear transforms can be a very useful tool for mod-
eling the redundancies in natural images. Therefore it is not surprising that they
…nd a signi…cant application in image processing. Indeed, transforms such as the
DCT and the DFT have long [AR75] been used in signal and image processing to
exploit redundancies in signals (audio, images, video) and represent them sparsely.
For example, the ubiquitous MPEG 1, 2, and 4 video compression standards as
well as the JPEG image compression standard all exploit the block DCT. The
block DCT is realized by applying 2-D DCT on small disjoint image blocks, where
local correlations are exploited to produce sparse image representation.
Following their introduction [BA83, Mey93, Mal89a, Dau88, Mal89b] to the

signal-processing community, multiscale transforms (wavelets, pyramidal decom-
positions, etc.) have been found particularly e¤ective in obtaining sparse image
representations [Mal08], a very important property also discussed in Section 2.1 in
the context of natural-image statistics. We give the following de…nition of multi-
scale transforms: linear transforms whose basis elements are obtained by dilations
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(scalings) and translations, and possibly by rotations, of one or more generating
functions. A notable member of the multiscale transforms is the wavelet decom-
position, which uses a wavelet generating function ' of zero mean to compose a
dictionary of basis elements, which can be expressed in the continuos domain as

D =

½
'��� (�) =

1p
�
'

μ
�¡ (

�

¶¾
�2R���0

	

where ( is a shift (translation) parameter and � is a scale parameter. Dyadic
wavelet decompositions where ( = 2� are probably the most commonly used ones
in image processing. The discrete dyadic wavelet decomposition can be e¢ciently
computed using a cascaded two-band …lterbank (see Chapter 7 in [Mal08]) in) (&)
time on a signal with & elements. In contrast with trigonometric transforms (such
as the DCT, the DFT, etc.) and transforms with …xed spatial localization (such
as the block DCT and the short-time Fourier transform), multiscale decomposi-
tions are more ‡exible as they allow for sparse representation of images structures
with varying localization in time and in frequency and, possibly, with varying
orientation.
The dictionary of a transform can in general be overcomplete, which means

some strict subset of its elements forms a basis. Overcomplete multiscale repre-
sentations, in particular, allow for much more ‡exibility and for sparser image rep-
resentations than non-overcomplete ones and have become a very important tool
in image restoration [Mal08, CD95, SFAH92a]. Translation-invariance of a mul-
tiscale decomposition is one property that requires overcompleteness [CD95]; this
property is desirable because image structures are not necessarily aligned with the
particular translations of the basis elements of a ON decomposition. Other com-
monly used overcomplete transforms are the dual-tree complex wavelets [Kin01],
which are near translation invariant and near rotation invariant, and the steerable
pyramid [SF95, GBP+94], which allows for approximate rotation invariance. Not
restricted only to dictionaries of multiscale transforms, overcomplete representa-
tions have been used in the extension of the block-DCT type of transforms to
sliding-window transforms [ÖYE98, Gul03], where the overcompleteness is due to
overlaps between successively transformed blocks.
The transforms considered above have …xed dictionaries. Thus, a question

arises whether a transform can have dictionary of elements that are adapted to
the input image. The answer is positive and the development such transforms
that adapt to geometrical regularities in images is an active research topic. The
ON decomposition into principal component (PCA) [Jol02] is one well established
such method, where the basis elements are obtained as the eigenvectors of a co-
variance matrix (that is either a priori known or is empirically computed). The
decomposition into independent components (ICA) [Hoy99] is another adaptive
(overcomplete, in general) transform that has found applications in image process-
ing. A di¤erent approach to adaptivity was sought by the shape-adaptive DCT
(SA-DCT) [SM95], where the shapes of the neighborhoods on which this transform
is applied are data-adapted; this transform has also been successfully applied to
various image-processing problems [Foi07]. To name a few other adaptive trans-
forms, we would like to mention some of the transforms that have adopted the
“lets” ending: the brushlets [MC97], the ridgelets [Don98], the wedgelets [Don99],



20 CHAPTER 3. INTRODUCTION TO IMAGE DENOISING

the curvelets [SCD02], the contourlets [DV05], the bandlets [LPM05], the shearlets
[LLKW05], the surfacelets [LD07], the grouplets [Mal09]. Other adaptive trans-
forms that are exploited very successfully in image denoising are given in Section
3.2.3.

3.2.1 Bayesian transform-domain …lters

Bayesian estimation together with stochastic modeling of (multiscale) transform
coe¢cients is a powerful tool in image processing [Mal08, Bov05]. The main prob-
lems in this area are the choice of transform and the derivation of prior models
for its coe¢cients. A sparse image representation allows to use a relatively low-
complexity prior with few parameters — whereas in pixel domain, low-complexity
priors are not appropriate, in general, due to the huge diversity of natural im-
ages. Studies [WZ90, BS97b] on multiscale transforms of natural images have
found that the transform coe¢cients have highly kurtoic marginal distribution
characterized by a strong peak at zero and heavy tails, which can be modeled
e.g. by the generalized Gaussian distribution [Mal08] (which also generalizes the
Laplacian distribution). In addition to these …ndings, multiscale representations
of natural images contain correlations both between coe¢cients from a given scale
(intra-scale) and between coe¢cients from di¤erent scales (inter-scale). To model
these correlations, multivariate priors must be considered. The Gaussian scale
mixtures (GSM) model [RCB99, WS00] was found to be particularly e¤ective for
capturing intra-scale correlations by modeling neighborhoods of relatively small
size (e.g., 3£3 or 5£5) of multiscale transform coe¢cients. This model was shown
[PS03, PSWS03, GCP05, GCSP08, HS08] to be quite successful for image denois-
ing. An extension of the GSM was recently proposed in [GPP09], where discrete
mixture of linear projected GSMs were used either by projection onto …xed bases
or onto data-adaptive PCA bases. Models of intra-scale correlations of neighboring
coe¢cients by hidden Markov models have also been considered [CNB98, RCB99].
Without going into further details on this topic, we refer the reader to the recent
developments [Sel08, RAS08, HS08, GPP09] and to the references therein. At this
point we can conclude that multiscale transforms can be a very useful tool for de-
riving low-complexity image priors. The Bayesian estimation has had a signi…cant
implication in the derivation of shrinkage estimators — a topic discussed in the
following section.

3.2.2 Shrinkage …lters

Closely related to the Bayesian estimation and the variational formulation, shrink-
age of a transform spectrum is one of the main image-restoration tools. A very
simple general de…nition of shrinkage is: a procedure that attenuates the mag-
nitudes of transform coe¢cients. A shrinkage estimator can be expressed in the
following simple form

�̂shr = T ¡1 fshrink (T f�g)g 	

where T is a linear transform operator, T ¡1 is its inverse, and shrink is a shrinkage
nonlinear operator. Early works [Yar85] of Yaroslavski showed good potential
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of empirical Wiener …ltering (a form of shrinkage) being applied in block-DCT
domain, which is de…ned (for AWGN) as

shinkWIE (*) = *

¯̄̄
*̂
¯̄̄2

¯̄̄
*̂
¯̄̄2

+ 
2
, (3.8)

where
¯̄̄
*̂
¯̄̄2
is an (empirical) estimate of the squared magnitude of *. Notably,

shrinkage of wavelet coe¢cients was established and extensively studied in mile-
stone works of Donoho and Johnstone [DJ94, DJ95]. In particular, they studied
soft- and hard-thresholding, de…ned respectively as

shrinkST (*) =

½
sign (*) (j*j ¡ +) 	 if j*j , +
0	 otherwise,

shrinkHT (*) =

½
*	 if j*j , +
0	 otherwise, (3.9)

where + is a threshold parameter, whose selection is an important problem. A
well-adopted non-adaptive threshold is the so-called universal threshold

p
2 ln (�)
,

where � is the number of elements in the input signal (and 
2 is the AWGN
variance).
The development of data-adaptive thresholds and shrinkage functions has been

and still is a very active research topic. The SureShrink proposed in [DJ95] uses
an adaptive threshold that minimizes the Stein’s unbiased risk estimate at each
decomposition level. Bayesian estimation used with particular prior PDFs of mul-
tiscale transform coe¢cients has found a signi…cant application in the derivation of
shrinkage estimators. The Bayesian approaches considered in the previous section
can be interpreted by some shrinkage rules which depend on the noise model and
on the exploited priors. In what follows, we consider approaches that explicitly de-
rive shrinkage operators from problems posed in the Bayesian framework. Among
the …rst such approaches is the wavelet coring [SA96], which uses a generalized
Laplacian prior for the coe¢cients of the steerable pyramid [SF95]. A later devel-
opment [LL98] showed that wavelet shrinkage can be considered as the minimizer
of some particular variational formulation; i.e. this work established an equivalence
between these two denoising approaches. The bivariate shrinkage [SS02] exploits
inter-scale correlations in wavelet transforms by a bivariate Laplacian prior of the
parent-child pair of wavelet coe¢cients, where a parent coe¢cient has the same
relative spatial location as its child but is at the next coarser scale. The ProbShrink
estimator proposed in [PP06] exploits both inter- and intra-scale correlations. The
recent SURE-LET [LB08] shrinkage estimator exploits inter-scale correlation and
was later also extended [YCP08] to exploit intra-scale correlations. The trivariate
shrinkage [YZW09] exploits a trivariate Gaussian prior to model both the inter-
and intra-scale correlations.
Since shrinkage is the main denoising tool used throughout the thesis, it is

worth considering the quadratic risks (i.e. MSE) of the hard- and soft-thresholding
shrinkage operators de…ned above in the simpli…ed scenario of non-adaptive thresh-
old and orthonormal transform. The general formula of the quadratic risk for any
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Figure 3.1: Plot of the quadratic risk (scaled by the noise variance 
2), ���
2, of a
single hard-thresholded transform coe¢cient T f�g� (when using a …xed threshold
+ = -
) as a function of - and the signal-to-noise amplitude ratio jT f�g�j �
.
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Given an orthonormal transform T and a …xed threshold + = -
	 the quadratic
risk of the hard-thresholding is derived as in [MAJ+98],

��̂H T =

2

j�j

j
jX
�=1

�HT

μ jT f�g�j



	 -

¶
	 (3.10)

where T f�g� denotes the �-th (noise-free) transform coe¢cient (for soft-thresholding,
HT should be replaced by ST) and

�HT (.	-) = 1 + (.2 ¡ 1) [© (-¡ .)¡©(¡-¡ .)] +

+(-¡ .) / (-¡ .) + (- + .)/ (- + .)

�ST (.	-) =
¡
.2 ¡ -2 ¡ 1

¢
[© (-¡ .)¡©(¡-¡ .)] +

+1 + -2 ¡ (-¡ .)/ (- + .)¡ (- + .)/ (-¡ .) 	

where . = jT f�g�j �
 denotes the signal-to-noise amplitude ratio; / and © are the
standard normal PDF and CDF, respectively. In order to give an interpretation
of the quadratic risk formula, in Fig. 3.1 we present the quadratic risk �� =
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2�HT (jT f�g�j �
	 -) when hard-thresholding a single transform coe¢cient T f�g�.
We make the following observations based on this …gure.

1. When . À - (i.e., jT f�g�j À -
 = + , which means that it is very likely to
retain the coe¢cient), then we observe �� ¼ 
2, which means that the risk
is the same as if we use the noisy coe¢cient (whose risk is also 
2).

2. When - is relatively large (e.g. - , 2) and . � 1 (meaning that jT f�g�j �

), then we observe that �� � 
2, which means that the hard-thresholded
coe¢cient has smaller quadratic risk than the noisy one — that is the case
when hard-thresholding bene…ts us.

3. When . ¼ - (i.e., jT f�g�j ¼ -
 = + , which is the case when the coe¢cient
has approximately the same magnitude as the threshold), then �� , 
2 and
thus hard-thresholding is at disadvantage; i.e. its quadratic risk is greater
than the risk of the noisy transform coe¢cient.

Based on the above observations, we can conclude that it is desirable to have as
many as possible small-magnitude coe¢cients jT f�g¢j ¿ 
 (in a ON-transform
spectrum of the image �) and as few as possible high magnitude coe¢cients
jT f�g¢j À -
. The ideal case corresponds to having only one non-zero transform
coe¢cient — i.e. the case when one of the basis elements of the ON-transform
coincides with the noise-free image �. The above observations exemplify why spar-
sity of an image representation is crucial when performing hard-thresholding, and
shrinkage in general.

3.2.3 Adaptive-transform …lters

Adaptive transforms, whose basis elements are adaptively computed from the input
data (e.g., PCA, ICA, wavelet packets), can be a powerful tool for image denoising.
It is reasonable to expect that the adaptivity of the basis elements only improves
the sparsity of representing various image details as compared with transforms
that have …xed basis elements.
An image denoising method that uses local Principal Component Analysis

(PCA) was proposed in [MP03], where it was shown to be highly e¤ective in re-
constructing textures and oscillatory patterns. Independent Component Analysis
(ICA) bases have also been shown [Hoy99] to be e¤ective for sparse representation
of natural-image patches and hence for image denoising. The pointwise shape-
adaptive DCT (P.SA-DCT ) image denoising [FKE07a, Foi07] exploits shrinkage
of the SA-DCT spectra of adaptive-shape image neighborhoods. The adaptive-
shape neighborhoods, obtained using the directional LPA-ICI estimator, capture
highly homogeneous signal that can be sparsely represented by the SA-DCT. A re-
cent extension [CM09a] of the steering kernel regression image denoising [TFM07]
exploits adaptive transforms in addition to adaptive estimation neighborhoods
(with fewer degrees of freedom as compared with the SA-DCT …lter).
In the context of adaptive transforms, we wish to mention the K-SVD method

[EA06], which can be regarded as a signi…cant advance on this topic. TheK-SVD is
a framework for learning a dictionary of basis elements (atoms) that can represent
image patches (of relatively small, …xed size) sparsely. Such a dictionary can be
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trained either from one or more representative noise-free images or alternatively
from the input noisy image itself. The training of the dictionary is posed as an
optimization problem which is solved by applying singular value decompositions
and orthogonal matching pursuit (OMP) [MZ93]. The application of a learnt K-
SVD dictionary in conjunction with OMP was shown [EA06] to achieve very good
denoising results. In the recent work [MSE08], theK-SVD method was extended by
employing a multiscale representation; i.e., dictionary elements at di¤erent scales
of a quad-tree decomposition are utilized. This method, which we abbreviate
MS-K-SVD, is among the state-of-the-art as we show later in Section 4.6.

3.2.4 Nonlocal transform-domain …lters

The nonlocal spatial …lters considered in Section 3.1.5 were shown (e.g., in [KB06])
to be competitive with the best transform-domain …lters. Thus arises the question
whether sparse transform-domain representations and nonlocal modeling can be
combined so that the strengths of both techniques are preserved. We showed that
the answer to this question is positive by proposing the image denoising method
in [P1], where the following techniques were exploited:

² grouping: …nd and stack together similar blocks into 3-D arrays (exploiting
nonlocal modeling)

² collaborative …ltering: apply a 3-D transform in order to represent sparsely
the 3-D arrays, attenuate noise by shrinkage, and invert the 3-D transform,

² aggregation: combine the estimates of the collaborative …ltering in case of
overlaps.

A generalization of this denoising method was proposed in [P2], which we called
BM3D. The term BM3D stands for Block-Matching and 3-D …ltering (block-
matching is used to …nd similar blocks). The good denoising results of the BM3D
…lter [P2] not only con…rmed that the joint application of linear transforms and
nonlocal modeling is indeed e¤ective, but they inspired applications of this denois-
ing scheme to other image processing applications, which we consider in Chapter
5. In addition, we proposed extensions of the BM3D …lter to anisotropic neigh-
borhoods [P7] and to data-adaptive PCA representations [P8], both of which we
consider in more details in Chapter 4.
The BM3D …lter has been studied [KFEA10] in the context of nonparametric

regression modeling in imaging. It is classi…ed there as a multipoint nonlocal esti-
mator, which uses a multiple-model of the grouped similar blocks. Following this
model, the collaborative …ltering is derived as a minimizer of a particular vari-
ational functional. Other important issues that are considered (separately from
collaborative …ltering) in this paper are overcomplete representations and the ag-
gregation of individual estimates by weighted averaging. One of the …rst attempts
to provide a theoretical justi…cation of the combination of grouping, collaborative
…ltering, and aggregation was [KFE07], where mix-distribution observation mod-
eling was considered. A variational formulation with a particular nonlocal image
prior was proposed in [Kat09] and was shown to be minimized by an iterative
application of the BM3D …lter. A breakthrough in image deblurring occurred in
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the later work [KE08] which also exploits the BM3D …lter in iterative variational
minimization with a prior on sparsity.
In addition to the works done by the author of this thesis and by his collabo-

rators, there exist other methods that belong to the class of nonlocal transform-
domain …ltering. One such development is the grouplets transform [Mal09] which
is based on a modi…ed Haar dyadic decomposition and, in analogy with the BM3D
…lter, on a speci…c grouping procedure. The grouping is realized as a multiscale
association …eld that de…nes the structural similarities between neighborhoods
centered at various spatial locations. It is quite obvious that this association …eld
exploits nonlocal image modeling in a manner that is similar to the nonlocal …l-
ters. As suggested in [Mal09], the construction of the association …eld can be
done by block-matching, yet another analogy to the BM3D …lter. The overall
grouplet spectrum is obtained by a weighted Haar dyadic decomposition modi…ed
by the multiscale association …eld. The modi…cation is as follows; the di¤erence
(detail) and the averaging (approximation) coe¢cients are computed respectively
by a di¤erence and average between an pixel and its associated one — rather than
between spatially neighboring pixels as in the ordinary Haar decomposition. The
grouplets can be applied on an image or on a wavelet spectrum of an image, since
the wavelet spectrum also contains structural regularities. In the latter case the
overall transform was termed grouping bandlets. Whereas the few results given in
[Mal09] for image denoising by shrinkage of grouping bandlets show good detail
reconstruction, the MSE results are not competitive with the state-of-the-art. Ap-
plication of the grouping bandlets to video denoising was proposed in [MY08] and
to inpainting in [MCAFM08].
Another work that we wish to mention in this section is the image repre-

sentation by nonlocal spectral bases [Pey08]. In particular, this work shows the
superiority of a nonlocal manifold modeling of images patches over local one and
shows how the models can be exploited for image denoising by thresholding of
adapted orthogonal decomposition spectra.
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Chapter 4

BM3D: a Nonlocal
Transform-Domain Filter

In this chapter we study the BM3D …lter [P2] and its generalizations to adaptive-
shape neighborhoods [P7] and to data-adaptive PCA representations [P8]. In
particular, we brie‡y explain the BM3D algorithm and present results that are
mostly complementary to the results presented in [P1], [P2], [P7], [P8].

4.1 The basic BM3D algorithm

Let us …rst present the basic algorithm exploited by the BM3D …lter.

Basic BM3D algorithm

² Partition the input image � into (overlapping) blocks 0�2
 , where � is the
set of these blocks’ coordinates. For each block 0�2
 in the partition, do:

– grouping : group blocks that are similar to 0� into a 3-D array,

Z3D� = grouping (0�) 	 (4.1)

– collaborative …ltering : …lter the 3-D array Z3D� by applying a 3-D trans-
form T , shrinkage, and the inverse 3-D transform,

Ŷ3D
� = T ¡1

¡
shrink

¡
T
¡
Z3D�

¢¢¢
. (4.2)

² Aggregation: aggregate all …ltered blocks from each group Ŷ3D
�2
 by weighted

averaging at locations where they overlap.

The following paragraph and sub-sections give some additional details of the above
algorithm, whereas a more detailed study can be found in [P2] or in [P1].

27
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Figure 4.1: Illustration of grouping blocks from noisy natural images corrupted by
AWGN with 
=15. Each fragment shows a reference block marked with R and a
few of the blocks matched to it.

Figure 4.2: Flowchart of the basic BM3D algorithm. The block designated with
R is the current reference block.
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The partition (i.e., selection of the set �) of the input image into blocks can be
performed as in [P2] where a raster scan is followed and each next block is taken
with a …xed pixel shift from the previous one so that there is some mutual overlap.
Such a selection enables two desirable properties; there exists at least one estimate
for each image pixel and blocking artifacts are to some degree avoided. Below we
discuss the two fundamental procedures of the BM3D algorithm, the grouping and
the collaborative …ltering. In the following sub-sections, the currently processed
block is …xed as 0� and we further denote it as reference block.

4.1.1 Grouping

The grouping procedure incorporates the nonlocal image modeling by …nding
blocks that are similar to the given reference block, 0�, and stacking them to-
gether to form a 3-D array, Z3D� . Before we proceed, we would like to de…ne block
similarity, a term that is very frequently used not only in this section but in the
rest of the thesis. We de…ne the block similarity between two blocks as the inverse
of a 1�-distance between these blocks, where " = 2 is assumed if " is not explicitly
speci…ed. When computed from (non-overlapping) blocks corrupted by AWGN,
then the block-distance is also noisy with variance de…ned by Eq. (3) in [P2].
A natural question arises: what is the advantage of grouping similar blocks?

The motivation for doing the grouping procedure is the induction of high correla-
tion across the third dimension of the 3-D array Z3D� (i.e. between the grouped
blocks). This correlation can then be exploited to improve the estimation of the
noise-free image underlying the AWGN. Furthermore, one may also contend that
since the grouped blocks are already present in the image, a method such as a
transform applied on the whole image can take advantage of their similarity with-
out bothering to do any grouping. Whereas this is possible for highly structured
images, for natural images in general, the diversity of details is so great that e.g.
a …xed linear transform cannot achieve good sparsity for each of the extremely
many possible con…gurations of the image details. The grouping procedure is a
good solution for that problem — it exploits structural similarities of possibly
nontrivial details to obtain a collection of similar image patches of relatively small
size (e.g. 8£8 patches were used in [P2]). Its strength is in detecting structures
in the image, where they are otherwise not easy to …nd. This is well illustrated
in Fig. 4.1 where a few examples of grouping are given. In particular, a good
example is the second image on the bottom row of this …gure, which shows how
blocks that belong to two di¤erent parallel edges are combined in a single group.
The order in which the found similar blocks are stacked in Z3D� was empirically
found in [P2] to a¤ect only marginally the denoising performance, and not in a
consistent manner over the set of test images.
Another question is how to …nd the similar blocks. In [P1] we proposed to

apply block-matching to compute block distances between the reference block 0�

and other blocks that belong to a search neighborhood of …xed size centered at
�. The decision which blocks to group in Z3D� is based on whether their distances
are smaller than a prede…ned threshold and, in addition, on a restriction of the
maximum number of grouped blocks, denoted by &2 in [P1]. The latter means
that at most &2 blocks with the smallest block-distances to 0� are grouped. An
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illustration of some particular groupings is given in Fig. 4.1.

4.1.2 Collaborative …ltering

As we stated in the previous sub-section, the correlation induced in Z3D� by the
grouping can be exploited to improve the estimation. One possible approach to
exploit this correlation, exempli…ed by the nonlocal spatial …lters, is to perform a
weighted averaging of the central pixels of all grouped blocks, where the weights
depend on the blocks’ similarity with the reference block. The result of this av-
eraging is an estimate of the central pixel of the reference block. While this
approach can work well for images with high degree of structural similarities (such
as textures), it is outperformed in terms of both detail preservation and PSNR by
transform-domain methods (such as the BLS-GSM [PSWS03]).
Naturally, arises the question: can sparsifying transforms be combined with

nonlocal modeling so that both techniques complement each other?
A positive answer to the above question was …rst given in [P1] with the devel-

opment of what we call collaborative …ltering. The collaborative …ltering used by
the BM3D algorithm is a procedure that …lters jointly a group of similar blocks
and produces estimates for each one of them. The name collaborative stems from
the collaboration of individual grouped blocks in the …ltering of a whole group.
This collaboration is essentially achieved by exploiting both similarities between
grouped image blocks and similarities within each block. As discussed earlier in
Section 3.2,

² linear transforms can be particularly e¤ective in obtaining sparse represen-
tations when there exist correlations in the input signal and

² shrinkage is a powerful denoising tool that exploits sparse representations.

In line with these observations, we proposed as early as [P1] a collaborative …ltering
that comprises forward sparsifying 3-D transform T , shrinkage (denoted shrink),
and inverse 3-D transform T ¡1. A sparse representation after applying the 3-D
transform T enables the shrinkage to e¤ectively attenuate noise. An evaluation of
various separable 3-D transforms was done in [P2], which showed that the MSE
performance di¤erences are not signi…cant as long as the transform applied across
the third (temporal) dimension of a group has a DC basis element. This result can
be explained by the fact that the DC basis element (of the transform applied across
the third dimension of a group) is the one that incorporates the similarity between
the grouped blocks. In particular, the 3-D transforms that were used to generate
the results in [P2] are separable compositions of 1-D Haar dyadic decomposition
(across the third dimension of a group) and either a 2-D dyadic biorthogonal
wavelet decomposition or the 2-D DCT. The shrinkage operators exploited in [P2]
are either hard-thresholding or empirical Wiener …ltering. The former uses the
non-adaptive universal threshold and the latter requires preliminary estimates of
the magnitudes of all 3-D transform coe¢cients, the computation of which is dis-
cussed in Section 4.2. The output of the collaborative …ltering is essentially a 3-D
array, Ŷ3D

� , that contains an estimate of each pixel in each of the grouped blocks.
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4.1.3 Aggregation

After performing grouping and collaborative …ltering for all of the reference blocks
0�2
 , we obtain the …ltered groups Ŷ3D

�2
 . Each group Ŷ
3D
� contains an estimate

of its corresponding reference block as well as estimates of each grouped block.
Overlaps between these estimated blocks are practically inevitable, which means
that Ŷ3D

�2
 is a redundant representation of the denoised image. Thus arises the
question how should the obtained estimates be combined to form a single estimate
of the noise-free image. A very simple solution is, e.g., to average all estimated
blocks that overlap at a given pixel location. In [P1], we followed a more elaborate
and well established (see [KFEA10]) weighted averaging with weights

�� = 
¡2
°°°°°shrink

¡
T
¡
Z3D�

¢¢
T (Z3D� )

°°°°°
¡2

2

, (4.3)

where divisions are performed elementwise and a division by zero is assumed zero;
this equation is equivalent to Eqs. (10) and (11) from [P2], with shrink being
respectively hard-thresholding from Eq. (3.9) or empirical Wiener …ltering from
Eq. (3.8). There are a few important properties of these weights.

² The weights are approximately1 inversely proportional to the residual noise
variance in each of the groups.

² The weighted average is the maximum likelihood estimate of the denoised
pixel provided that the averaged pixel-estimates are unbiased, independent
and normally distributed, and their variances are the inverse of their weights.

² Another interpretation of the proposed weights is that sparser 3-D transform-
domain representations are given greater weights, i.e. manifested by a stronger
attenuation of the spectrum by the shrinkage.

It is also worth noting that the very same weight �� is assigned to each of the
estimates contained in Ŷ3D

� , including the reference block’s estimated pixels. That
means that there is no preference given for the reference block nor is there any
preference based on the block-distance to the reference. In addition, in [P2] we
proposed to further scale �� across each block so that the pixels at the border
of the block are given smaller weights and the central pixel is given the greatest
weight; this was realized with a Kaiser window.
Weighted averaging (as well as nonlocal image modeling) is exploited by both

the BM3D …lter and the nonlocal spatial …lters. Therefore, it is worth discussing
what are the fundamental di¤erences between these weighted averaging schemes.
Indeed, the BM3D …lter performs the actual noise attenuation by the shrinkage
used in the collaborative …ltering, which produces estimates for all pixels in each

1The word approximately is used since equality holds only if the grouped blocks are non-
overlapping and the shrinkage does not depend on the input noisy image. If some of the grouped
blocks overlap, which is very likely, then the noise in T

�
Z3D�

�
is correlated and taking into account

this correlation involves computationally very expensive procedures of detecting the overlaps and
computing the variance of each transform coe¢cient. In addition, both the hard-thresholding
and the empirical Wiener …ltering (used by the BM3D …lter) do depend on the input data.
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grouped block. Subsequently, weighted averaging is used only to combine esti-
mates that overlap at a given pixel location, if there exist such overlaps at all.
On the other hand, the nonlocal spatial …lters solely rely on weighted averag-
ing of noisy pixels to perform denoising, where the weights depend on similarities
between neighborhoods centered at the averaged pixels and the neighborhood cen-
tered around the estimated pixel. That is, the weighted averaging is the primary
denoising tool of the nonlocal spatial …lters — which is not the case with the
BM3D …lter.

4.2 Two-step implementation of the BM3D …lter

The overall BM3D …lter proposed in [P2] exploits the basic BM3D algorithm
described in Section 4.1 in two successive steps (illustrated in Fig. 3 of [P2]). In
the …rst step, the grouping is done by block-matching in the input noisy image
and the collaborative …ltering uses hard-thresholding shrinkage. In the second step,
the grouping is done by block-matching in the estimated image from the …rst step
and the collaborative …ltering exploits empirical Wiener …ltering, which utilizes
the estimated image from the …rst step to determine the shrinkage coe¢cients,
given in Eq. (8) in [P2]. In this context, the …rst step of this algorithm can
be viewed as an initialization step. The improvement contributed by the second
step can be explained as follows. Performing the block-matching (used by the
grouping procedure) in the initial estimate, rather than in the noisy image, means
that the noise is not a¤ecting the correctness of the block-matching. In addition,
the empirical Wiener …ltering is more e¤ective than hard-thresholding when the
estimate image from the second iteration is used for providing a reliable estimate
of the power spectrum of the 3-D groups. The bene…t of applying this two-step
estimation has been empirically con…rmed in every single experiment performed
by the author. The particular selection of hard-thresholding and empirical Wiener
…ltering for the …rst and the second steps, respectively, has also been a result
of an empirical optimization, where various other shrinkage schemes have been
considered.
The complexity of the BM3D algorithm is linear with respect to the number

of pixels in the image and the approximate number of arithmetic operations per
pixel is given in Section IV.A in [P2]. From there it is also evident that the
complexity can signi…cantly vary depending on various parameters — allowing a
trade-o¤ with the denoising quality. In particular, in [P2] we proposed what we
called “Fast Pro…le” with a set of algorithm parameters that reduce the complexity
…ve times as compared with the default parameters used there, which were called
“Normal Pro…le”. The performance (PSNR) di¤erence between these two pro…les
is mostly marginal as shown in Fig. 9 in [P2].

4.3 Highly sparse 3-D transform representation

Sparse image representation is a central topic of this thesis. In Section 2.1, sparse
representations were linked to the formation of vision in the brain and identi…ed
as very important concept in the modeling of natural-image statistics. In fact,
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the pursue of sparse image representations has long been established as one of the
main research problems for the latter. In the introduction (Chapter 3), sparse
representations were also identi…ed as a very important tool in image restoration.
In particular, the transform-domain …lters from Section 3.2 explicitly rely on sparse
transform-domain image representation to achieve denoising (e.g., by shrinkage).
In line with the above observations, the BM3D algorithm presented in Section

4.1 exploits grouping of similar blocks only in order to improve the sparsity of the
representation in the 3-D transform domain. Given the importance of sparsity, it
is interesting to see if the sparsity improvement of the BM3D can be measured in
objective manner.
Various measures of sparsity exist [HR08] and to this date there is no single

unanimously adopted such measure. Based on the study made in [HR08], we
adopted the Hoyer measure of sparsity, de…ned originally in [Hoy04] for a discrete
signal � with � elements as

Hoyer (�) =

p
�¡ k�k1 �k�k2p

�¡ 1

where k¢k� denotes the "-norm. The range of the this measure is [0	 1], where
unity (i.e. sparsest possible signal) is attained when there is only one nonzero
element in � and zero (i.e. least sparse signal) is attained when all elements of �
are equal. The values in between zero and unity are interpolating between these
two boundary cases.
We performed experiment where we computed the average Hoyer sparsity of

all noise-free groups’ 3-D transform spectra. For this experiment we used the
luminance of each of the 24 images from the Kodak dataset. For this experiment
we restricted the original BM3D algorithm to group only blocks that are not
mutually overlapping; this was done in order to have a fair comparison as otherwise
the sparsity can be seen as a result of grouping the very same data. The main result
of this experiment is given in Fig. 4.3, a comparison of the average sparsity of 3-D
transform spectra with the average sparsity of 2-D transform spectra. The used
3-D transform was a separable composition of a 2-D DCT (applied on each block)
and 1-D full dyadic Haar decomposition (applied across the third dimension). In
the case of using only a 2-D transform, we applied only the 2-D DCT on each of
the grouped blocks (thus skipping the 1-D transform across the third dimension).
In order to take into account the e¤ect of noise, the block-matching was performed
on images blocks corrupted by AWGN with 
 = 15— whereas the grouped blocks
were essentially noise-free. In addition, the experiments were performed with 8£8
blocks and maximum grouped &2 = 16. A conclusion that can be made from
the result given in Fig. 4.3 is that the 3-D transform domain representation is
consistently sparser than the 2-D transform representation (by more than a 10
per-cent increase in the Hoyer measure) for each of the 24 considered test images.

4.4 Links to human visual perception

In this section we make some speculations about possible links between the group-
ing procedure used by the BM3D and the human vision. In Section 2.1 we pointed



34 CHAPTER 4. BM3D: A NONLOCAL TRANSFORM-DOMAIN FILTER

1 3 5 7 9 11 13 15 17 19 21 23 24

0.7

0.75

0.8

0.85

0.9

0.95

1

Kodak image index

H
oy

er
 sp

ar
sit

y 
m

ea
su

re

Figure 4.3: Comparison of the average sparsity of 3-D transform spectra (red) with
the average sparsity of 2-D transform spectra (blue). The Hoyer sparsity measure
is averaged over all noise-free groups’ spectra.

out to evidence (prior work) that simple cells in the V1 of the visual cortex re-
spond to simple local oscillations that vary in orientation and scale. An important
question that arises is how are the individual responses combined for the purpose
of subsequent processing such as recognition. Interestingly, the Gestalt theory
[Kof35], which o¤ers a non-constructive answer to this question, had been estab-
lished in the beginning of the twentieth century — much earlier than the question
above had arisen. In the context of vision, the Gestalt theory speci…es that per-
ceptual grouping occurs in the brain so that a whole (i.e. Gestalt) is perceived
rather than a collection of the (various) individual objects that form it. That is,
”the whole is greater than the sum of its parts”. Various principles (laws) of per-
ceptual grouping have been proposed. The principle of similarity says that similar
objects tend to be perceived as a whole within a larger context of objects that are
not similar. The principle of proximity says that objects that are mutually closer
(as compared to other objects) are perceived as a whole. The principle of good
continuity says that geometrically continuous (rather than discontinuous) objects
are perceived as a whole. Other principles include the principles of symmetry, of
closure, of common fate. Whereas the Gestalt theory does not specify how the
perceptual grouping is realized in the brain, neuroscientists have …lled that gap.
Recent works [FH04, Lee03] suggest that complex feed-forward and feed-back con-
nections between neurons in V1 of the visual cortex are responsible for some of the
Gestalt groupings. This is a signi…cant advance from the traditional understanding
that neurons in V1 are fully characterized by the their individual response …elds
(i.e. ones that resemble the basis elements of multiscale decompositions).
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In the context of Gestalt perceptual grouping, the grouping done by the BM3D
…lter can be seen as incorporating at least: the principle of similarity by grouping
blocks that are similar to a reference block; the principle of proximity by grouping
only blocks that are in a …xed search neighborhood around the reference block.
That is, the grouping done by the BM3D …lter exploits these principles in order
to capture structural similarities in the image. This behavior is well illustrated
in Fig. 4.1, where we show some grouped blocks which follow the structure of
underlying objects (such as edges).

4.5 Extensions

In this section we consider extensions of the BM3D …lter that attempt to further
increase the sparsity of representing images in local 3-D transform domain. We
consider extension to anisotropic neighborhoods and to data-adaptive PCA in the
following sub-sections.

4.5.1 SA-BM3D: extension to anisotropic neighborhoods

The similarity between grouped blocks was shown (Section 4.3) to improve the
sparsity in 3-D transform domain, which results in improved denoising results.
A signi…cant contribution to this sparsity comes from the intra-block similarity,
or to put it more precisely, the ability of the transform to represent sparsely
individual blocks. In particular, the BM3D …lter uses square blocks of …xed size.
It is thus interesting to know if employing neighborhoods that are not square can
be bene…cial for improving the sparsity. The exploitation of neighborhoods of
adaptively varying shapes has already been identi…ed as a solution to this problem
by the P.SA-DCT …lter [FKE07a]. This …lter uses adaptive-shape neighborhoods,
within which the noise-free signal is assumed to be highly homogeneous. This
allows sparse representation of these neighborhoods in SA-DCT domain. The
shapes of these neighborhoods are adaptively determined from the input image
using the directional LPA-ICI estimator.
In pursue of improving the BM3D …lter by increasing the sparsity in the 3-

D transform domain, in [P7] we proposed a joint generalization of the BM3D
and the P.SA-DCT …lters. This method, termed SA-BM3D, exploits grouping
of similar adaptive-shape neighborhoods into 3-D groups, which are generalized
cylinders with adaptive-shape cross sections. In this manner, both the nonlocal
image modeling and the local adaptivity to image details are exploited. The corre-
lation (similarity) between the true-signal components within a group is increased
as compared with the BM3D where the 3-D groups are parallelograms with …xed
square cross-sections. The collaborative …ltering of such groups uses a 3-D trans-
form that is a separable composition of the (2-D) SA-DCT and the 1-D Haar
dyadic decomposition. The overall algorithm in [P7] utilizes the same two-step
procedure as the BM3D, where shrinkage by hard-thresholding is used in the …rst
step and empirical Wiener …ltering is used in the second step. We showed in
[P7] that the developed SA-BM3D inherits the strengths of both the P.SA-DCT
and the BM3D …lters and outperforms both of them especially in terms of visual
quality (i.e. lack or artifacts and preservation of edges).
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Figure 4.4: Flowchart of the BM3D-SAPCA algorithm.

4.5.2 BM3D-SAPCA: extension to data-adaptive PCA rep-
resentations

In the previous section, we presented the SA-BM3D …lter which uses adaptive-
shape neighborhoods in order to increase the spatial correlation and consequently
the sparsity as compared with the BM3D. However, even though the neighborhoods
have adaptive shapes, the SA-DCT basis is still …xed for any given shape; i.e. the
basis elements do not adapt to the signal within the grouped neighborhoods.

In order to enable data-adaptivity of the applied shape-adaptive transform, in
[P8] we proposed the BM3D-SAPCA …lter that uses principal component analysis
(PCA) as part of the 3-D transform. Given a 3-D group of adaptive-shape image
patches, the PCA basis is obtained by eigenvalue decomposition of an empirical
second-moments matrix computed from these patches. Subsequently, the PCA
basis is trimmed from those principal components whose corresponding eigenvalues
are smaller than a threshold that is proportional to the noise variance. Hence, the
overall 3-D transform is a separable composition of the PCA (applied on each
adaptive-shape neighborhood) and the 1-D …xed Haar dyadic decomposition in
the third dimension. In [P8] we showed that the BM3D-SAPCA is competitive
and outperforms the current best denoising methods, including the BM3D …lter
that it generalizes, particularly in preserving image details and producing very few
artifacts.
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4.6 Results and discussion

Before we present the experiments with the BM3D …lter and its extensions, we wish
to mention some works that have already evaluated the BM3D …lter and which
are not authored by collaborators of the author of the thesis. A psycho-visual
experiment that evaluated images …ltered by various image denoising methods
was performed by the authors of [VVdWPK06]. This experiment showed that
the images denoised by a preliminary version of the BM3D …lter have on average
achieved the highest scores. In another more recent work [CM09b], the authors
study the performance bounds of image denoising methods and in particular show
that the BM3D is among the best performing methods considered therein.
In the sequel of this section we present experimental results that are mostly

complementary to the ones already provided in [P2], [P7], and [P8]. All of these
results are obtained by applying each of the compared methods on exactly the
same noisy images, i.e. using exactly the same arti…cial AWGN realizations. These
results were initially collected in [KFEA10] and in this thesis are used with the
permission of the authors of this article. The same ten standard test images
used therein are used in this thesis but we consider only the ten best-performing
methods from these results; this is done mainly due to space constraints. Thus,
the results of methods such as the NL-means and the LPA-ICI are left out of
the comparisons considered in this work; for a more comprehensive comparison
that includes these and other works, one should see [KFEA10]. We would like to
note that the results of the BM3D algorithm can be reproduced by the publicly
available Matlab script in [DF].
In Tables 4.1 and 4.2, we compare the current state-of-the-art in image denois-

ing, including the BM3D, its generalizations, and also recent developments such as
the MS-K-SVD [MSE08], the P.SA-DCT …lter [FKE07a], the OA-GSM [HS08],
the SA-FIR [KB08]. The methods presented in the tables are ordered from left
to right by decreasing average PSNR/SSIM result. In addition the results listed
in these tables, Fig. 4.7 contains plots with PSNR comparisons of the considered
methods. In order to present objective results that are more closely related to the
perceived image quality than the PSNR, in Tables 4.3 and 4.4, we present SSIM
[WBSS04] results of the compared works. Evaluation of the visual quality can be
done in Figs. 4.5 and 4.6, where we compare fragments of images …ltered with all
of the considered methods.
The BM3D …lter and its extensions are shown in Tables 4.1, 4.2, 4.3, and 4.4

to outperform the other considered works in terms of PSNR and SSIM. Notably,
these good results also correspond to superior detail preservation as can be seen in
Figs. 4.5 and 4.6. It is noteworthy that we do not include the results of the recent
K-LLD method [CM09a]; however, the referred article contains comparisons which
show that while the K-LLD is competitive with the current best methods, it is
outperformed in PSNR by the BM3D …lter for the considered experiments.
It is noteworthy that the PSNR and the SSIM results given in Tables 4.1 and

4.2 are in mutual agreement in almost all of the cases; i.e., the ranking of the
methods based on their PSNR and SSIM results are the same except for few cases.
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Table 4.1: Comparison of the PSNR [dB] results of the current state-of-the-art
image denoising methods. Methods are ordered from left to right by decreasing
average PSNR result.

 BM3D - SA- BM3D MS-K- SA- K- OA- SAFIR BLS- TLS

SAPCA BM3D SVD DCT SVD GSM GSM
[P8] [P7] [P2] [MSE08] [FKE07a] [EA06] [HS08] [KB08] [PSWS03] [HP06]

Montage
5 41.47 41.33 41.14 40.96 40.97 40.09 39.14 39.40 39.09 36.18
15 35.75 35.47 35.15 34.77 34.91 33.86 33.03 33.27 32.93 32.16
20 34.17 33.93 33.61 33.29 33.36 32.34 31.43 31.75 31.32 30.50
25 32.97 32.74 32.37 32.02 32.11 31.13 30.17 30.55 30.07 29.66
35 30.88 30.80 30.46 30.12 30.12 29.30 28.27 28.73 28.21 28.00

Cameraman
5 38.57 38.41 38.29 38.36 38.15 37.87 37.40 37.31 37.47 37.54
15 32.37 32.09 31.91 31.79 31.69 31.47 30.93 30.46 30.91 30.96
20 30.88 30.62 30.48 30.43 30.18 30.00 29.45 29.29 29.43 29.47
25 29.81 29.58 29.45 29.39 29.11 28.89 28.37 28.47 28.34 28.39
35 28.17 28.02 27.93 27.84 27.51 27.32 26.84 27.24 26.78 26.85

Boats
5 37.50 37.30 37.28 37.36 37.14 37.24 37.03 36.25 36.99 37.09
15 32.30 32.07 32.14 32.14 31.79 31.77 31.72 31.52 31.72 31.59
20 31.02 30.81 30.88 30.86 30.49 30.39 30.41 30.32 30.40 30.25
25 30.03 29.84 29.91 29.85 29.48 29.32 29.40 29.36 29.39 29.21
35 28.52 28.37 28.43 28.37 27.93 27.71 27.91 27.91 27.92 27.69

Lena
5 38.86 38.75 38.72 38.81 38.54 38.62 38.52 38.00 38.53 38.64
15 34.43 34.28 34.27 34.14 33.87 33.71 34.04 33.81 33.93 33.97
20 33.20 33.05 33.05 32.87 32.63 32.39 32.81 32.71 32.69 32.69
25 32.23 32.07 32.08 31.96 31.66 31.36 31.83 31.82 31.71 31.69
35 30.72 30.57 30.56 30.40 30.18 29.71 30.35 30.42 30.22 30.18

House
5 40.05 39.90 39.83 39.91 39.38 39.34 38.93 38.14 38.67 39.15
15 35.17 35.06 34.94 34.96 34.14 34.25 33.73 33.90 33.60 33.82
20 33.90 33.85 33.77 33.67 32.92 33.10 32.52 32.94 32.35 32.58
25 32.96 32.91 32.86 32.71 31.93 32.07 31.54 32.14 31.35 31.60
35 31.38 31.43 31.38 31.10 30.39 30.29 29.98 30.75 29.81 30.07

Barbara
5 38.38 38.14 38.31 38.34 37.49 38.11 37.97 37.02 37.81 38.19
15 33.32 32.96 33.11 33.00 31.39 32.41 32.25 32.00 31.90 32.55
20 32.01 31.67 31.78 31.59 30.00 30.84 30.76 30.60 30.35 31.06
25 31.00 30.65 30.72 30.34 28.95 29.58 29.58 29.39 29.15 29.89
35 29.35 28.95 28.98 28.63 27.35 27.70 27.81 27.45 27.35 28.12
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Table 4.2: Comparison of the PSNR [dB] results of the current state-of-the-art
image denoising methods. The last …ve rows contain the average PSNR result
over all 10 test images considered in this table and in Table 4.1. The methods are
ordered from left to right by decreasing average PSNR results.

 BM3D - SA- BM3D MS-K- SA- K- OA- SAFIR BLS- TLS

SAPCA BM3D SVD DCT SVD GSM GSM
P8 P7 P2 [MSE08] [FKE07a] [EA06] [HS08] [KB08] [PSWS03] [HP06]

Peppers
5 38.34 38.21 38.12 38.22 37.99 37.79 37.31 37.22 37.31 37.22
15 32.95 32.68 32.70 32.45 32.45 32.20 31.82 32.09 31.82 32.09
20 31.55 31.22 31.29 31.07 31.04 30.80 30.40 30.81 30.40 30.81
25 30.43 30.08 30.16 30.05 29.92 29.67 29.29 29.79 29.29 29.79
35 28.74 28.35 28.52 28.37 28.27 28.04 27.64 28.24 27.64 28.24

Couple
5 37.63 37.56 37.52 37.57 37.36 37.33 37.13 36.79 37.13 36.79
15 32.24 32.14 32.11 31.99 31.78 31.47 31.50 31.50 31.50 31.50
20 30.88 30.79 30.76 30.61 30.39 30.02 30.14 30.19 30.14 30.19
25 29.82 29.73 29.72 29.55 29.32 28.88 29.11 29.15 29.11 29.15
35 28.23 28.14 28.15 28.00 27.71 27.09 27.61 27.55 27.61 27.55

Hill
5 37.30 37.16 37.14 37.18 37.03 37.03 36.99 36.54 36.99 36.54
15 32.05 31.86 31.86 31.90 31.60 31.47 31.48 31.34 31.48 31.34
20 30.85 30.69 30.72 30.70 30.40 30.19 30.28 30.20 30.28 30.20
25 29.96 29.82 29.85 29.80 29.50 29.23 29.39 29.35 29.39 29.35
35 28.62 28.53 28.56 28.45 28.22 27.79 28.13 28.11 28.13 28.11

Man
5 38.03 37.84 37.82 37.88 37.63 37.53 37.53 37.03 37.53 37.03
15 32.20 31.94 31.93 31.86 31.70 31.52 31.66 31.53 31.66 31.53
20 30.83 30.59 30.59 30.52 30.32 30.16 30.29 30.25 30.29 30.25
25 29.81 29.61 29.62 29.59 29.32 29.08 29.29 29.30 29.29 29.30
35 28.39 28.23 28.22 28.17 27.91 27.62 27.83 27.97 27.83 27.97

Average (over 10 test images)
5 38.61 38.46 38.42 38.46 38.17 38.10 37.79 37.37 37.75 37.56
15 33.28 33.05 33.01 32.90 32.53 32.41 32.22 32.14 32.14 32.10
20 31.93 31.72 31.69 31.56 31.17 31.02 30.85 30.91 30.75 30.71
25 30.90 30.70 30.67 30.52 30.13 29.92 29.80 29.93 29.70 29.69
35 29.30 29.14 29.12 28.95 28.56 28.26 28.24 28.44 28.14 28.14
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Table 4.3: Comparison of the SSIM results (multiplied by 1000) of the current
state-of-the-art image denoising methods. The methods are ordered from left to
right by decreasing average SSIM results.

 BM3D - SA- BM3D MS-K- SA- K- OA- SAFIR BLS- TLS

SAPCA BM3D SVD DCT SVD GSM GSM
P8 P7 P2 [MSE08] [FKE07a] [EA06] [HS08] [KB08] [PSWS03] [HP06]

Montage
5 982 983 982 980 981 971 977 967 974 967
15 956 955 954 950 951 927 939 922 932 917
20 943 941 940 938 936 910 923 903 916 894
25 930 927 926 924 922 895 907 886 901 873
35 904 899 896 892 893 869 875 853 872 834

Cameraman
5 963 962 962 962 961 953 959 951 955 953
15 910 903 901 900 902 882 894 875 863 872
20 886 877 875 878 875 853 864 842 837 838
25 864 856 854 857 852 830 837 816 818 809
35 828 823 822 819 815 796 796 777 790 762

Boats
5 944 940 939 941 940 937 941 935 921 934
15 857 853 854 856 848 841 842 845 835 846
20 829 824 826 825 816 809 804 813 803 814
25 804 799 801 798 789 780 772 786 775 786
35 762 757 759 753 740 732 720 740 728 738

Lena
5 946 945 944 947 944 944 946 942 938 942
15 898 896 896 895 891 891 885 891 887 889
20 881 878 877 876 872 872 863 873 870 869
25 865 861 861 861 855 855 843 857 854 851
35 837 831 831 830 825 826 808 829 828 821

House
5 960 958 957 958 955 950 954 947 932 942
15 899 897 891 897 882 872 877 869 866 866
20 876 876 873 871 862 853 860 851 854 846
25 861 861 859 856 847 838 845 837 844 829
35 838 838 837 832 822 814 814 811 825 798

Barbara
5 966 965 965 965 963 963 964 962 957 961
15 926 923 923 921 910 912 910 909 904 901
20 909 906 905 901 886 889 881 883 876 871
25 894 888 887 879 862 866 850 856 844 842
35 861 850 848 836 811 820 795 807 785 787
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Table 4.4: Comparison of the SSIM results (multiplied by 1000) of the current
state-of-the-art image denoising methods. The last …ve rows contain the average
SSIM results over all 10 test images considered in this table and in Table 4.3. The
methods are ordered from left to right by decreasing average SSIM results.

 BM3D - SA- BM3D MS-K- SA- K- OA- SAFIR BLS- TLS

SAPCA BM3D SVD DCT SVD GSM GSM
P8 P7 P2 [MSE08] [FKE07a] [EA06] [HS08] [KB08] [PSWS03] [HP06]

Peppers
5 957 956 956 957 955 948 954 948 949 948
15 907 907 907 900 902 883 898 888 893 884
20 887 887 887 882 881 860 876 865 873 858
25 869 868 868 863 862 839 855 843 854 834
35 836 835 834 826 827 804 819 804 822 792

Couple
5 953 952 951 952 950 947 950 947 945 947
15 878 877 877 875 868 855 855 861 856 861
20 849 848 848 843 835 819 815 828 822 827
25 821 820 820 812 805 787 779 798 791 796
35 773 770 771 762 750 731 712 748 735 744

Hill
5 945 943 943 944 943 941 943 941 937 940
15 846 839 839 844 832 829 823 827 814 827
20 809 803 804 804 792 788 777 788 775 788
25 779 774 775 773 759 755 740 755 744 756
35 730 726 728 721 709 704 683 706 697 706

Man
5 957 954 954 955 952 949 951 951 948 951
15 874 867 867 867 861 855 855 859 853 859
20 841 832 833 832 823 819 815 823 816 822
25 811 803 805 804 791 789 779 792 785 790
35 763 756 758 754 741 740 725 740 739 737

Average (over 10 test images)
5 957 956 955 956 954 950 954 949 946 949
15 895 892 891 891 885 875 878 875 870 872
20 871 867 867 865 858 847 848 847 844 843
25 850 846 846 843 834 823 821 823 821 817
35 813 809 808 802 793 784 775 781 782 772
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Original Noisy 
 = 25 BLS-GSM [PSWS03]
PSNR 20.15, SSIM 0.336 PSNR 28.34, SSIM 0.808

TLS [HP06] SAFIR [KB08] OA-GSM [HS08]
PSNR 28.40, SSIM 0.830 PSNR 28.47, SSIM 0.818 PSNR 28.37, SSIM 0.815

K-SVD [EA06] P.SA-DCT [FKE07a] MS-K-SVD [MSE08]
PSNR 28.89, SSIM 0.837 PSNR 29.11, SSIM 0.851 PSNR 29.39, SSIM 0.857

BM3D [P2] SA-BM3D [P7] BM3D-SAPCA [P8]
PSNR 29.45, SSIM 0.854 PSNR 29.58, SSIM 0.855 PSNR 29.81, SSIM 0.864

Figure 4.5: Fragment of Cameraman …ltered by the current state-of-the-art de-
noising methods; in addition, the noisy (
=25) and the original fragments are also
shown.
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Original Noisy 
 = 25 BLS-GSM [PSWS03]
PSNR 20.17, SSIM 0.401 PSNR 29.15, SSIM 0.842

TLS [HP06] SAFIR [KB08] OA-GSM [HS08]
PSNR 29.89, SSIM 0.865 PSNR 29.39, SSIM 0.843 PSNR 29.58, SSIM 0.856

K-SVD [EA06] P.SA-DCT [FKE07a] MS-K-SVD [MSE08]
PSNR 29.58, SSIM 0.850 PSNR 28.95, SSIM 0.862 PSNR 30.34, SSIM 0.878

BM3D [P2] SA-BM3D [P7] BM3D-SAPCA [P8]
PSNR 30.71, SSIM 0.887 PSNR 30.65, SSIM 0.888 PSNR 31.00, SSIM 0.894

Figure 4.6: Fragment of Barbara …ltered by the current state-of-the-art denoising
methods; in addition, the noisy (
=25) and the original fragments are also shown.
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Figure 4.7: Comparison of the PSNR results of the considered state-of-the-art
methods for eight test images. For improved visibility, we set the results of the
BM3D-SAPCA as reference zero and present only the PSNR di¤erences with this
particular method, which, in almost all cases, outperforms the others.



Chapter 5

Applications of the BM3D
Filter

In this chapter we consider application of the BM3D …ltering to:

² video denoising (Section 5.1),

² raw image denoising (Section 5.2),

² RGB-image denoising (Section 5.3),

² image deblurring (Section 5.4),

² image sharpening (Section 5.5).

These applications, except for the denoising of raw sensor images, are based on the
articles that are part of this compound thesis. In addition to these applications,
however, there exist quite a few other applications of the BM3D …lter, some of
which are:

² cross-color …ltering of noisy raw images [DVF+09],

² multiframe raw-image denoising [BF08],

² image and video super-resolution [DFKE08],

² image deblurring via nonlocal variational minimization [KE08],

² noise variance estimation [DF09].

5.1 Video denoising

In this section we consider the denoising of AWGN from video data, a problem that
is nearly as signi…cant a research topic as the denoising of AWGN from images.
While the various …ndings about natural image statistics discussed in Section 2.1
are also relevant for individual video frames, the video data has one key property

45
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that is of notable importance in video processing — i.e. correlation between suc-
cessive frames that capture the same scene. That is, video data exhibits strong
correlations in both spatial (intra-frame) and temporal (inter-frame) dimensions.
In particular, the authors of [VHR98] have shown that the 3-D spatio-temporal
independent components of natural image sequences are oscillations with varying
scales and orientations, in analogy with the independent components of images.
Similar results were obtained in [Ols03a] for the basis elements of overcomplete
spatio-temporal linear representations that maximize sparsity. In the recent study
[WL09], image sequences were shown to exhibit a strong prior of temporal smooth-
ness, manifested by low temporal variation of the phases in complex-wavelet trans-
form domain. Not surprisingly, temporal correlations are of fundamental impor-
tance to video coding (MPEG 1, 2, and 4, etc.), where predictions from neighboring
frames are exploited. These predictions are realized by estimating the motion of
small blocks between successive frames, which allows to code motion vectors rather
than the blocks themselves and thus signi…cant compression is achieved.

Linear transforms are an important and commonly used tool for obtaining
sparse representations of video data, where both the inter- and the intra-frame
correlations discussed above are typically exploited. Indeed, most of the current de-
velopments in video denoising, such as [BZE06, ZPP06, RAS07, SL03, GSP07], em-
ploy some transforms, such as multiscale decompositions, the DCT, etc. Wavelet
decompositions in both spatial and temporal dimensions were used in [BZE06],
where noise was attenuated by a two-threshold shrinkage of the spatial wavelet
spectrum and by hard-thresholding of the temporal wavelet spectrum where the
threshold is adaptive with respect to detected motion. The 3-D dual-tree complex-
wavelet decomposition used in [SL03] allowed for directional selectivity (in three
dimensions) that resulted in sparse representation of objects that are moving across
successive frames as well as of objects characterized by intra-frame correlations.
Wavelet packets in 3-D spatio-temporal domain, combined with adaptive soft-
thresholding were proposed in [RYW04] for video denoising. A wavelet decom-
position in spatial domain was used [GSP07] in conjunction with the 1-D DCT
in temporal dimension, where the shrinkage threshold is adaptive and captures
inter-scale wavelet coe¢cient dependencies. Inter-frame statistical modeling of
wavelet coe¢cients was employed by [RAS07]. There are also methods that ex-
ploit wavelet decomposition only in spatial domain. In [ZPP06], an overcomplete
wavelet decomposition is applied on each frame; the noise attenuation is done by
motion-adaptive recursive temporal …ltering on each subband, followed by adaptive
smoothing of the (spatial) wavelet coe¢cients. The 2-D dual-tree complex wavelet
was applied on each frame in [JFW06], motion was estimated using multiresolu-
tion block-matching and then noise was attenuated by an adaptive 2-D shrinkage
combined with temporal Kalman …ltering. Adaptive transforms by training a
dictionary of atoms was recently employed in [PE09]. The obtained adaptive dic-
tionary is composed of 3-D atoms, which can represent sparsely spatio-temporal
patches. This work is an extension of the K-SVD [EA06] …lter to image sequences
and achieves results that are among the state-of-the-art.

The non-local image modeling has a quite natural application to video process-
ing and denoising since structural similarities between image patches can be sought
not only in one frame but in many successive ones. Closely related to the non-
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local …ltering scheme, the video-denoising method proposed in [RE05] and later
extended in [S2] exploits grouping of similar blocks (restricted to one block per
frame) and denoising by hard-thresholding in 3-D DCT domain — in analogy with
the BM3D nonlocal transform-domain image denoising. Among the …rst methods
to explicitly exploit the nonlocal modeling for video-denoising, however, were the
nonlocal spatial estimators [BCM05a, MS05]. The video-denoising counterpart of
the NL-means [BCM05a] extends the search for similar blocks to spatio-temporal
search neighborhoods. A similar denoising scheme [MS05] appeared at approxi-
mately the same time, which emphasized that the nonlocal modeling is particularly
e¤ective in exploiting correlations that are due to motion of objects across suc-
cessive frames. Later developments in nonlocal spatial …ltering have since been
proposed in [BKB07, BCM08, SM08]. The space-time adapted patch-based video
restoration [BKB07] proposed weighted averaging of image patches that belong to
an adaptively-grown neighborhood around the current pixel. The recent extension
[SM08] of this method showed that it can be improved by exploiting higher order
regression model of the true signal within each neighborhood.
Extending the previous works [RE05] and [S2], in [P4] we proposed the VBM3D

video-denoising method, which can be interpreted as a generalization of the BM3D
…lter to video denoising. The VBM3D follows the two-step BM3D algorithm
(Section 4.2) but performs the search for similar blocks not only within a single
frame but also within neighboring frames. The resultant search neighborhood is
therefore a spatio-temporal (3-D) one. In addition, for the VBM3D we proposed
a procedure termed predictive search block-matching which searches for similar
blocks in adaptive spatio-temporal neighborhoods, which are adaptively to motion.
This procedure reduces signi…cantly the computational cost and enables e¢cient
capturing of similar blocks that follow the motion of objects across frames. As in
the BM3D …lter, collaborative …ltering by transform domain shrinkage is applied
to produce estimates of all grouped blocks. The VBM3D was shown [P4] to be
very e¤ective for video denoising and it is still regarded as state-of-the-art, just as
its image-denoising counterpart.

5.1.1 Results

We consider experiments performed with the VBM3D method, an implementation
of which is publicly available [DF] and all results presented here and in [P4] can be
reproduced with it. Since in [P4] we already evaluated the PSNR performance of
theVBM3D …lter for a variety of standard image sequences, here we concentrate on
comparisons with other works, some of which have been developed after [P4] was
published. The results of the 3DWTF [SL03] and the WRSTF [ZPP06] methods,
as well as the original and noisy test sequences used in our experiments are all
courtesy of Dr. Zlokolica, the …rst author of [ZPP06]. The rest of the results were
obtained from the authors of each of the methods. In Fig. 5.1 we compare the
PSNR-per-frame for the three image sequences that we consider (i.e., Salesman,
Flower garden, and Tennis). These results show that the VBM3D outperforms
the other works in most of the cases, except for the Tennis sequence where the
3D-K-SVD is the best performing method for some of the frames but still, the
VBM3D results are relatively very close (within 0.3 dB di¤erence). Figs. 5.2,
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Figure 5.1: PSNR-per-frame comparison between some of the current state-of-the-
art video denoising methods for Flower garden, Tennis, and Salesman sequences,
corrupted by AWGN with 
=20.
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Original fragment Noisy (
 = 20) STPB [BKB07]
PSNR 24.55

TMMC [GAML07] IFSM [RAS07] 3DWTF [SL03]
PSNR 24.16 PSNR 25.22 PSNR 26.05

WRSTF [ZPP06] 3D-K-SVD [PE09] VBM3D [P4]
PSNR 26.40 PSNR 27.55 PSNR 28.38

Figure 5.2: Fragment of Flower garden sequence …ltered by some of the current
state-of-the-art denoising methods; in addition, the noisy (
=20) and the original
fragments are also shown.
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Original fragment Noisy (
 = 20) TMMC [GAML07]
PSNR 27.78

IFSM [RAS07] STPB [BKB07] 3DWTF [SL03]
PSNR 29.90 PSNR 30.47 PSNR 32.90

WRSTF [ZPP06] 3D-K-SVD [PE09] VBM3D [P4]
PSNR 33.09 PSNR 33.43 PSNR 34.64

Figure 5.3: Fragment from frame 30 of Salesman sequence …ltered by some of the
current state-of-the-art denoising methods; in addition, the noisy (
 = 20) and
the original fragments are also shown.
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Original fragment Noisy (
 = 20) TMMC [GAML07]
PSNR 26.56

IFSM [RAS07] STPB [BKB07] 3DWTF [SL03]
PSNR 27.30 PSNR 26.69 PSNR 28.03

WRSTF [ZPP06] 3D-K-SVD [PE09] VBM3D [P4]
PSNR 27.50 PSNR 29.00 PSNR 28.71

Figure 5.4: Fragment from frame 30 of Tennis sequence …ltered by some of the
current state-of-the-art denoising methods; in addition, the noisy (
=20) and the
original fragments are also shown.
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5.3, and 5.4 present a visual comparison denoising results for fragments of frame
30 of each of the three considered video sequences. In particular, we notice that
both the 3D-K-SVD and the VBM3D achieve better detail preservation for Flower
garden than the other methods. For Salesman, on the other hand, the VBM3D
is the best performing method especially in reconstructing the hand of the man,
which is a fast moving object in this particular sequence. The static background is
equally well reconstructed by the 3D-K-SVD. Finally, for the fragment of Tennis,
we notice that the VBM3D reconstructs well the objects but the background,
which resembles a noise-like pattern, is somewhat better reconstructed by the
3D-K-SVD.

5.2 Practical denoising of digital photographs

As discussed in Section 1.1, the acquisition of digital photographs involves op-
tics, image sensor, and image postprocessing chain. Since denoising is part of the
postprocessing, there arises the question at which point should the denoising be
performed — as the very …rst operation or after some other processing has already
been done. Let us recall that a noise model of raw sensor images was given in Sec-
tion 1.1, i.e. uncorrelated signal-dependent (Poissonian-Gaussian) noise given by
Eq. (2.4). If a raw image that follows this model undergoes some of the var-
ious postprocessing operations in an image postprocessing chain [KWCL06], the
noise is no longer uncorrelated. The correlations depend on the particular process-
ing applied and, in general, are not trivially modeled, especially when nonlinear
processing is used. Thus, in practical image denoising of digital photographs, the
case of denoising applied directly on raw sensor data is preferable since a valid
noise model is available.
Expectably, the BM3D …lter cannot be directly applied on noisy images that

contain signal-dependent noise since it assumes AWGN model, for which the noise
has constant variance. To take into account the signal-dependent nature of the
noise, two practical approaches can be considered. The …rst and quite natural ap-
proach is to use a …lter which is speci…cally designed to attenuate signal-dependent
noise, such as [FBKE06, FKE07b]. The second approach is to successively do the
following:

² apply a variance-stabilizing transformation (e.g. [Ans48, PS81, Foi09]) on
the noisy image, which aims at producing an image with constant variance,

² apply a …lter for AWGN,

² inverse the variance stabilizing transformation.

Since the goal of this work is to demonstrate the e¤ectiveness of the BM3D
…lter for denoising raw sensor images, we undertake the second approachmentioned
above, where we use the variance stabilizing transformation proposed from [Foi09]
and the BM3D …lter from [P2].
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Figure 5.5: The Bayer CFA pattern.

5.2.1 Processing of raw Bayer images

It is worth discussing some properties of raw sensor images before we discuss their
denoising. The most widely adopted technique to reproduce colors in digital image
acquisition devices [Nak06] is the application of a color …lter array (CFA), i.e. an
optical …lter that speci…es the sensitivity of each pixel to certain spectral band
in the visible range. The overall array is obtained by a repetition of a particular
pattern, a consequence of which is that a raw CFA image resembles a mosaic.
Arguably the most widely adopted pattern, the Bayer pattern is formed by a
repetition of a 2£2 array that contains four components: two green pixels along a
diagonal, one red, and one blue; the Bayer pattern is illustrated in Fig. 5.5. In this
work, as the name of this subsection suggests, we consider exclusively denoising of
raw Bayer images. Demosaicking is the operation of interpolating the missing color
components; a review of recent demosaicking methods can be found in [Pal07].
Since the BM3D …lter does not assume any particular spatial smoothness, it

can be applied directly on raw Bayer images, i.e. images with mosaic appearance
where the four components are interleaved according to the pattern from Fig. 5.5.
Let us discuss why it is not surprising that the BM3D …lter can be applied on
raw CFA images. Indeed, the regularity of the CFA pattern enables its sparse
transform-domain representation — similarly to what happens with uniformly
regular areas that are also represented sparsely. Even more important than the
regularity of the mosaic structure is the similarity between image patches — a key
requirement for the BM3D algorithm to e¤ectively attenuate noise. Indeed, due
to the repetitive nature of the CFA, the existence of similar image patches in the
(unknown) image results in correlations between the corresponding patches that
are sampled according the CFA. Whereas we consider only raw Bayer images, the
approach presented in this work is not restricted to this particular CFA and, in
fact, the structure of the Bayer pattern is not utilized at all by the …ltering scheme
proposed above.
As mentioned earlier we consider raw images corrupted by the Gaussian-Poissonian

noise introduced in Section 2.2.3. In order to apply the BM3D …lter on such im-
ages, we need to perform variance stabilization as in [Foi09], which requires the
noise-model parameters to be either a priori known or estimated. For this work we
use the estimation procedure from [FTKE08] which estimates the noise parame-
ters from the input noisy image. It is noteworthy that the noise-model estimation
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from [FTKE08] also models possible clipping of the data due to under- or over-
exposures.
A method for denoising raw sensor images that uses the BM3D …lter in a man-

ner that is very similar to what we propose above has been proposed in [DVF+09].
This method applies a slightly modi…ed BM3D …lter on a raw Bayer image prior to
demosaicking. This slight modi…cation concerns the block-matching being applied
only on blocks that are aligned at the same Bayer component. In other words,
only blocks that contain identical Bayer pattern are considered; e.g. if the upper-
left pixel of a block is a red, then the matching is done only on blocks with red
upper-left pixels. The same work presents an interesting experimental result: the
BM3D …lter is more e¤ective when applied directly on a raw Bayer image rather
than when applied independently on each of the four Bayer components.

5.2.2 Results

We present results that were obtained with the publicly available Matlab script
which implements the variance stabilizing and the declipping transformations from
[Foi09], which script uses the (clipped) noise modeling from [FTKE08] and also
invokes the standard BM3D which is available at [DF]. We consider four raw
Bayer images with resolution 5 MPix, the G1 green channels of each are in the
upper-left parts of Figs. 5.8, 5.9, 5.6, and 5.7. These images are taken in relatively
dimly illuminated conditions, which has resulted in relatively low SNR, which can
be observed in the green components of each raw image. In the above mentioned
…gures, we present the denoised counterparts of the noisy images. In order to
better visualize the improvement of the denoising, we have applied an identical
postprocessing chain to each of the …ltered and the original images and have thus
obtained their corresponding RGB-images. Fragments of the RGB images are used
to further show the signi…cant improvement after applying the proposed denoising
scheme.

5.3 Denoising of color RGB-images

In Section 5.2 we considered denoising of raw Bayer images where a practical signal-
dependent noise model was considered. The situation when raw images are not
provided and only a noisy RGB image is available is considered in [P3]. There we
propose an extension of the BM3D …lter, termed CBM3D, for denoising of AWGN
from RGB images. The very …rst step of the CBM3D is a luminance-chrominance
color-space transformation (e.g., YCbCr, opponent, YIQ, etc.) on the input noisy
image in order to take advantage of the high correlation between the red, the
green, and the blue components. The main peculiarity of the CBM3D …lter is a
technique that in [P3] was termed grouping constraint on the chrominances. This
grouping constraint means that (for a given reference block) the block-matching
is done only in the luminance and based on the it, exactly the same grouping is
performed for each of the three channels in order to obtain three groups. That is,
the grouping constraint imposes the structural similarities from the luminance to
both chrominances. The main justi…cation of this procedure is that the luminance
typically has higher SNR than the chrominances and also the luminance contains
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Figure 5.6: Results of applying the BM3D …lter in conjucntion with the variance
stabilizing and declipping transformations from [Foi09] on a 5 MPix raw Bayer
image taken in a dim envirnoment using analog gain 8. The top row contains the
G1 green channels (gamma corrected for better visibility) of the original and the
denoised raw images; the second row contains RGB images obtained by applying
an identical image processing chain both to the original and to the denoised raw
images. In addition, the last two rows show enlarged fragments of these RGB
images.
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Figure 5.7: Results of applying the BM3D …lter in conjucntion with the variance
stabilizing and declipping transformations from [Foi09] on a 5 MPix raw Bayer
image taken in a dim envirnoment using analog gain 8. The top row contains the
G1 green channels (gamma corrected for better visibility) of the original and the
denoised raw images; the second row contains RGB images obtained by applying
an identical image processing chain both to the original and to the denoised raw
images. In addition, the last two rows show enlarged fragments of these RGB
images.
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Figure 5.8: Results of applying the BM3D …lter in conjucntion with the variance
stabilizing and declipping transformations from [Foi09] on a 5 MPix raw Bayer
image taken in a dim envirnoment using analog gain 16. The top row contains the
G1 green channels (gamma corrected for better visibility) of the original and the
denoised raw images; the second row contains RGB images obtained by applying
an identical image processing chain both to the original and to the denoised raw
images. In addition, the last two rows show enlarged fragments of these RGB
images.
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Figure 5.9: Results of applying the BM3D …lter in conjucntion with the variance
stabilizing and declipping transformations from [Foi09] on a 5 MPix raw Bayer
image taken in a dim envirnoment using analog gain 10. The top row contains the
G1 green channels (gamma corrected for better visibility) of the original and the
denoised raw images; the second row contains RGB images obtained by applying
an identical image processing chain both to the original and to the denoised raw
images. In addition, the last two rows show enlarged fragments of these RGB
images.
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the most important structures of the image such as edges; further justi…cation is
given in [P3]. It is noteworthy that the general approach of applying a constraint
on the chrominances was initially proposed in [FKE06, FKE07a].

5.3.1 Results

In this section we show results that complement the ones presented in [P3]. In
particular, we consider the RGB images from the Kodak dataset. All results
presented here and also in [P3] are obtained by the CBM3D Matlab script available
in [DF].
Table 5.1 presents PSNR results of the CBM3D algorithm applied to RGB-

images from the Kodak dataset. We consider noise levels 
 = 5	 15	 20	 25	 35;
these values of 
 are chosen as a practical range of noise levels, since for 
 , 35,
the visual quality is not satisfactory (having PSNR well below 30 dB).
In accordance with the results of the grayscale BM3D …lter, the proposed

CBM3D …lter achieves state-of-the-art performance in denoising RGB images —
in terms of both PSNR and subjective visual quality. This is achieved at a rea-
sonable computational complexity and, in addition, further complexity scalability
can be realized by exploiting the complexity/performance trade-o¤ of the BM3D
presented in P2.

5.4 Image deblurring

Image blurring is a common degradation in imaging, which can have various
sources, such as:

² relative motion between scene and camera or object motion during exposure
time and

² out-of-focus objects.

In addition to being a degradation, the blur can be induced on purpose by the lens
as in the case of extended depth of …eld imaging systems [DC95]. In all situations,
however, it is desirable to inverse the blurring. To de…ne the problem, a model for
the blurring is necessary. In many practical cases, blurring can be modeled by a
convolution of the true (unknown) image with a …xed point-spread function (PSF)
and addition of noise. Such a model is given by

� (�) = (� ¤ �) (�) + � (�) , (5.1)

where � is the true (non-degraded) image, � is a blur PSF, � is i.i.d. Gaussian
noise with zero mean and variance 
2, and � 2 � is a 2-D coordinate in the image
domain �. Deblurring, or non-blind deblurring in particular, is the operation of
estimating the blurred signal � when given �, �, and 
� Blind deblurring implies
that the PSF � and 
 are unknown and need to be estimated; the estimation of
the PSF is a signi…cant research topic itself. In this work we consider non-blind
deblurring.
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AWGN 
 = 25; Output PSNR 31.78 dB

AWGN 
 = 25; Output PSNR: 30.93 dB

Figure 5.10: Noisy and denoised (by the CBM3D …lter) images 19 and 22 from
the Kodak dataset.
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AWGN 
 = 15; Output PSNR 34.97 dB

AWGN 
 = 15; Output PSNR: 32.70 dB

Figure 5.11: Noisy and denoised (by the CBM3D …lter) images 4 and 8 from the
Kodak dataset.
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Im. 

5 15 20 25 35

1 39.37 32.13 30.40 29.13 27.31
2 40.34 34.58 33.33 32.40 31.07
3 42.47 37.05 35.64 34.54 32.62
4 40.57 34.97 33.66 32.67 31.02
5 39.45 32.70 31.0 29.73 27.61
6 40.00 33.38 31.78 30.59 28.78
7 42.10 36.41 34.87 33.66 31.64
8 39.15 32.70 31.12 29.88 27.82
9 41.18 36.47 35.12 34.06 32.28
10 41.20 36.27 34.90 33.81 31.97
11 40.25 33.88 32.38 31.25 29.52
12 41.34 35.95 34.70 33.76 32.24
13 38.25 30.79 28.98 27.64 25.70
14 39.42 32.76 31.19 30.03 28.24
15 41.01 35.42 34.09 33.08 31.47
16 41.02 34.88 33.42 32.33 30.64
17 40.95 35.41 34.01 32.93 31.16
18 39.01 32.62 31.04 29.83 28.00
19 40.15 34.22 32.79 31.78 30.19
20 41.28 35.83 34.44 33.45 31.84
21 39.96 33.80 32.21 30.99 29.17
22 39.59 33.43 31.98 30.93 29.36
23 41.96 37.14 35.83 34.79 33.09
24 39.77 33.00 31.33 30.09 28.19

Table 5.1: Output PSNR of the CBM3D algorithm proposed in [P3] for all 24
RGB-images from the Kodak dataset.

Deblurring is in general an ill-posed problem. Thus, even noise with very small
magnitude, such as quantization noise for example, can cause extreme degradations
after naive inversion. Regularization, which we discussed in Section 3.1.4, is a
well known [Vog02, Han97] and extensively studied tool that can be exploited
to alleviate the ill-posedness of the deblurring. It imposes some regularity on
the obtained solution; e.g., Tikhonov regularization imposes smoothness, total
variation imposes preservation of salient details and smoothness of details with
small variation. A huge number of regularization schemes exist [Vog02, Han97].

5.4.1 Regularization by denoising

In this work we are interested in a relatively recent technique [NCB04] that ex-
ploits denoising to improve the regularization of image deblurring. In particu-
lar,this technique has become a basis of the current best-performing restoration
methods [FDKE06, GCMP07, KE08], and [P6]. Indeed, the e¤ectiveness of this
deblurring scheme depends greatly on the e¤ectiveness of the exploited denoising
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…lter. Various denoising methods have been employed to improve the regulariza-
tion of image deblurring. Filtering in multiscale transform domain (e.g., wavelets
and pyramid transforms) was shown [NCB99, NCB04, GCMP07] to be e¤ective for
this purpose. Another class of denoising techniques used for regularized inversion
[KFEA04, KEA05, FDKE06] are based on the LPA-ICI [KEA06] which exploits a
non-parametric local polynomial …t in anisotropic estimation neighborhoods; the
best results of these class of methods are achieved by the P.SA-DCT deblurring
[FDKE06]. The BM3D …lter, in particular, has been utilized by [KE08] and by
[P6]. In agreement with the state-of-the-art image-denoising results of the BM3D,
the deblurring methods that use it are also among the current state-of-the-art in
image deblurring.

5.4.2 BM3D extension for denoising additive colored noise

In [P6], we extended the BM3D …lter to denoising of additive colored noise, the
model of which was given in Section 2.2.2. This extension was used in [P6] to
improve the standard Tikhonov regularization by imposing the nonlocal image
prior corresponding to the BM3D …lter. In order to enable attenuation of colored
noise, the BM3D algorithm was modi…ed in two aspects. First, the book-matching
was modi…ed to use the block-distance from Eq. (6) in [P6], i.e. a weighted 12-
norm of the di¤erence between the spectra of two blocks, where the weights are
inversely proportional to the variances of the spectrum elements. Second, the
shrinkage used for collaborative …ltering was modi…ed to take into account the
di¤erent variances of the 3-D transform coe¢cients, whereas in the case of white
noise, the variance is constant.

5.4.3 Results

Table 1 from [P6] gives a comparison of the proposed work and other prior works.
Since the publication date of [P6], there have appeared new better performing
methods among which we wish to mention [KE08], where some of the collaborators
of the author have utilized the BM3D …lter in an iterative variational minimization
of a particular prior on sparsity.
In this section we present results that complement the ones from [P6] by con-

sidering test images from the Kodak dataset (not the standard test images used
in [P6]). To carry out these experiments we used the publicly available Matlab
function in [DF]. Since we consider grayscale-image deblurring, we used the lumi-
nance channel of each test image, which we compute as the average of the red, the
green, and the blue channels. We consider the following PSFs, which are among
the ones used in [P6]:

² PSF 1: � (�1	 �2) = 1�
¡
1 + �21 + �22

¢
	 �1	 �2 = ¡7	 � � � 	 7,

² PSF 2: � is a 9£ 9 uniform kernel (boxcar),

² PSF 3: � = [1 4 6 4 1]� [1 4 6 4 1] �256,

All PSFs are normalized so that
P

� = 1.
Figs. 5.12 and 5.13 present images that are arti…cially corrupted according to

the model from Eq. (5.1), where the combinations of PSF and 
 are chosen as in
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[P6]. The reconstructed images show satisfactory detail preservation in accordance
with the mentioned signi…cant increase of the SNR. The enlarged fragments give
further information about the preservation of …ne details.
Notably, the results that we present here and also the ones from [P6] are all

obtained without any modi…cation to the …xed regularization parameters. As men-
tioned in [P6], this is a signi…cant achievement since the proper selection of regu-
larization parameters in standard regularization schemes (such as e.g. Tikhonov
regularization) is a challenging problem [Han97] that in general, does no have an
established solution. In fact, the regularization parameters depend potentially on
the image, on the PSF, and on 
.

5.5 Image sharpening

Image enhancement by sharpening of image details is an application of high prac-
tical importance. It is often used as a preprocessing step prior to segmentation
in the context of image analysis, classi…cation, pattern recognition. In addition,
sharpening can improve the visual perception of images with poor contrast, which
is a common task performed in image postprocessing chains. Various methods
for image sharpening exist; traditional ones include high-pass linear …ltering and
elementwise histogram-based transformations such as histogram-equalization, -
matching, and -shaping. Current advances [HHKA05, ASP07] in the …eld exploit
image-adaptive …ltering and also linear transforms such as wavelet decompositions
and trigonometric transforms (DCT, DFT, etc.) to improve the e¢ciency of the
sharpening. Sharpening in transform domain is typically achieved by applying
a nonlinear operator to the transform spectrum. Example of a well established
such technique is alpha rooting [Pra78, AE92], which involves taking the power
of the spectrum magnitude according to Eq. (1) in [P5]. Linear transforms have
been shown in the recent work [ASP07] to achieve good sharpening when used in
conjunction with histogram-based methods. Other relatively recent developments
in image enhancement utilize fuzzy logic [Rus02], weighted order-statistic …ltering
[AB06], and adaptive unsharp masking [PRM00].
Inherent limitation of most sharpening methods is the ampli…cation of noise,

[McC80] which is inevitably present in any practical application. In fact, the
separation of noise and image details when performing sharpening is a problem
that is equivalent to denoising. Thus, sharpening and denoising have often been
performed simultaneously, e.g., as in [Rus02, AB06]. From another point of view,
for methods that do not take noise into account, the noise ampli…cation can be
regarded as a limitation to the amount of applicable sharpening — i.e. beyond a
certain point of sharpening, the noise becomes excessively strong.
Since the BM3D …lter has been shown to be very e¤ective for noise attenuation,

in [P5] we combined it with alpha-rooting in order to simultaneously sharpen
image details and attenuate noise. For noise attenuation, we rely on collaborative
hard-thresholding of 3-D spectra, exactly as in the …rst step of the BM3D …lter.
Subsequently, sharpening is realized by applying the nonlinear alpha-rooting, given
in Eq. (1) of [P5], on the thresholded spectra. The simultaneous application of
grouping and collaborative …ltering allows for both good noise suppression and
e¤ective sharpening of even very …ne image details.
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Blur: PSF1, 
2 = 2; Output ISNR 6.28 dB

Blur: PSF1, 
2 = 8; Output ISNR 6.74 dB

Figure 5.12: Deblurring results of the BM3D-DEB deconvolution method for Ko-
dak images 7 and 24, shown respectively in the upper and lower parts.



66 CHAPTER 5. APPLICATIONS OF THE BM3D FILTER

Blur: PSF2, 
2 = 0�308; Output ISNR 7.77 dB

Blur: PSF3, 
2 = 49; Output PSNR 2.84 dB

Figure 5.13: Deblurring results of the BM3D-DEB deconvolution method for Ko-
dak images 5 and 8, shown respectively in the upper and lower parts.
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5.5.1 Results

We present results of experiments performed with the implementation of the pro-
posed sharpening available in [DF]. First, in Fig. 5.14 we demonstrate the applica-
tion of this method on noise-free images, where only their luminances are processed
and the chrominances are not modi…ed. The results show a noticeable contrast
improvement without any disturbing artifacts such as ringing around edges. In
Figs. 5.16 and 5.15, where we consider grayscale input images with relatively mild
AWGN (with 
 = 5 and with 
 = 15). We applied the standard unsharp mask-
ing sharpening on these images in order to demonstrate the noise ampli…cation
problem that was mentioned earlier in this section. The results of the proposed
joint denoising and sharpening do not su¤er from this noise ampli…cation e¤ect
and image details are e¤ectively sharpened even in the presence of noise.
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Figure 5.14: The proposed image sharpening applied to the noise-free luminance
components of Kodak images 16 and 24; the chrominances were not modi…ed. We
assumed 
=1 (on the intensity range [0,255]), which corresponds to a very mild
noise that is readily enountered in the otherwise noise-free Kodak images.
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Figure 5.15: Illustration of image sharpening applied on the luminance of Kodak
image 23 with quite mild AWGN (with 
= 5); this image is given in the top
along with an enlarged fragment of it. The second row is the result of applying
the standard unsharp mask method; the original image is sharpened but there
are notable noise ampli…cation problems. The third row presents the result of
the proposed method, which does not contain noise-ampli…cation artifacts and the
image appears sharpened.
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Figure 5.16: Illustration of image sharpening applied on the luminance of Kodak
image 21 with quite mild AWGN (with 
=5); this image is given in the top row
along with an enlarged fragment of it. The second row contains the result of
applying the standard unsharp mask method; the original image is sharpened but
there are notable noise ampli…cation problems. The third row presents the result
of the proposed method, which does not contain noise ampli…cation artifacts and
the image appears sharpened.
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Conclusions

This thesis studies a new class of nonlocal transform-domain …lters and their ap-
plication to various image processing problems. In particular, the BM3D …lter
(Section 4.1, [P1], [P2]) is the main topic of this thesis. The main contribution of
this …lter is to the problem of obtaining sparse image representations. It exem-
pli…es that nonlocal image modeling can be exploited in conjunction with linear
transforms in order to obtain highly sparse transform-domain image representa-
tions. The good denoising results of the BM3D …lter and its successful applications
to other problems can be seen as direct consequences of the ability to represent
images sparsely. The sparsity improvement of the 3-D transform domain represen-
tation used by the BM3D …lter over the 2-D counterpart is shown in Section 4.3,
where the Hoyer sparsity measure is used as an objective measure of sparsity. To
further improve the sparsity, the BM3D is extended to anisotropic neighborhoods
(Section 4.5.1, [P7]) and to data-adaptive PCA transform (Section 4.5.2, [P8]).
In this thesis we have also presented denoising, in general, and the BM3D …l-

ter in particular, as a fundamental tool in image processing. Whereas we consider
exclusively the BM3D …lter, other denoising …lters can, in general, be exploited.
Chapter 5 considers a few image-processing applications that bene…t from exploit-
ing the BM3D …ltering scheme. A relatively natural generalization of the BM3D
…lter to video denoising, termed VBM3D, was shown to achieve state-of-the-art
video-denoising results (Section 5.1, [P4]). The BM3D …lter in conjunction with
a variance-stabilizing transformation achieves very good noise attenuation and
detail preservation when applied on raw sensor images (Section 5.2). Denoising
of RGB-images by using a luminance-chrominance color space transformation is
also identi…ed as a successful application of the BM3D …lter (Section 5.3, [P3]).
Another considered application is image deblurring (Section 5.4, [P6]), where the
BM3D …lter is used to improve the standard Tikhonov regularization. Not only
the proposed deblurring method achieves state-of-the-art image deblurring results
but it does so by using …xed regularization parameter – independent of either
the PSF, the image, or the noise level. The last considered application is joint
image sharpening and denoising (Section 5.5, [P5]). It achieves very good sharp-
ening in the presence of noise, which is a particularly challenging task since image
sharpening tends to amplify high-frequency noise.

71
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In addition to the applications that are considered in this thesis, the BM3D
…lter is used in other works. A method for estimation of the variance of AWGN in
images is proposed in [DF09], where the grouping and the 3-D transform-domain
representations are used to e¤ectively separate the noise and image details —
where, however, only the statistics of the noise are estimated. An iterative image
deblurring via nonlocal variational minimization is proposed in [KE08], which uses
a modi…cation of the BM3D in each iteration. This method is shown to provide
exceptional deblurring results. The VBM3D …lter is applied for multiframe raw-
image denoising [BF08], where a collection of frames roughly corresponds to a video
signal (i.e. having correlation between frames). Another application is image- and
video-upsampling (super-resolution) considered in [DFKE08].

6.1 Future work

Future work on the BM3D …lter can be targeted to at least the few directions
that we list in the following. The grouping can be modi…ed to enable grouping
of image patches with various scales, orientations, shapes. In addition, di¤erent
block-distance measures can be exploited other than the 12-distance. The collabo-
rative …ltering may be improved by employing an overcomplete transform or even
a pre-computed dictionary of atoms as the one obtained by the K-SVD [EA06].
The aggregation of the …ltered image patches may also bene…t from a modi…cation
of the averaging weights or from an application of robust weighted averaging (ex-
ploiting order statistics). The BM3D …lter’s two-step estimation algorithm may be
extended to an iterative scheme where the grouping and the collaborative …ltering
are improved using results of previous iterations.
We can also foresee some future applications of the BM3D …lter. One such ap-

plication can be joint CFA demosaicking and denoising; a signi…cant advance in this
direction is already done by the super-resolution method proposed in [DFKE08].
Another application may be HDR composition from a stack of LDR images (e.g.
with varying exposures). The ability of the grouping to collect similar blocks
(possibly combined with sub-pixel accuracy of the block-matching) may replace
the otherwise inevitable registration of the LDR images, which are never perfectly
aligned. Sub-pixel accuracy of the block-matching may also be bene…cial for video
denoising as it is for motion-estimation based video compression.
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ABSTRACT

We present a novel approach to still image denoising based on e ective �ltering in 3D transform domain by
combining sliding-window transform processing with block-matching. We process blocks within the image in a
sliding manner and utilize the block-matching concept by searching for blocks which are similar to the currently
processed one. The matched blocks are stacked together to form a 3D array and due to the similarity between
them, the data in the array exhibit high level of correlation. We exploit this correlation by applying a 3D
decorrelating unitary transform and e ectively attenuate the noise by shrinkage of the transform coe cients.
The subsequent inverse 3D transform yields estimates of all matched blocks. After repeating this procedure for
all image blocks in sliding manner, the �nal estimate is computed as weighed average of all overlapping block-
estimates. A fast and e cient algorithm implementing the proposed approach is developed. The experimental
results show that the proposed method delivers state-of-art denoising performance, both in terms of objective
criteria and visual quality.

Keywords: image denoising, block-matching, 3D transforms

1. INTRODUCTION

Much of the recent research on image denoising has been focused on methods that reduce noise in transform
domain. Starting with the milestone work of Donoho,1, 2 many of the later techniques3—7 performed denoising in
wavelet transform domain. Of these methods, the most successful proved to be the ones4, 5, 7 based on rather so-
phisticated modeling of the noise impact on the transform coe cients of overcomplete multiscale decompositions.
Not limited to multiscale techniques, the overcomplete representations have traditionally played a signi�cant role
in improving the restoration abilities of even the most basic transform-based methods. This is manifested by
the sliding-window transform denoising,8, 9 where the basic idea is to successively denoise overlapping blocks
by coe cient shrinkage in local 2D transform domain (e.g. DCT, DFT, etc.). Although the transform-based
approaches deliver very good overall performance in terms of objective criteria, they fail to preserve details which
are not suitably represented by the used transform and often introduce artifacts that are characteristic of this
transform.

A di erent denoising strategy based on non-local estimation appeared recently,10, 11 where a pixel of the true
image is estimated from regions which are found similar to the region centered at the estimated pixel. These
methods, unlike the transform-based ones, introduce very few artifacts in the estimates but often oversmooth
image details. Based on an elaborate adaptive weighting scheme, the exemplar-based denoising10 appears to be
the best of them and achieves results competitive to the ones produced by the best transform-based techniques.

The concept of employing similar data patches from di erent locations is popular in the video processing �eld
under the term of “block-matching”, where it is used to improve the coding e ciency by exploiting similarity
among blocks which follow the motion of objects in consecutive frames. Traditionally, block-matching has
found successful application in conjunction with transform-based techniques. Such applications include video
compression (MPEG standards) and also video denoising,12 where noise is attenuated in 3D DCT domain.

We propose an original image denoising method based on e ective �ltering in 3D transform domain by
combining sliding-window transform processing with block-matching. We undertake the block-matching concept
for a single noisy image; as we process image blocks in a sliding manner, we search for blocks that exhibit similarity
to the currently-processed one. The matched blocks are stacked together to form a 3D array. In this manner,
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we induce high correlation along the dimension of the array in which the blocks are stacked. We exploit this
correlation by applying a 3D decorrelating unitary transform which produces a sparse representation of the true
signal in 3D transform domain. E cient noise attenuation is done by applying a shrinkage operator (e.g. hard-
thresholding or Wiener �ltering) on the transform coe cients. This results in improved denoising performance
and e ective detail preservation in the local estimates of the matched blocks, which are reconstructed by an
inverse 3D transform of the �ltered coe cients. After processing all blocks, the �nal estimate is the weighted
average of all overlapping local block-estimates. Because of overcompleteness which is due to the overlap, we
avoid blocking artifacts and further improve the estimation ability.

Although the proposed approach is general with respect to the type of noise, for simplicity of exposition, we
restrict our attention to the problem of attenuating additive white Gaussian noise (AWGN).

The basic approach and its extension to Wiener �ltering are presented in Sections 2 and 3, respectively.
An e cient algorithm which implements the proposed approach is developed in Section 4. Finally, Section 5 is
devoted to demonstration and discussion of experimental results.

2. DENOISING BY SHRINKAGE IN 3D TRANSFORM DOMAIN WITH
BLOCK-MATCHING

Let us introduce the observation model and notation used throughout the paper. We consider noisy observations
z : X R of the form z (x) = y (x) + (x), where x X is a 2D spatial coordinate that belongs to the image
domain X Z

2, y is the true image, and (x) N 0, 2 is white Gaussian noise of variance 2. By Zx we
denote a block of �xed size N1×N1 extracted from z, which has z (x) as its upper-left element; alternatively, we
say that Zx is located at x. With y we designate the �nal estimate of the true image.

Let us state the used assumptions. We assume that some of the blocks (of �xed size N1×N1) of the true image
exhibit mutual correlation. We also assume that the selected unitary transform is able to represent sparsely these
blocks. However, the diversity of such blocks in natural images often makes the latter assumption unsatis�ed
in 2D transform domain and ful�lled only in 3D transform domain due to the correlation introduced by block-
matching. The standard deviation of the AWGN can be accurately estimated (e.g.1), therefore we assume its
a-priori knowledge.

2.1. Local Estimates
We successively process all overlapping blocks of �xed size in a sliding manner, where "process" stands for the
consecutive application of block-matching and denoising in local 3D transform domain. For the sub-subsections
to follow, we �x the currently processed block as ZxR, where xR X, and denominate it as "reference block".

2.1.1. Block-matching

Block-matching is employed to �nd blocks that exhibit high correlation to ZxR. Because its accuracy is signif-
icantly impaired by the presence of noise, we utilize a block-similarity measure which performs a coarse initial
denoising in local 2D transform domain. Hence, we de�ne a block-distance measure (inversely proportional to
similarity) as

d (Zx1 , Zx2) = N
1

1 T2D (Zx1) , thr2D 2 log (N2
1 ) T2D (Zx2) , thr2D 2 log (N2

1 )
2

, (1)

where x1, x2 X, T2D is a 2D linear unitary transform operator (e.g. DCT, DFT, etc.), is a hard-threshold
operator, thr2D is �xed threshold parameter, and · 2 denotes the L2-norm. Naturally, is de�ned as

( , thr) =
, if | | > thr

0, otherwise.

The result of the block-matching is a set SxR X of the coordinates of the blocks that are similar to ZxR
according to our d-distance (1); thus, SxR is de�ned as

SxR = {x X | d (ZxR, Zx) < match} , (2)
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Figure 1. Fragments of Lena, House, Boats and Barbara corrupted by AWGN of = 15. For each fragment block-
matching is illustrated by showing a reference block marked with ’R’ and a few of its matched ones.

where match is the maximum d-distance for which two blocks are considered similar. Obviously d (ZxR , ZxR) = 0,
which implies that |SxR| 1, where |SxR| denotes the cardinality of SxR.
The matching procedure in presence of noise is demonstrated on Figure 1, where we show a few reference

blocks and the ones matched as similar to them.

2.1.2. Denoising in 3D transform domain

We stack the matched noisy blocks Zx SxR (ordering them by increasing d-distance to ZxR) to form a 3D array
of size N1 × N1 × |SxR |, which is denoted by ZSxR . We apply a unitary 3D transform T3D on ZSxR in order
to attain sparse representation of the true signal. The noise is attenuated by hard-thresholding the transform
coe cients. Subsequently, the inverse transform operator T 1

3D yields a 3D array of reconstructed estimates

YSxR = T
1

3D T3D ZSxR , thr3D 2 log (N2
1 ) , (3)

where thr3D is a �xed threshold parameter. The array YSxR comprises of |SxR | stacked local block estimates
Y xRx SxR

of the true image blocks located at x SxR. We de�ne a weight for these local estimates as

xR =
1

Nhar
, if Nhar 1

1, otherwise,
(4)

where Nhar is the number of non-zero transform coe cients after hard-thresholding. Observe that 2Nhar is
equal to the total variance of YSxR . Thus, sparser decompositions of ZSxR result in less noisy estimates which
are awarded greater weights by (4).

2.2. Estimate Aggregation
After processing all reference blocks, we have a set of local block estimates Y xRx SxR

, xR X (and their corre-
sponding weights xR, xR X), which constitute an overcomplete representation of the estimated image due to
the overlap between the blocks. It is worth mentioning that a few local block estimates might be located at the
same coordinate (e.g. Y xaxb and Y

xb
xb
are both located at xb but obtained while processing the reference blocks at

xa and xb, respectively). Let Y xRxm (x) be an estimate of y (x), where x, xR X, and xm SxR . We zero-extend
Y xRxm (x) outside its square support in order to simplify the formulation. The �nal estimate y is computed as a
weighted average of all local ones as given by

y(x) =
xR X xm SxR xRY

xR
xm
(x)

xR X xm SxR xR xm (x)
, x X, (5)

Equality holds only if the matched blocks that build ZSxR are non-overlapping; otherwise, a certain amount of
correlation is introduced in the noise.
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where xm : X {0, 1} is the characteristic function of the square support of a block located at xm X.

One can expect substantially overcomplete representation of the signal in regions where a block is matched
to many others. On the other hand, if a match is not found for a given reference block, the method reduces to
denoising in 2D transform domain. Thus, the overcomplete nature of the method is highly dependent on the
block-matching and therefore also on the particular noisy image.

3. WIENER FILTER EXTENSION

Provided that an estimate of the true image is available (e.g. it can be obtained from the method given in the
previous section), we can construct an empirical Wiener �lter as a natural extension of the above thresholding
technique. Because it follows the same approach, we only give the few fundamental modi�cations that are required
for its development and thus omitting repetition of the concept. Let us denote the initial image estimate by
e : X R. In accordance with our established notation, Ex designates a square block of �xed size N1 × N1,
extracted from e and located at x X.

3.1. Modi�cation to Block-Matching
In order to improve the accuracy of block-matching, it is performed within the initial estimate e rather than the
noisy image. Accordingly, we replace the thresholding-based d-distance measure from (1) with the normalized
L2-norm of the di erence of two blocks with subtracted means. Hence, the de�nition (2) of SxR becomes

SxR = x X | N 1
1 ExR ExR Ex Ex 2

< match , (6)

where ExR and Ex are the mean values of the blocks ExR and Ex, respectively. The mean subtraction allows for
improved matching of blocks with similar structures but di erent mean values.

3.2. Modi�cation to Denoising in 3D Transform Domain

The linear Wiener �lter replaces the nonlinear hard-thresholding operator. The attenuating coe cients for the
Wiener �lter are computed in 3D transform domain as

WSxR =
T3D ESxR

2

T3D ESxR

2

+ 2

,

where ESxR is a 3D array built by stacking the matched blocks Ex SxR (in the same manner as ZSxR is built by
stacking Zx SxR ). We �lter the 3D array of noisy observations ZSxR in T3D-transform domain by an elementwise
multiplication withWSxR . The subsequent inverse transform gives

YSxR = T
1

3D WSxRT3D ZSxR , (7)

where YSxR comprises of stacked local block estimates Y
xR
x SxR

of the true image blocks located at the matched
locations x SxR. As in (4), the weight assigned to the estimates is inversely proportional to the total variance
of YSxR and de�ned as

xR =

N1

i=1

N1

j=1

|SxR|

t=1

WSxR (i, j, t)
2

1

. (8)
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Figure 2. Flowchart for denoising by hard-thresholding in 3D transform domain with block-matching.

4. ALGORITHM

We present an algorithm which employs the hard-thresholding approach (from Section 2) to deliver an initial
estimate for the Wiener �ltering part (from Section 3) that produces the �nal estimate. A straightforward
implementation of this general approach is computationally demanding. Thus, in order to realize a practical
and e cient algorithm, we impose constraints and exploit certain expedients. In this section we introduce these
aspects and develop an e cient implementation of the proposed approach.

The choice of the transforms T2D and T3D is governed by their energy compaction (sparsity) ability for noise-
free image blocks (2D) and stacked blocks (3D), respectively. It is often assumed that neighboring pixels in small
blocks extracted from natural images exhibit high correlation; thus, such blocks can be sparsely represented
by well-established decorrelating transforms, such as the DCT, the DFT, wavelets, etc. From computational
e ciency point of view, however, very important characteristics are the separability and the availability of fast
algorithms. Hence, the most natural choice for T2D and T3D is a fast separable transform which allows for sparse
representation of the true-image signal in each dimension of the input array.

4.1. E cient Image Denoising Algorithm with Block-Matching and 3D Filtering

Let us introduce constraints for the complexity of the algorithm. First, we �x the maximum number of matched
blocks by setting an integer N2 to be the upper bound for the cardinality of the sets SxR X . Second, we do
block-matching within a local neighborhood of �xed size NS ×NS centered about each reference block, instead
of doing it in the whole image. Finally, we use Nstep as a step by which we slide to every next reference block.
Accordingly, we introduce XR X as the set of the reference blocks’ coordinates, where |XR| |X|

N2
step
(e.g.,

Nstep = 1 implies XR = X).

In order to reduce the impact of artifacts on the borders of blocks (border e ects), we use a Kaiser window
Wwin2D (with a single parameter ) as part of the weights of the local estimates. These artifacts are inherent of
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many transforms (e.g. DFT) in presence of sharp intensity di erences across the borders of a block.

Let the input noisy image be of size M ×N , thus |X| =MN. We use two bu ers of the same size–ebu for
estimates and wbu for weights–to represent the summations in the numerator and denominator, respectively,
in (5). For simplicity, we extend our notation so that ebu (x) denotes a single pixel at coordinate x X and
ebu x designates a block located at x in ebu (the same notation is to be used for wbu ).

A �owchart of the hard-thresholding part of the algorithm is given in Figure 2 (but we do not give such for
the Wiener �ltering part since it requires only the few changes given in Section 3). Following are the steps of
the image denoising algorithm with block-matching and 3D �ltering.

1. Initialization. Initialize ebu (x) = 0 and wbu (x) = 0, for all x X.

2. Local hard-thresholding estimates. For each xR XR, do the following sub-steps.

(a) Block-matching. Compute SxR as given in Equation (2) but restrict the search to a local neighborhood
of �xed size NS×NS centered about xR. If |SxR| > N2, then let only the coordinates of the N2 blocks
with smallest d-distance to ZxR remain in SxR and exclude the others.

(b) Denoising by hard-thresholding in local 3D transform domain. Compute the local estimate blocks
Y xRx SxR

and their corresponding weight xR as given in (3) and (4), respectively.

(c) Aggregation. Scale each reconstructed local block estimate Y xRx , where x SxR, by a block of weights
W (xR) = xRWwin2D and accumulate to the estimate bu er: ebu x = ebu x +W (xR)Y

xR
x , for all

x SxR . Accordingly, the weight block is accumulated to same locations as the estimates but in the
weights bu er: wbu x = wbu x +W (xR), for all x SxR.

3. Intermediate estimate. Produce the intermediate estimate e (x) = ebu (x)
wbu (x) for all x X, which is to be

used as initial estimate for the Wiener counterpart.

4. Local Wiener �ltering estimates. Use e as initial estimate. The bu ers are re-initialized: ebu (x) = 0
and wbu (x) = 0, for all x X. For each xR XR, do the following sub-steps.

(a) Block-matching. Compute SxR as given in (6) but restrict the search to a local neighborhood of �xed
size NS ×NS centered about xR. If |SxR | > N2, then let only the coordinates of the N2 blocks with
smallest distance (as de�ned in Subsection 3.1) to ExR remain in SxR and exclude the others.

(b) Denoising by Wiener �ltering in local 3D transform domain. The local block estimates Y xRx SxR
and

their weight xR are computed as given in (7) and (8), respectively.

(c) Aggregation. It is identical to step 2c.

5. Final estimate. The �nal estimate is given by y(x) = ebu (x)
wbu (x)

, for all x X.

4.2. Complexity
The time complexity order of the algorithm as a function of its parameters is given by

O (MNOT2D (N1, N1)) +O MN
N2
1 +N2 N

2
S

N2
step

+O MN
OT3D (N1,N1, N2)

N2
step

,

where the �rst two addends are due to block-matching and the third is due to T3D used for denoising and where
OT2D (N1, N1) and OT3D (N1,N1, N2) denote the complexity orders of the transforms T2D and T3D, respectively.
Both OT2D and OT3D depend on properties of the adopted transforms such as separability and availability of
fast algorithms. For example, the DFT has an e cient implementation by means of fast Fourier transform
(FFT). The 2D FFT, in particular, has complexity O (N1N2 log (N1N2)) as opposed to O N2

1N
2
2 of a custom

non-separable transform. Moreover, an e ective trade-o between complexity and denoising performance can be
achieved by varying Nstep.
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Table 1. Results in output PSNR (dB) of the denoising algorithm with block-matching and �ltering in 3D DFT domain.

Image

Lena Barbara House Peppers Boats Couple Hill
/ PSNR 512× 512 512× 512 256× 256 256× 256 512× 512 512× 512 512× 512
5/ 34.15 38.63 38.18 39.54 37.84 37.20 37.40 37.11
10/ 28.13 35.83 34.87 36.37 34.38 33.79 33.88 33.57
15/ 24.61 34.21 33.08 34.75 32.31 31.96 31.93 31.79
20/ 22.11 33.03 31.77 33.54 30.87 30.65 30.58 30.60
25/ 20.17 32.08 30.75 32.67 29.80 29.68 29.57 29.74
30/ 18.59 31.29 29.90 31.95 28.97 28.90 28.75 29.04
35/ 17.25 30.61 29.13 31.21 28.14 28.20 28.03 28.46
50/ 14.16 29.08 27.51 29.65 26.46 26.71 26.46 27.21
100/ 8.13 26.04 24.14 25.92 23.11 24.00 23.60 24.77

5. RESULTS AND DISCUSSION
We present experiments conducted with the algorithm introduced in Section 4, where the transforms T2D and T3D
are the 2D DFT and the 3D DFT, respectively. All results are produced with the same �xed parameters–but
di erent for the hard-thresholding and Wiener �ltering parts. For the hard-thresholding, N1 is automatically
selected in the range 7 N1 13 based on , match = 0.233, N2 = 28, Nstep = 4, NS = 73, = 4, th2D = 0.82,
and th3D = 0.75. For the Wiener �ltering, N1 is automatically selected in the range 7 N1 11 based on ,
match = 4000 + 0.0105, N2 = 72, Nstep = 3, NS = 35, and = 3. In Table 1, we summarize the results of the
proposed technique in terms of output peak signal-to-noise ratio (PSNR) in decibels (dB), which is de�ned as

PSNR = 10 log10
2552

|X| 1
x X (y (x) y (x))2

.

At http://www.cs.tut.fi/~foi/3D-DFT, we provide a collection of the original and denoised test images that
were used in our experiments, together with the algorithm implementation (as C++ and MATLAB functions)
which produced all reported results. With the mentioned parameters, the execution time of the whole algorithm
is less than 9 seconds for an input image of size 256× 256 on a 3 GHz Pentium machine.

In Figure 3, we compare the output PSNR of our method with the reported ones of three6, 7, 10 state-of-art
techniques known to the authors as best. However, for standard deviations 30 and 35 we could neither �nd nor
reproduce the results of both the FSP+TUP7 and the exemplar-based10 techniques, thus they are omitted.

In Figure 4, we show noisy ( = 35) House image and the corresponding denoised one. For this test
image, similarity among neighboring blocks is easy to perceive in the uniform regions and in the regular-shaped
structures. Hence, those details are well-preserved in our estimate. It is worth referring to Figure 1, where
block-matching is illustrated for a fragment of House.

Pairs of noisy ( = 35) and denoised Lena and Hill images are shown in Figures 5 and 6, respectively. The
enlarged fragments in each �gure help to demonstrate the good quality of the denoised images in terms of faithful
detail preservation (stripes on the hat in Lena and the pattern on the roof in Hill).

We show fragments of noisy ( = 50) and denoised Lena, Barbara, Couple, and Boats images in Figure 7. For
this relatively high level of noise, there are very few disturbing artifacts and the proposed technique attains good
preservation of: sharp details (the table legs in Barbara and the poles in Boats), smooth regions (the cheeks of
Lena and the suit of the man in Couple), and oscillatory patterns (the table cover in Barbara). A fragment of
Couple corrupted by noise of various standard deviations is presented in Figure 8.

In order to demonstrate the capability of the proposed method to preserve textures, we show fragments of
heavily noisy ( = 100) and denoised Barbara in Figure 9. Although the true signal is almost completely buried
under noise, the stripes on the clothes are faithfully restored in the estimate.
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Noise standard deviation Noise standard deviation

(a) Barbara (b) Lena

Noise standard deviation Noise standard deviation

(c) Peppers (d) House

Figure 3. Output PSNR as a function of the standard deviation for Barbara (a), Lena (b), Peppers (c), and House (d).
The notation is: proposed method (squares), FSP+TUP7 (circles), BLS-GSM 6 (stars), and exemplar-based10 (triangles).
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Figure 4. On the left are a noisy ( = 35) House and two enlarged fragments from it; on the right are the denoised
image (PSNR 31 21 dB) and the corresponding fragments.

We conclude by remarking that the proposed method outperforms–in terms of objective criteria–all tech-
niques known to us. Moreover, our estimates retain good visual quality even for relatively high levels of noise.

Our current research extends the presented approach by the adoption of variable-sized blocks and shape-
adaptive transforms,13 thus further improving the adaptivity to the structures of the underlying image. Also,
application of the technique to more general restoration problems is being considered.
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(a) = 25, PSNR 29 57 dB (b) = 50, PSNR 26 46 dB

(c) = 75, PSNR 24 74 dB (d) = 100, PSNR 23 60 dB

Figure 8. Pairs of fragments of noisy and denoised Couple for standard deviations: 25 (a), 50 (b), 75 (c), and 100 (d).

Figure 9. Fragments of noisy ( = 100) and denoised (PSNR 24 14 dB) Barbara.
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Image Denoising by Sparse 3-D Transform-Domain
Collaborative Filtering

Kostadin Dabov, Student Member, IEEE, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian, Senior Member, IEEE

Abstract—We propose a novel image denoising strategy based
on an enhanced sparse representation in transform domain. The
enhancement of the sparsity is achieved by grouping similar 2-D
image fragments (e.g., blocks) into 3-D data arrays which we call
“groups.” Collaborative filtering is a special procedure developed
to deal with these 3-D groups. We realize it using the three suc-
cessive steps: 3-D transformation of a group, shrinkage of the
transform spectrum, and inverse 3-D transformation. The result
is a 3-D estimate that consists of the jointly filtered grouped image
blocks. By attenuating the noise, the collaborative filtering reveals
even the finest details shared by grouped blocks and, at the same
time, it preserves the essential unique features of each individual
block. The filtered blocks are then returned to their original
positions. Because these blocks are overlapping, for each pixel,
we obtain many different estimates which need to be combined.
Aggregation is a particular averaging procedure which is exploited
to take advantage of this redundancy. A significant improvement
is obtained by a specially developed collaborative Wiener filtering.
An algorithm based on this novel denoising strategy and its effi-
cient implementation are presented in full detail; an extension to
color-image denoising is also developed. The experimental results
demonstrate that this computationally scalable algorithm achieves
state-of-the-art denoising performance in terms of both peak
signal-to-noise ratio and subjective visual quality.

Index Terms—Adaptive grouping, block matching, image de-
noising, sparsity, 3-D transform shrinkage.

I. INTRODUCTION

PLENTY of denoising methods exist, originating from var-
ious disciplines such as probability theory, statistics, partial

differential equations, linear and nonlinear filtering, and spectral
and multiresolution analysis. All these methods rely on some ex-
plicit or implicit assumptions about the true (noise-free) signal
in order to separate it properly from the random noise.

In particular, the transform-domain denoising methods typi-
cally assume that the true signal can be well approximated by
a linear combination of few basis elements. That is, the signal
is sparsely represented in the transform domain. Hence, by
preserving the few high-magnitude transform coefficients that
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convey mostly the true-signal energy and discarding the rest
which are mainly due to noise, the true signal can be effectively
estimated. The sparsity of the representation depends on both
the transform and the true-signal’s properties.

The multiresolution transforms can achieve good sparsity
for spatially localized details, such as edges and singularities.
Because such details are typically abundant in natural images
and convey a significant portion of the information embedded
therein, these transforms have found a significant application
for image denoising. Recently, a number of advanced denoising
methods based on multiresolution transforms have been de-
veloped, relying on elaborate statistical dependencies between
coefficients of typically overcomplete (e.g., translation-in-
variant and multiply-oriented) transforms. Examples of such
image denoising methods can be seen in [1]–[4].

Not limited to the wavelet techniques, the overcomplete rep-
resentations have traditionally played an important role in im-
proving the restoration abilities of even the most basic trans-
form-based methods. This is manifested by the sliding-window
transform-domain image denoising methods [5], [6] where the
basic idea is to apply shrinkage in local (windowed) transform
domain. There, the overlap between successive windows ac-
counts for the overcompleteness, while the transform itself is
typically orthogonal, e.g., the 2-D DCT.

However, the overcompleteness by itself is not enough to
compensate for the ineffective shrinkage if the adopted trans-
form cannot attain a sparse representation of certain image de-
tails. For example, the 2-D DCT is not effective in representing
sharp transitions and singularities, whereas wavelets would typ-
ically perform poorly for textures and smooth transitions. The
great variety in natural images makes impossible for any fixed
2-D transform to achieve good sparsity for all cases. Thus, the
commonly used orthogonal transforms can achieve sparse rep-
resentations only for particular image patterns.

The adaptive principal components of local image patches
was proposed by Muresan and Parks [7] as a tool to overcome
the mentioned drawbacks of standard orthogonal transforms.
This approach produces good results for highly-structured
image patterns. However, the computation of the correct PCA
basis is essentially deteriorated by the presence of noise.
With similar intentions, the K-SVD algorithm [8] by Elad
and Aharon utilizes highly overcomplete dictionaries obtained
via a preliminary training procedure. A shortcoming of these
techniques is that both the PCA and learned dictionaries impose
a very high computational burden.

Another approach [9] is to exploit a shape-adaptive trans-
form on neighborhoods whose shapes are adaptive to salient
image details and, thus, contain mostly homogeneous signal.
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The shape-adaptive transform can achieve a very sparse repre-
sentation of the true signal in these adaptive neighborhoods.

Recently, an elaborate adaptive spatial estimation strategy,
the nonlocal means, was introduced [10]. This approach is dif-
ferent from the transform domain ones. Its basic idea is to build
a pointwise estimate of the image where each pixel is obtained
as a weighted average of pixels centered at regions that are sim-
ilar to the region centered at the estimated pixel. The estimates
are nonlocal as in principle the averages can be calculated over
all pixels of the image. A significant extension of this approach
is the exemplar-based estimator [11], which exploits pairwise
hypothesis testing to define adaptive nonlocal estimation neigh-
borhoods and achieves results competitive to the ones produced
by the best transform-based techniques.

In this paper, we propose a novel image denoising strategy
based on an enhanced sparse representation in transform-do-
main. The enhancement of the sparsity is achieved by grouping
similar 2-D fragments of the image into 3-D data arrays which
we call “groups.” Collaborative filtering is a special procedure
developed to deal with these 3-D groups. It includes three suc-
cessive steps: 3-D transformation of a group, shrinkage of trans-
form spectrum, and inverse 3-D transformation. Thus, we ob-
tain the 3-D estimate of the group which consists of an array of
jointly filtered 2-D fragments. Due to the similarity between the
grouped fragments, the transform can achieve a highly sparse
representation of the true signal so that the noise can be well
separated by shrinkage. In this way, the collaborative filtering
reveals even the finest details shared by grouped fragments and
at the same time it preserves the essential unique features of each
individual fragment.

An image denoising algorithm based on this novel strategy is
developed and described in detail. It generalizes and improves
our preliminary algorithm introduced in [12]. A very efficient
algorithm implementation offering effective complexity/perfor-
mance tradeoff is developed. Experimental results demonstrate
that it achieves outstanding denoising performance in terms of
both peak signal-to-noise ratio (PSNR) and subjective visual
quality, superior to the current state-of-the-art. Extension to
color-image denoising based on [13] is also presented.

The paper is organized as follows. We introduce the grouping
and collaborative filtering concepts in Section II. The developed
image denoising algorithm is described in Section III. An effi-
cient and scalable realization of this algorithm can be found in
Section IV and its extension to color-image denoising is given
in Section V. Experimental results are presented in Section VI.
Section VII gives an overall discussion of the developed ap-
proach and Section VIII contains relevant conclusions.

II. GROUPING AND COLLABORATIVE FILTERING

We denominate grouping the concept of collecting similar
-dimensional fragments of a given signal into a -dimen-

sional data structure that we term “group.” In the case of images
for example, the signal fragments can be arbitrary 2-D neigh-
borhoods (e.g., image patches or blocks). There, a group is a
3-D array formed by stacking together similar image neighbor-
hoods. If the neighborhoods have the same shape and size, the
formed 3-D array is a generalized cylinder. The importance of
grouping is to enable the use of a higher dimensional filtering of

each group, which exploits the potential similarity (correlation,
affinity, etc.) between grouped fragments in order to estimate
the true signal in each of them. This approach we denominate
collaborative filtering.

A. Grouping

Grouping can be realized by various techniques; e.g.,
K-means clustering [14], self-organizing maps [15], fuzzy
clustering [16], vector quantization [17], and others. There
exist a vast literature on the topic; we refer the reader to [18]
for a detailed and systematic overview of these approaches.

Similarity between signal fragments is typically computed as
the inverse of some distance measure. Hence, a smaller distance
implies higher similarity. Various distance measures can be em-
ployed, such as the -norm of the difference between two signal
fragments. Other examples are the weighted Euclidean distance

used in the nonlocal means estimator [10], and also
the normalized distance used in the exemplar-based estimator
[11]. When processing complex or uncertain (e.g., noisy) data, it
might be necessary to first extract some features from the signal
and then to measure the distance for these features only [18].

B. Grouping by Matching

Grouping techniques such as vector quantization or K-means
clustering are essentially based on the idea of partitioning. It
means that they build groups or clusters (classes) which are dis-
joint, in such a way that each fragment belongs to one and only
one group. Constructing disjoint groups whose elements enjoy
high mutual similarity typically requires recursive procedures
and can be computationally demanding [18]. Furthermore, the
partitioning causes unequal treatment of the different fragments
because the ones that are close to the centroid of the group are
better represented than those far from it. This happens always,
even in the special case where all fragments of the signal are
equidistantly distributed.

A much simpler and effective grouping of mutually similar
signal fragments can be realized by matching where, in con-
trast to the above partitioning methods, the formed groups are
not necessarily disjoint. Matching is a method for finding signal
fragments similar to a given reference one. That is achieved
by pairwise testing the similarity between the reference frag-
ment and candidate fragments located at different spatial loca-
tions. The fragments whose distance (i.e., dissimilarity) from
the reference one is smaller than a given threshold are consid-
ered mutually similar and are subsequently grouped. The sim-
ilarity plays the role of the membership function for the con-
sidered group and the reference fragment can be considered as
some sort of “centroid” for the group. Any signal fragment can
be used as a reference one, and, thus, a group can be constructed
for it.

We remark that for most distance measures, establishing a
bound on the distance between the reference fragment and all
of the matched ones means that the distance between any two
fragments in that group is also bounded. Roughly speaking, this
bound is the diameter of the group. While for an arbitrary dis-
tance measure such a statement may not hold precisely, for the
case of metrics (e.g., -norms) it is just a direct consequence
of the triangle inequality.
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Fig. 1. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment
shows a reference block marked with “R” and a few of the blocks matched to it.

Block-matching (BM) is a particular matching approach that
has been extensively used for motion estimation in video com-
pression (MPEG 1, 2, and 4, and H.26x). As a particular way of
grouping, it is used to find similar blocks, which are then stacked
together in a 3-D array (i.e., a group). An illustrative example of
grouping by block-matching for images is given in Fig. 1, where
we show a few reference blocks and the ones matched as similar
to them.

C. Collaborative Filtering

Given a group of fragments, the collaborative filtering of
the group produces estimates, one for each of the grouped
fragments. In general, these estimates can be different. The term
“collaborative” is taken literally, in the sense that each grouped
fragment collaborates for the filtering of all others, and vice
versa.

Let us consider an illustrative example of collaborative fil-
tering for the estimation of the image in Fig. 2 from an observa-
tion (not shown) corrupted by additive zero-mean independent
noise. In particular, let us focus on the already grouped blocks
shown in the same figure. These blocks exhibit perfect mutual
similarity, which makes the elementwise averaging (i.e., aver-
aging between pixels at the same relative positions) a suitable
estimator. Hence, for each group, this collaborative averaging
produces estimates of all grouped blocks. Because the corre-
sponding noise-free blocks are assumed to be identical, the esti-
mates are unbiased. Therefore, the final estimation error is due
only to the residual variance which is inversely proportional to
the number of blocks in the group. Regardless of how complex
the signal fragments are, we can obtain very good estimates pro-
vided that the groups contain a large number of fragments.

However, perfectly identical blocks are unlikely in natural
images. If nonidentical fragments are allowed within the same
group, the estimates obtained by elementwise averaging be-
come biased. The bias error can account for the largest share
of the overall final error in the estimates, unless one uses an
estimator that allows for producing a different estimate of each

Fig. 2. Simple example of grouping in an artificial image, where for each ref-
erence block (with thick borders) there exist perfectly similar ones.

grouped fragment. Therefore, a more effective collaborative
filtering strategy than averaging should be employed.

D. Collaborative Filtering by Shrinkage in Transform Domain

An effective collaborative filtering can be realized as
shrinkage in transform domain. Assuming -dimensional
groups of similar signal fragments are already formed, the
collaborative shrinkage comprises of the following steps.

• Apply a -dimensional linear transform to the group.
• Shrink (e.g., by soft- and hard-thresholding or Wiener fil-

tering) the transform coefficients to attenuate the noise.
• Invert the linear transform to produce estimates of all

grouped fragments.
This collaborative transform-domain shrinkage can be partic-
ularly effective when applied to groups of natural image frag-
ments, e.g., the ones in Fig. 1. These groups are characterized
by both:

• intrafragment correlation which appears between the
pixels of each grouped fragment—a peculiarity of natural
images;

• interfragment correlation which appears between the cor-
responding pixels of different fragments—a result of the
similarity between grouped fragments.

The 3-D transform can take advantage of both kinds of correla-
tion and, thus, produce a sparse representation of the true signal
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in the group. This sparsity makes the shrinkage very effective in
attenuating the noise while preserving the features of the signal.

Let us give a simple illustration of the benefit of this col-
laborative shrinkage by considering the grouped image blocks
shown in Fig. 1. Let us first consider the case when no collab-
orative filtering is performed but instead a 2-D transform is ap-
plied separately to each individual block in a given group of

fragments. Since these grouped blocks are very similar, for
any of them we should get approximately the same number, say

, of significant transform coefficients. It means that the whole
group of fragments is represented by coefficients. In con-
trast, in the case of collaborative filtering, in addition to the 2-D
transform, we apply a 1-D transform across the grouped blocks
(equivalent to applying a separable 3-D transform to the whole
group). If this 1-D transform has a DC-basis element, then be-
cause of the high similarity between the blocks, there are ap-
proximately1 only significant coefficients that represent the
whole group instead of . Hence, the grouping enhances the
sparsity, which increases with the number of grouped blocks.

As Fig. 1 demonstrates, a strong similarity between small
image blocks at different spatial locations is indeed very
common in natural images. It is a characteristic of blocks that
belong to uniform areas, edges, textures, smooth intensity gra-
dients, etc. Therefore, the existence of mutually similar blocks
can be taken as a very realistic assumption when modeling
natural images, which strongly motivates the use of grouping
and collaborative filtering for an image denoising algorithm.

III. ALGORITHM

In the proposed algorithm, the grouping is realized by
block-matching and the collaborative filtering is accomplished
by shrinkage in a 3-D transform domain. The used image frag-
ments are square blocks of fixed size. The general procedure
carried out in the algorithm is as follows. The input noisy image
is processed by successively extracting reference blocks from
it and for each such block:

• find blocks that are similar to the reference one (block-
matching) and stack them together to form a 3-D array
(group);

• perform collaborative filtering of the group and return the
obtained 2-D estimates of all grouped blocks to their orig-
inal locations.

After processing all reference blocks, the obtained block esti-
mates can overlap, and, thus, there are multiple estimates for
each pixel. We aggregate these estimates to form an estimate of
the whole image.

This general procedure is implemented in two different forms
to compose a two-step algorithm. This algorithm is illustrated in
Fig. 3 and proceeds as follows.

Step 1) Basic estimate.
a) Block-wise estimates. For each block in the

noisy image, do the following.
i) Grouping. Find blocks that are similar

to the currently processed one and then

1This is just a qualitative statement because the actual number of significant
coefficients depends on the normalization of the transforms and on the thresh-
olds used for the 2-D and 3-D cases.

stack them together in a 3-D array
(group).

ii) Collaborative hard-thresholding. Apply
a 3-D transform to the formed group,
attenuate the noise by hard-thresholding
of the transform coefficients, invert the
3-D transform to produce estimates
of all grouped blocks, and return the
estimates of the blocks to their original
positions.

b) Aggregation. Compute the basic estimate of
the true-image by weighted averaging all of
the obtained block-wise estimates that are
overlapping.

Step 2) Final estimate: Using the basic estimate, perform
improved grouping and collaborative Wiener
filtering.

a) Block-wise estimates. For each block, do the
following.

i) Grouping. Use BM within the basic
estimate to find the locations of the
blocks similar to the currently processed
one. Using these locations, form two
groups (3-D arrays), one from the noisy
image and one from the basic estimate.

ii) Collaborative Wiener filtering. Apply
a 3-D transform on both groups.
Perform Wiener filtering on the noisy
one using the energy spectrum of the
basic estimate as the true (pilot) energy
spectrum. Produce estimates of all
grouped blocks by applying the inverse
3-D transform on the filtered coefficients
and return the estimates of the blocks to
their original positions.

b) Aggregation. Compute a final estimate of the
true-image by aggregating all of the obtained
local estimates using a weighted average.

There are two significant motivations for the second step in the
above algorithm:

• using the basic estimate instead of the noisy image allows
to improve the grouping by block-matching;

• using the basic estimate as the pilot signal for the empirical
Wiener filtering is much more effective and accurate than
the simple hard-thresholding of the 3-D spectrum of the
noisy data.

Observation Model and Notation: We consider a noisy image
of the form

where is a 2-D spatial coordinate that belongs to the image
domain , is the true image, and is i.i.d. zero-mean
Gaussian noise with variance , . With we
denote a block of fixed size extracted from , where is
the coordinate of the top-left corner of the block. Alternatively,
we say that is located at in . A group of collected 2-D
blocks is denoted by a bold-face capital letter with a subscript
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Fig. 3. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked with
“R”).

that is the set of its grouped blocks’ coordinates, e.g., is a
3-D array composed of blocks located at . In
order to distinguish between parameters used in the first and in
the second step, we respectively use the superscripts “ht” (hard-
thresholding) and “wie” (Wiener filtering). For example, is
the block size used in Step 1 and is the block size used in
Step 2. Analogously, we denote the basic estimate with
and the final estimate with .

The following subsections present in detail the steps of the
proposed denoising method.

A. Steps 1a and 2a: Block-Wise Estimates

In this step, we process reference image blocks in a
sliding-window manner. Here, “process” stands for per-
forming grouping and estimating the true signal of all grouped
blocks by:

• collaborative hard-thresholding in Step 1aii;
• collaborative Wiener filtering in Step 2aii.

The resultant estimates are denominated “block-wise
estimates.”

Because Steps 1a and 2a bear the same structure, we re-
spectively present them in the following two sections. Therein,
we fix the currently processed image block as (located at
the current coordinate ) and denominate it “reference
block.”

1) Steps 1ai and 1aii: Grouping and Collaborative Hard-
Thresholding: We realize grouping by block-matching within
the noisy image , as discussed in Section II-B. That is, only
blocks whose distance (dissimilarity) with respect to the refer-
ence one is smaller than a fixed threshold are considered similar
and grouped. In particular, we use the -distance as a measure
of dissimilarity.

Ideally, if the true-image would be available, the block-
distance could be calculated as

(1)

where denotes the -norm and the blocks and are
respectively located at and in . However, only the
noisy image is available and the distance can only be calcu-
lated from the noisy blocks and as

(2)

If the blocks and do not overlap, this distance is a non-
central chi-squared random variable with mean

and variance

(3)
The variance grows asymptotically with . Thus, for rela-
tively large or small , the probability densities of the dif-
ferent are likely to overlap heavily and this re-
sults in erroneous grouping.2 That is, blocks with greater ideal
distances than the threshold are matched as similar, whereas
blocks with smaller such distances are left out.

To avoid the above problem, we propose to measure the
block-distance using a coarse prefiltering. This prefiltering is
realized by applying a normalized 2-D linear transform on both
blocks and then hard-thresholding the obtained coefficients,
which results in

(4)

where is the hard-thresholding operator with threshold
and denotes the normalized 2-D linear transform.3

Using the -distance (4), the result of BM is a set that contains
the coordinates of the blocks that are similar to

(5)

where the fixed is the maximum -distance for which two
blocks are considered similar. The parameter is selected
from deterministic speculations about the acceptable value of
the ideal difference, mainly ignoring the noisy components of
the signal. Obviously , which implies that

, where denotes the cardinality of . After
obtaining , a group is formed by stacking the matched noisy
blocks to form a 3-D array of size ,

2The effect of this is the sharp drop of the output-PSNR observed for two of
the graphs in Fig. 9 at about � � ��.

3For simplicity, we do not invert the transform � and compute the distance
directly from the spectral coefficients. When � is orthonormal, the distance
coincides with the � -distance calculated between the denoised block-estimates
in space domain.
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which we denote . The matched blocks can in general
overlap. We do not restrict the ordering, which is discussed in
Section IV-B.

The collaborative filtering of is realized by
hard-thresholding in 3-D transform domain. The adopted
normalized 3-D linear transform, denoted , is expected
to take advantage of the two types of correlation, discussed
in Section II-D, and attain good sparsity for the true signal
group . This allows for effective noise attenuation by
hard-thresholding, followed by inverse transform that yields a
3-D array of block-wise estimates

(6)

where is a hard-threshold operator with threshold . The
array comprises of stacked block-wise estimates

, . In , the subscript denotes the loca-
tion of this block-estimate and the superscript indicates the
reference block.

2) Steps 2ai and 2aii: Grouping and Collaborative Wiener
Filtering: Given the basic estimate of the true image ob-
tained in Step 1b, the denoising can be improved by performing
grouping within this basic estimate and collaborative empirical
Wiener filtering.

Because the noise in is assumed to be significantly at-
tenuated, we replace the thresholding-based -distance (4) with
the normalized squared -distance computed within the basic
estimate. This is a close approximation of the ideal distance (1).
Hence, the coordinates of the matched blocks are the elements
of the set

(7)

We use the set in order to form two groups, one from the
basic estimate and one from the noisy observation:

• by stacking together the basic estimate blocks

;

• by stacking together the noisy blocks .
We define the empirical Wiener shrinkage coefficients from

the energy of the 3-D transform coefficients of the basic estimate
group as

(8)

Then the collaborative Wiener filtering of is realized as
the element-by-element multiplication of the 3-D transform
coefficients of the noisy data with the Wiener
shrinkage coefficients . Subsequently, the inverse trans-

form produces the group of estimates

(9)

This group comprises of the block-wise estimates lo-
cated at the matched locations .

B. Steps 1b and 2b: Global Estimate by Aggregation

Each collection of block-wise estimates and ,

, obtained respectively in Steps 1a and 2a, is an over-
complete representation of the true-image because in general
the block-wise estimates can overlap. In addition, more than
one block-estimate can be located at exactly the same coordi-
nate, e.g., and are both located at but obtained
while processing the reference blocks at and , respectively.
One can expect substantially overcomplete representation of the
signal in regions where there are plenty of overlapping block-
wise estimates, i.e., where a block is matched (similar) to many
others. Hence, the redundancy of the method depends on the
grouping and, therefore, also on the particular image.

To compute the basic and the final estimates of the true-image
in Steps 1b and 2b, respectively, we aggregate the corresponding
block-wise estimates and , . This ag-

gregation is performed by a weighted averaging at those pixel
positions where there are overlapping block-wise estimates. The
selection of weights is discussed in the following section.

1) Aggregation Weights: In general, the block-wise estimates
are statistically correlated, biased, and have different variance
for each pixel. However, it is quite demanding to take into con-
sideration all these effects. Similarly to [6] and [9], we found
that a satisfactory choice for aggregation weights would be ones
that are inversely proportional to the total sample variance of
the corresponding block-wise estimates. That is, noisier block-
wise estimates should be awarded smaller weights. If the ad-
ditive noise in the groups and is independent, the
total sample variance in the corresponding groups of estimates
(6) and (9) is respectively equal to and ,
where is the number of retained (nonzero) coefficients
after hard-thresholding and are the Wiener filter coef-
ficients (8). Based on this, in Step 1b for each , we
assign the weight

if

otherwise
(10)

for the group of estimates . Similarly, in Step 2b for each

, we assign the weight

(11)

for the group of estimates .

We remark that independence of the noise in a group is only
achieved when the noisy blocks that build this group do not
overlap each other. Therefore, on the one hand, the cost of en-
suring independence would constitute a severe restriction for
the BM, i.e., allowing matching only among nonoverlapping
blocks. On the other hand, if the possible overlaps are consid-
ered, the computation of the individual variance of each trans-
form coefficient in or becomes a pro-
hibitive complication that requires considering the covariance
terms in the corresponding transform coefficients. In our algo-
rithm we use overlapping blocks but do not consider the co-
variances. Hence, the proposed weights (10) and (11) are only
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loosely inversely proportional to the corresponding total sample
variances.

2) Aggregation by Weighted Average: The global basic esti-
mate is computed by a weighted average of the block-wise
estimates obtained in Step 1a, using the weights

defined in (10), i.e.,

(12)

where is the characteristic function of the
square support of a block located at , and the block-wise
estimates are zero-padded outside of their support.

The global final estimate is computed by (12), where
, , , and are replaced respectively by ,

, , and .

IV. FAST AND EFFICIENT REALIZATION

A straightforward implementation of the method presented
in the previous section is highly computationally demanding. In
order to realize a practical and efficient algorithm, we impose
constraints and exploit certain expedients which we present in
the following list.

Reduce the number of processed blocks.
• Rather than sliding by one pixel to every next reference

block, use a step of pixels in both hori-
zontal and vertical directions. Hence, the number of ref-
erence blocks is decreased from approximately to

.
Reduce the complexity of grouping.
• Restrict the maximum size of a group by setting an upper

bound on the number of grouped blocks; i.e.,
ensuring .

• Search for candidate matching blocks in a local neigh-
borhood of restricted size centered about the
currently processed coordinate .

• To further speed-up the BM, we use predictive search,
i.e., the search neighborhoods are nonrectangular and
depend on the previously matched blocks. We form such
a neighborhood as the union of (where

) ones centered at the previous matched co-
ordinates correspondingly shifted by in the direc-
tion of processing the image, e.g., in horizontal direc-
tion for raster scan. For every th processed block,
we nevertheless perform an exhaustive-search BM in the
larger neighborhood. In particular,
implies that only exhaustive-search in is used.

Reduce the complexity of applying transforms.
• Restrict the transforms and to the class of sep-

arable transforms and use respectively and
across the matched blocks and a 1-D transform, ,
along the third dimension of a group, along which the
blocks are stacked.

• The spectra , , and are
precomputed for each block in a neighborhood

around the currently processed coordinate. Later,

these are reused for subsequent reference blocks whose
neighborhoods overlap the current one. Thus,

these transforms are computed exactly once for each
processed coordinate; e.g., they are not recomputed each
time in (4). In addition, in (6), (8), and (9), we com-
pute the forward and transforms simply by
applying across precomputed - and -trans-
formed blocks, respectively.

Realize efficiently the aggregation.
• First, in Steps 1aii and 2aii, the obtained block-wise esti-

mates are weighted and accumulated in a buffer (with the
size of the image). At the same time, the corresponding
weights are accumulated at the same locations in another
buffer. Then, in Steps 1b and 2b, the aggregation (12) is
finally realized by a simple element-wise division be-
tween the two buffers.

Reduce the border effects.
• Use a Kaiser window (with parameter ) as

part of the weights in (12) in order to reduce border
effects which can appear when certain 2-D transforms
(e.g., the 2-D DCT, the 2-D DFT, or periodized wavelets)
are used.

A. Complexity

The time complexity of the algorithm is and, thus,
depends linearly on the size of the input image, as all parameters
are fixed.

Given the restrictions introduced in the previous subsection,
without exploiting predictive-search BM, the number of opera-
tions per pixel is approximately

where for simplicity we omit the superscripts “ht” and “wie”
from the parameters/operators, and where:

• the first addend is due to precomputing for each sliding
block (within a neighborhood);

• the second is due to grouping by exhaustive-search BM in
a neighborhood;

• the third addend is due to the transforms that is a sep-
arable composition of and .

Above, denotes the number of arithmetic operations required
for a transform ; it depends on properties such as availability
of fast algorithms, separability, etc. For example, the DFT can
be computed efficiently by a fast Fourier transform algorithm
and a dyadic wavelet decomposition can be realized efficiently
using iterated filterbanks.

By exploiting fast separable transforms and the predictive-
search BM, we can significantly reduce the complexity of the
algorithm.

B. Parameter Selection

We studied the proposed algorithm using various transforms
and parameters. As a results, we propose sets of parameters
that are categorized in two profiles, “Normal” and “Fast,” pre-
sented in Table I. The main characteristics of these profiles are
as follows.
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TABLE I
PARAMETER SETS FOR THE FAST AND NORMAL PROFILES

• Normal Profile. This profile offers a reasonable compro-
mise between computational complexity and denoising
performance. It is divided in two cases depending on the
level of noise.
— the noise is not too severe to affect the cor-

rectness of the grouping; hence, the thresholding in the
-distance (4) is disabled by setting and rela-

tively small block sizes are used, , .
— corresponds to high level of noise; hence,

is used to improve the correctness of the grouping and
larger block sizes are used, and .

• Fast Profile. Provides lower computational complexity at
the cost of decreased denoising performance. It exploits
the proposed fast predictive-search BM (unlike the Normal
Profile, which uses only the exhaustive-search BM).

The benefit of using thresholding for the -distance
and larger block sizes when is illustrated in Fig. 9 and
discussed in Section VI.

To show how the denoising performance depends on the
choice of the transforms , , and , we present
some experimental results in Table II. As already stated, the
3-D transforms and used in Steps 1 and 2 of our
method are formed by a separable composition of and

, respectively, with . Furthermore, both and
are separable compositions of 1-D transforms such as the ones
specified in the table. The following normalized transforms
were used in our experiment.

• DST, DCT: The discrete sine and cosine transforms.
• WHT: The Walsh–Hadamard transform.
• A few full dyadic wavelet decompositions using the

following.

TABLE II
DEPENDENCY OF THE OUTPUT PSNR (dB) ON THE USED TRANSFORMS. THE

COLUMNS CORRESPONDING TO � CONTAIN PSNR RESULTS OF THE BASIC

ESTIMATE � AND ALL OTHER COLUMNS CONTAIN RESULTS OF THE FINAL

ESTIMATE � . THE NOISE IN THE OBSERVATIONS HAD � � ��

— : The Daubechies wavelet with vanishing mo-
ments, where ,2,4,6; when , it coincides
with the Haar wavelet.

— : A bi-orthogonal spline wavelet, where the
vanishing moments of the decomposing and the recon-
structing wavelet functions are 1 and , respectively.

• DC+rand: An orthonormal transform that has a DC basis
element and the rest of its basis elements have random na-
ture, i.e., obtained by orthonormalization of realizations of
a white Gaussian process.

In addition, only for , we experimented with elementwise
averaging, i.e., preserving only the DC in the third dimension
(and discarding all other transform coefficients), hence its name
“DC-only.” For this case, all grouped blocks are estimated by
elementwise averaging, exactly as in the illustrative example of
Section II-C.

In Table II, we present results corresponding to various ,
, and . There, the Normal Profile parameters were

used in all cases, where only the transform corresponding to
a particular table column was changed. Boldface result corre-
spond to the best performing transform. We observe that the
choice of and does not have a significant impact on
the denoising performance. Even the “DC+rand” transform,
whose basis elements except for the DC are random, shows
only a modest PSNR decrease in the range 0.1–0.4 dB. This
can be explained by the fact that the collaborative filtering
depends mainly on for exploiting the interfragment corre-
lation among grouped blocks. The estimation ability does not
significantly depend on the energy compaction capabilities of

and . In this sense, the interfragment correlation ap-
pears as a much more important feature than the intrafragment
correlation.

Let us now focus on the results corresponding to the var-
ious transforms in Table II. One can distinguish the moder-
ately worse performance of the DST as compared with not only
the other standard transforms but also with the “DC+rand.” We
argue that the reason for this is the lack of DC basis element in
the DST—in contrast with all other transforms, which have this
element. Why is the DC of important? Roughly speaking,
this is so because the DC basis element captures the similarity
between elements along the 3rd dimension of a group. Since
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TABLE III
GRAYSCALE-IMAGE DENOISING: OUTPUT PSNR (dB) OF THE PROPOSED BM3D ALGORITHM

Fig. 4. Grayscale-image denoising: output PSNR as a function of � for the following methods. “ ”: proposed BM3D; “�”: FSP+TUP BLS-GSM [4]; “�”:
BLS-GSM [3]; “�”: exemplar-based [11]; “�”: K-SVD [8]; “�”: pointwise SA-DCT [9]. (Note that the result of [4] for Boats and the results of [4] and [11] for
Cameraman are missing since they were neither reported in the corresponding articles, nor were implementations of these methods publicly available.)

the grouped blocks are similar, so are their corresponding 2-D
spectra and the DC terms reflect this similarity.

However, as it has been discussed in Section II, the existence
of perfectly matching blocks is unlikely. In order to avoid trivial
groups containing only the reference block, a strictly positive
threshold is used in (5) and (7). Additionally, as follows from
(3), the accuracy of the block-distance is affected by the noise.
In practice this means that within a group there can be blocks
for which the underlying true signal is much farther from

than . Therefore, the sole DC element is not able to
capture the potential differences between grouped blocks. This
is confirmed by the poor results of the “DC-only” for . The
availability of additional basis elements in any of the other trans-
forms, even the random ones in “DC+rand,” results in big per-
formance improvement over the “DC-only.”

We experimentally found that the ordering of blocks in
the group does not have a significant effect on the estimation
ability of the algorithm. This is confirmed by the results of the
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Fig. 5. Noisy �� � ��� grayscale House image and the BM3D estimate (PSNR 32.86 dB).

Fig. 6. Fragments of noisy (� � ��, PSNR 20.18 dB) grayscale images and the corresponding BM3D estimates. (a) Lena (PSNR 32.08 dB); (b) Barbara (PSNR
30.73 dB); (c) Cameraman (PSNR 29.45 dB); (d) Man (PSNR 29.62 dB); (e) Boats (PSNR 29.91 dB); (f) Couple (PSNR 29.72 dB).

“DC+rand” for which achieves the same results as any
of the other (structured, nonrandom) orthogonal transforms.
For this transform, the ordering is irrelevant for the DC and is
relevant only for the other basis elements which, however, are
generated randomly. Hence, we may conclude that the ordering
of the blocks in the groups does not influence the final results.
Given this and because in our implementation the BM already
produces a collection of blocks ordered by their block-distance,
we resort to using exactly this ordering. Naturally, first in a
group is always the reference block as the distance to itself is
trivially equal to zero.

Note that, even though a group is constructed based on the
similarity with respect to a given reference block, this does not
imply that this block is better represented by the group than any
of the others. For example, it can happen that all the matched
blocks (except the reference block) are quite dissimilar from
the reference one but tightly similar to each other. Such a group
could be termed as “unbalanced.”

We choose the Haar full dyadic decomposition for
because it can be efficiently implemented with iterated filter-
banks using 2-tap analysis/synthesis filters. To apply such an
orthonormal full dyadic decomposition, the transform size must
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Fig. 7. On the left: Fragment of a noisy (� � ���, PSNR 8.14 dB) grayscale Barbara; on the right: the corresponding fragment of the BM3D estimate (PSNR
23.49 dB).

be a power of 2. We enforced this requirement by restricting
the number of elements of both (5) and (7) to be the
largest power of 2 smaller than or equal to the original number
of elements in and , respectively.

V. EXTENSION TO COLOR-IMAGE DENOISING

We consider a natural RGB image with additive i.i.d. zero-
mean Gaussian noise in each of its channels. Let a luminance-
chrominance transformation be applied on such a noisy image,
where the luminance channel is denoted with and the chromi-
nance channels are denoted with and . Prominent examples
of such transformations are the and the opponent color
transformations, whose transform matrices are, respectively

(13)

Due to properties of the underlying natural color image, such
as high correlation between its , , and channels, the fol-
lowing observations can be made.

• has higher signal-to-noise ratio (SNR) than and
(decorrelation of the , , and channels).

• contains most of the valuable information (edges,
shades, objects, texture patterns, etc.).

• and contain mostly low-frequency information (very
often these channels come from undersampled data).

• Iso-luminant regions with variation only in and are
unlikely.

A straightforward extension of the developed grayscale
denoising method for color-image denoising would be to apply
it separately on each of the , , and channels. This naive
approach, however, would suffer from the lower SNR in the

chrominances since the grouping is sensitive to the level of
noise. Because a proper grouping is essential for the effective-
ness of our method, we propose to perform the grouping only
once for the luminance and reuse exactly the same grouping
when applying collaborative filtering on the chrominances

and . That is, the sets of grouped blocks’ coordinates
from (5) and (7) are found for , respectively in Steps 1ai
and 2ai, and reused for both and ; using these sets, the
collaborative filtering (Steps 1aii and 2aii) and the aggregation
(Steps 1b and 2b) are performed separately on each of the
three channels. The grouping constraint on the chrominances
is based on the assumption that if the luminances of two blocks
are mutually similar, then their chrominances are also mutually
similar. Furthermore, given that grouping by block-matching
takes approximately half of the execution time of the BM3D,
the grouping constraint enables a computational reduction of
approximately one third as compared to applying the grayscale
BM3D separately on the three channels.

VI. RESULTS

In this section, we present and discuss the experimental re-
sults obtained by the developed algorithms; the grayscale ver-
sion is denominated block-matching and 3-D filtering (BM3D)
and the color version is accordingly abbreviated C-BM3D. For
all experiments, we used the Matlab codes available at http://
www.cs.tut.fi/~foi/GCF-BM3D. At this website, we also pro-
vide further results and the original and denoised test images
used in our experiments. Unless specified otherwise, we use the
parameters of the “Normal Profile” from Table I for both the
BM3D and the C-BM3D.

A. Grayscale-Image Denoising

The output PSNR results of the BM3D algorithm for a stan-
dard set of grayscale images are given in Table III. The PSNR
of an estimate of a true image , is computed according to the
standard formula
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Fig. 8. Fragments of the grayscale (top row) Boats and (bottom row) Cameraman denoised by (from left to right): [3], [8], [9], [12], and the proposed BM3D for
noise with � � �� (fragments of the noisy images can be seen in Fig. 6).

In Fig. 4, we compare the output PSNR results of the pro-
posed BM3D with those of the state-of-the-art techniques
BLS-GSM [3], FSP+TUP BLS-GSM [4], exemplar-based [11],
K-SVD [8], Pointwise SA-DCT [9]; for the K-SVD method
[8], we report its best results, which are those obtained with
an adaptive dictionary trained on the noisy image. It can be
seen from the figure that the proposed BM3D demonstrates the
best performance and uniformly outperforms all of the other
techniques. In particular, a significant improvement is observed
for House and Barbara since these images contain structured
objects (edges in House and textures in Barbara) which enable
a very effective grouping and collaborative filtering.

In Fig. 5, we show a noisy House image and the cor-
responding BM3D estimate. In this test image, similarity among
neighboring blocks is easy to perceive in the uniform regions
and along the regular-shaped structures, some of which are il-
lustrated in Fig. 1. Hence, such details are well-preserved in the
estimate.

The denoising performance of the BM3D algorithm is further
illustrated in Fig. 6, where we show fragments of a few noisy

test images and fragments of the corresponding de-
noised ones. The denoised images show good preservation of:

• uniform areas and smooth intensity transitions (cheeks of
Lena, and the backgrounds of the other images);

• textures and repeating patterns (the scarf in Barbara);
• sharp edges and singularities (borders of objects in

Cameraman and Boats).
A denoising example for an extreme level of noise such as

is shown in Fig. 7. Given that the original image is al-
most completely buried into noise, the produced estimate shows
reasonable detail preservation. In particular, repeated patterns,
such as the stripes on the clothes, are faithfully reconstructed.

Regarding the subjective visual quality, we find that various
image details are well preserved and at the same time very few

artifacts are introduced; one can observe this in Figs. 6–8. The
state-of-the-art subjective visual quality of our algorithm is con-
firmed by the result of the psycho-visual experiment carried out
by Vansteenkiste et al. [19]. There, 35 evaluators classified the
preliminary version [12] of the BM3D algorithm as the best
among 8 evaluated state-of-the-art techniques. The criteria in
this evaluation were perceived noisiness, perceived blurriness,
and overall visual quality. Furthermore, we consider the sub-
jective visual quality of the current BM3D algorithm to be sig-
nificantly better (in terms of detail preservation) than that of its
preliminary version evaluated in [19]. In Fig. 8, we show im-
ages denoised by the current and by the preliminary versions of
the BM3D algorithm. A close inspection reveals that the images
denoised by the current BM3D have both fewer ringing artifacts
and better preservation of details.

We show the PSNR performance of the Fast and Normal
BM3D Profiles in Fig. 9. The two cases of the Normal Profile
from Table I are considered separately for in order
to show the sharp PSNR drop of the “ ” graph at about

due to erroneous grouping. On the other hand, for the
“ ” graph, where the thresholding-based -distance (4)
is used with a relatively large block-size , one can observe
that there is no sharp PSNR drop. It is noteworthy that, for up
to moderate levels of noise such as , the PSNR differ-
ence between the Fast and the Normal Profiles is in the range
0.05–0.2 dB. This can be an acceptable price for the 6-fold re-
duction of the execution time shown in Table I; more precisely,
the approximate execution time (for denoising a 256 256
image calculated on a 1.5-GHz Celeron M) decreases from 4.1 s
for the Normal Profile to 0.7 s for the Fast Profile. The BM3D
algorithm allows for further complexity/performance tradeoff
by varying . As a rough comparison, the execution times
(for denoising a 256 256 image on a 1.5-GHz Celeron M)
of the other methods considered in Fig. 4 were: 22.1 s for the
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Fig. 9. Comparison between the output PSNR corresponding to the profiles in Table I. Notation is: “�” for fast profile, “ ” for the normal profile in the case
“� � ��” and “�” in the case “� � ��”; both instances of the normal profile are shown for all considered values of � in the range [10, 75].

TABLE IV
COLOR-IMAGE DENOISING: OUTPUT PSNR

OF THE PROPOSED C-BM3D ALGORITHM

BLS-GSM, 6.2 s for the SA-DCT filter, 9–30 min (depending
on ) for training the adaptive K-SVD on an input noisy image,
and 25–120 s to perform the filtering using the found dictio-
nary. The execution time of the exemplar-based method was re-
ported in [11] to be about 1 min when measured on a 2-GHz
Pentium IV. The execution time of the FSP+TUP BLS-GSM
was not reported; however, it is a two-step BLS-GSM extension
that should not be faster than the BLS-GSM.

B. Color-Image Denoising

We performed experiments with the C-BM3D using the op-
ponent color space transformation (13) and the Normal Profile
algorithm parameters. In all experiments, we considered noisy
images with i.i.d. zero-mean Gaussian noise of variance in
each of their , , and channels. The PSNR for RGB images
is computed using the standard formula

where the subscript denotes the color channel.
Table IV presents the output-PSNR results of the proposed
C-BM3D algorithm for a few standard test images. A com-
parison with the two recent state-of-the-art methods [9], [20]
is given in Table V. One can see that the proposed algorithm
outperforms them for the three test images considered there.

TABLE V
COLOR-IMAGE DENOISING: OUTPUT-PSNR COMPARISON WITH

THE TWO STATE-OF-THE-ART RECENT METHODS [20] AND [9]

Fig. 10. Color-image denoising: On the left are a noisy Lena image (� � ��,
PSNR 14.15 dB) and a fragment of it; on the right are the C-BM3D estimate
(PSNR 29.72 dB) and the corresponding fragment.

The visual quality can be inspected from Fig. 10 where a
noisy (with ) color Lena and the C-BM3D estimate are
shown. One can observe the faithfully preserved details on the
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hat, the sharp edges, and the smooth regions. The approximate
execution time of the C-BM3D for a 256 256 RGB image
was 7.6 s on a 1.5-GHz Celeron M.

VII. DISCUSSION

The approach presented in this paper is an evolution of our
work on local approximation techniques. It started from the
classical local polynomial approximation with a simple sym-
metric neighborhood. The adaptive pointwise varying size of
this neighborhood was a first step to practically efficient al-
gorithms. A next step was devoted to anisotropic estimation
based on adaptive starshaped neighborhoods allowing nonsym-
metric estimation areas. The nonsymmetry of these estimates is
a key-point in designing estimators relevant to natural images.
This development has been summarized in the recent book [21].

These techniques are based on fixed-order approximations.
For image processing, these approximations are in practice
reduced to zero and first order polynomials. It became clear
that the developed neighborhood adaptivity had practically
exhausted its estimation potential.

The breakthrough appears when the adaptive order local
approximations are introduced. First, it was done in terms of
the orthonormal transform with varying window size [22]. The
hard-thresholding of the spectrum of these transforms means
that some terms in the approximating series are adaptively
dropped, and, thus, the order of the model becomes data de-
pendent [23]. The most efficient development of the idea of
the adaptive order estimation in local neighborhoods was the
pointwise shape-adaptive DCT filter [9], where the orthonormal
transform is calculated in adaptive shape neighborhoods de-
fined by special statistical rules.

The next essential step in the development of the local ap-
proximations is presented in this paper. The spatial adaptivity is
realized by selection of sets of blocks similar to a given refer-
ence one. Thus, local estimates become nonlocal. The selected
blocks are grouped in 3-D arrays, jointly filtered, and aggregated
at the places where they were taken from. The joint filtering of
the blocks in the 3-D arrays is realized by shrinkage of the spec-
trum items; thus, the idea of the order adaptive estimation is ex-
ploited again but in quite a specific way. The main advantages of
this approach are the nonlocality and the collaborative filtering.
The latter results in effective preservation of local features in
image blocks and very efficient denoising.

We wish to mention the work of a few other authors in order
to clarify the context of our contribution and to state what makes
it different from other similar approaches.

Since our method and the nonlocal estimators [10] and
[11] are based on the same assumptions about the signal, it is
worth comparing this class of techniques with our method. The
weighted mean used in the nonlocal estimation corresponds
to a zero-order polynomial approximation. Its effectiveness
depends on an elaborate computation of adaptive weights,
depending on the similarity between image patches centered
at the estimated pixel and the ones used in the averaging.
Our approach is different; by using a more flexible set of
the basis functions (embedded in the transform), we enable

order-adaptivity of the model and a more efficient exploitation
of the similarity between grouped blocks. This is realized by
collaborative filtering that allows for high-order estimates (not
only weighted means) to be calculated for all grouped blocks.

The algorithm proposed in [8] is derived from a global opti-
mization formulation. The image is segmented in a set of over-
lapping blocks and the filtering is enabled by fitting a minimum
complexity model to each of these blocks. The final image es-
timate is obtained by fusing these models. A very good per-
formance of the algorithm mainly follows from using a set of
basis functions (dictionaries) obtained by training. In contrast,
our collaborative filtering is essentially different because the
model induced by hard-thresholding has low-complexity only
in relation to the group as a whole. For the block-wise esti-
mates and for the image overall, the model can instead be highly
complex and redundant as each block can enter in many groups
and, thus, can participate in many collaborative estimates. This
redundancy gives a very good noise attenuation and allows to
avoid artifacts typical for the standard thresholding schemes.
Thus, we may say that instead of some low-complexity mod-
eling as in [8], we exploit specific overcomplete representations.

The collaborative Wiener filtering used in the second step and
the aggregation of block-wise estimates using adaptive weights
are major features of our approach. The Wiener filtering uses
the power spectrum of the basic estimate to filter the formed
groups. As a result, the estimation improves significantly over
the hard-thresholding used in the first step. The improvement in
PSNR can be seen from Table II (by comparing the numbers in
the column of “ ” with the numbers in any of the other two
columns “ ” or “ ”); one can observe that the improve-
ment is substantial, typically greater than 0.5 dB.

The basis functions used in our algorithm are standard ones,
computationally efficient, and image independent. We believe
that the proposed denoising method could be improved by using
more sophisticated bases such as adaptive PCA [7], or overcom-
plete learned dictionaries [8]. However, the computational com-
plexity would significantly increase because these transforms
are typically nonseparable and do not have fast algorithms. As
it is shown in the previous section, even with the currently used
standard transforms, our algorithm already demonstrates better
performance than both [8] and [11].

The proposed extension to color images is nontrivial because
we do not apply the grayscale BM3D independently on the three
luminance-chrominance channels, but we impose a grouping
constraint on both chrominances. The grouping constraint
means that the grouping is done only once, in the luminance
(which typically has a higher SNR than the chrominances), and
exactly the same grouping is reused for collaborative filtering
in both chrominances. It is worth comparing the performance
of the proposed C-BM3D versus the independent application
of the grayscale BM3D on the individual color channels. This
is done in Table VI which shows that the C-BM3D achieves
0.2–0.4 dB better PSNR than the independent application of the
BM3D on the opponent color channels and 0.3–0.8 dB better
PSNR than the independent application of the BM3D on the
RGB channels. This improvement shows the significant benefit
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TABLE VI
PSNR RESULTS OF THREE DIFFERENT APPROACHES TO COLOR-IMAGE

DENOISING. THE NOISE WAS ADDED IN RGB WITH � � �� AND ALL

PSNR (dB) VALUES WERE ALSO COMPUTED IN RGB SPACE

of using the grouping constraint on the chrominances in the
C-BM3D.

We note that a similar idea of filtering the chrominances
using information from the luminance was exploited already
in the Pointwise SA-DCT denoising method [9]. There, adap-
tive-shape estimation neighborhoods are determined only for

and then reused for both and . The PSNR improvement
(0.1–0.4 dB) of the proposed approach compared with [9]
is consistent with the improvement between the grayscale
versions of these two methods.

VIII. CONCLUSION

The image modeling and estimation algorithm developed in
this paper can be interpreted as a novel approach to nonlocal
adaptive nonparametric filtering. The algorithm demonstrates
state-of-the-art performance. To the best of our knowledge, the
PSNR results shown in Tables III and IV are the highest for de-
noising additive white Gaussian noise from grayscale and color
images, respectively. Furthermore, the algorithm achieves these
results at reasonable computational cost and allows for effective
complexity/performance tradeoff, as shown in Table I.

The proposed approach can be adapted to various noise
models such as additive colored noise, non-Gaussian noise,
etc., by modifying the calculation of coefficients’ variances in
the basic and Wiener parts of the algorithm. In addition, the
developed method can be modified for denoising 1-D-signals
and video, for image restoration, as well as for other problems
that can benefit from highly sparse signal representations.
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ABSTRACT

We propose an image restoration technique exploiting regularized inversion and the recent block-matching and 3D
filtering (BM3D) denoising filter. The BM3D employs a non-local modeling of images by collecting similar image
patches in 3D arrays. The so-called collaborative filtering applied on such a 3D array is realized by transform-
domain shrinkage. In this work, we propose an extension of the BM3D filter for colored noise, which we use in
a two-step deblurring algorithm to improve the regularization after inversion in discrete Fourier domain. The
first step of the algorithm is a regularized inversion using BM3D with collaborative hard-thresholding and the
seconds step is a regularized Wiener inversion using BM3D with collaborative Wiener filtering. The experimental
results show that the proposed technique is competitive with and in most cases outperforms the current best
image restoration methods in terms of improvement in signal-to-noise ratio.

Keywords: image restoration, deconvolution, deblurring, block-matching, collaborative filtering

1. INTRODUCTION

Image blurring is a common degradation in imaging. In many cases, the blurring can be assumed space-invariant
and thus modeled as a convolution of the true image with a fixed point-spread function (PSF). Such a model is
given by

� (�) = (� ~ �) (�) + � (�) , (1)

where � is the true (non-degraded) image, � is a blur PSF, � is i.i.d. Gaussian noise with zero mean and variance

2, and � � � is a 2D coordinate in the image domain �. The inversion of the blurring is in general an
ill-posed problem; thus, even noise with very small magnitude, such as truncation noise due to limited-precision
arithmetic, can cause extreme degradations after naive inversion. Regularization is a well known and extensively
studied approach to alleviate this problem. It imposes some regularity conditions (e.g., smoothness) on the
obtained image estimate and/or on its derivatives. Numerous approaches that employ regularization have been
proposed; an introduction can be found for example in the books.1, 2 In particular, an image restoration scheme
that comprises of regularized inversion followed by denoising has been a basis of the current best-performing
restoration methods.3, 4 Such denoising after the inversion can be considered as part of the regularization since
it attenuates the noise in the obtained solution (i.e. the solution is smoothed).

Various denoising methods can be employed to suppress the noise after the inversion. Filtering in multiresolu-
tion transform domain (e.g., overcomplete wavelet and pyramid transforms) was shown4—6 to be e�ective for this
purpose. In particular, the SV-GSM,4 which employs Gaussian scale mixtures in overcomplete directional and
multiresolution pyramids, is among the current best image deblurring methods. Another denoising technique
used after regularized inversion3, 7, 8 is the LPA-ICI9 which exploits a non-parametric local polynomial fit in
anisotropic estimation neighborhoods. The best results of the methods based on LPA-ICI were achieved by the
shape-adaptive discrete cosine transform (SA-DCT) deblurring3 where the denoising is realized by shrinkage of
the SA-DCT applied on local neighborhoods whose arbitrary shapes are defined by the LPA-ICI.

This work was partly supported by the Academy of Finland, project No. 213462 (Finnish Centre of Excellence program [2006 -
2011]); the work of K. Dabov was supported by the Tampere Graduate School in Information Science and Engineering (TISE).
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Figure 1. Flowchart of the proposed deconvolution algorithm. A fragment of House illustrates the images after each
operation.

In this work we follow the above restoration scheme (regularized inversion followed by denoising) exploiting
an extension of the block-matching and 3D filtering10 (BM3D). This filter is based on the assumption that there
exist mutually similar patches within a natural image – the same assumption used in other non-local image filters
such as.11, 12 The BM3D processes a noisy image in a sliding-window (block) manner, where block-matching is
performed to find blocks similar to the currently processed one. The blocks are then stacked together to form
a 3D array and the noise is attenuated by shrinkage in a 3D-transform domain. This results in a 3D array of
filtered blocks. A denoised image is produced by aggregating the filtered blocks to their original locations using
weighted averaging. This filter was shown10 to be highly e�ective for attenuation of additive i.i.d. Gaussian
(white) noise. The contribution of this work includes

• extension of the BM3D filter for additive colored noise, and

• image deblurring method that exploits the extended BM3D filter for improving the regularization after
regularized inversion in Fourier transform domain.

The paper is organized as follows. The developed image restoration method and the extension of the BM3D
filter are presented in Sections 2. Simulation results and a brief discussion are given in Section 3 and relevant
conclusions are made in Section 4.

2. IMAGE RESTORATION WITH REGULARIZATION BY BM3D FILTERING

The observation model given in Equation (1) can be expressed in discrete Fourier transform (DFT) domain as

0 = 7 
 + �̃, (2)

where 7 , 
 , and �̃ are the DFT spectra of �, �, and �, respectively. Capital letters denote DFT of a signal; e.g.
0 = F {�}, 
 = F {�}; the only exception in that notation is for �̃ = F {�}. Due to the normalization of the
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forward DFT, the variance of �̃ is |�|
2, where |�| is the cardinality of the set � (i.e., |�| is the number of
pixels in the input image).

Given the input blurred and noisy image �, the blur PSF �, and the noise variance 
2, we apply the following
two-step image deblurring algorithm, which is illustrated in Figure 1.

Proposed two-step image deblurring algorithm

Step 1. Regularized Inversion (RI) using BM3D with collaborative hard-thresholding.

1.1. The regularized inverse �RI is computed in DFT domain as

8RI =

̄

|
 |2 + �RI |�|
2

�RI = F�1
©
8RI0

ª
= F�1

(
7

|
 |2

|
 |2 + �RI |�|
2

)
+ F�1

©
�̃8RI

ª
, (3)

where �RI is a regularization parameter determined empirically. Note that the obtained inverse �RI

is the sum of F�1
n
7 |� |2
|� |2+�R I |
|�2

o
, a biased estimate of �, and the colored noise F�1

©
�̃8RI

ª
.

1.2. Attenuate the colored noise in �RI given by Eq. (3) using BM3D with collaborative hard-
thresholding (see Section 2.1); the denoised image is denoted �̂RI.

Step 2. Regularized Wiener inversion (RWI) using BM3D with collaborative Wiener filtering.

2.1. Using �̂RI as a reference estimate, compute the regularized Wiener inverse �RWI as

8RWI =

̄
¯̄̄
7̂ RI

¯̄̄2
¯̄̄

 7̂ RI

¯̄̄2
+ �RWI |�|
2

	

�RWI = F�1
©
8RWI0

ª
	

�RWI = F�1

�����7

¯̄̄

 7̂ RI

¯̄̄2
¯̄̄

 7̂ RI

¯̄̄2
+ �RWI |�|
2

�����+ F�1 ©�̃8RWIª (4)

where, analogously to Eq. (3), �RWI is a regularization parameter and �RWI is the sum of a biased
estimate of � and colored noise.

2.2. Attenuate the colored noise in �RWI using BM3D with collaborative Wiener filtering (see Section
2.2) which also uses �̂RI as a pilot estimate. The result �̂RWI of this denoising is the final restored
image.

The BM3D filtering of the colored noise (Steps 1.2 and 2.2) plays the role of a further regularization of the
sought solution. It allows the use of relatively small regularization parameters in the Fourier-domain inverses,
hence reducing the bias in the estimates �RI and �RWI, which are instead essentially noisy. The BM3D denoising
filter10 is originally developed for additive white Gaussian noise. Thus, to enable the attenuation of colored
noise, we propose some modifications to the original filter.

Before we present the extensions that enable attenuation of colored noise, we recall how the BM3D filter
works; for details of the original method one can refer to.10 The BM3D processes an input image in a sliding-
window manner, where the window (block) has a fixed size &1 × &1. For each processed block a 3D array is
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(a) BM3D with collaborative hard-thresholding

(b) BM3D with collaborative Wiener filtering

Figure 2. Flowcharts of the BM3D filter extentions for colored-noise removal.

formed by stacking together blocks (from various image locations) which are similar to the current one. This
process is called “grouping” and is realized by block-matching. Consequently, a separable 3D transform T3D is
applied on the 3D array in such a manner that first a 2D transform, T2D , is applied on each block in the group
and then a 1D transform, T1D , is applied in the third dimension. The noise is attenuated by shrinkage (e.g.
hard-thresholding or empirical Wiener filtering) of the T3D-transform spectrum. Subsequently, the transform
T3D is inverted and each of the filtered blocks in the group is returned to its original location. After processing
the whole image, since the filtered blocks can (and usually do) mutually overlap, they are aggregated by weighted
averaging to form a final denoised image.

If the transforms T2D and T1D are orthonormal, the grouped blocks are non-overlapping, and the noise in
the input image is i.i.d. Gaussian, then the noise in the T3D -transform domain is also i.i.d. Gaussian with the
same constant variance. However, if the noise is colored as in the case of Eq. (3), then the variances 
22D (�) 	
for � = 1	 � � � 	 &2

1 , of the T2D-transform coe�cients are in general non constant. In the following subsections,
we extend the BM3D filter to attenuate such colored noise. We note that the developed extensions are not
necessarily restricted to the considered image restoration scheme but are applicable to filtering of colored noise
in general.

Let us introduce the notation used in what follows. With �RI� we denote a 2D block of fixed size &1 × &1

extracted from �RI, where � � � is the coordinate of the top-left corner of the block. Let us note that this
block notation is di�erent from the one (capital letter with subscript) used in10 since the capital letter in this
paper is reserved for the DFT of an image. A group of collected 2D blocks is denoted by a bold-face letter with
a subscript indicating the set of its grouped blocks’ coordinates: e.g., zRI� is a 3D array composed of the blocks
�RI� , �� � 9 � �.

2.1. BM3D with collaborative hard-thresholding (Step 1.2)
This filtering is applied on the noisy �RI given by Eq. (3). The variances of the coe�cients of a T2D-transform
(applied to an arbitrary image block) are computed as


22D (�) =

2

|�|

°°°8RIF n'(�)T2D o°°°22 , �� = 1	 � � � 	 &2
1 , (5)
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where '
(�)
T2D is the �-th basis element of T2D . The flowchart of the BM3D with collaborative hard-thresholding

extended for color-noise attenuation is given in Figure 2(a).

The variances 
22D are used in the block-matching to reduce the influence of noisier transform coe�cients
when determining the block-distance. To accomplish this, the block-distance is computed as the :2-norm of
the di�erence between the two T2D-transformed blocks scaled by the corresponding standard deviations of the
T2D-transform coe�cients. Thus, the distance is given by

�
¡
�RI�� 	 �

RI
�

¢
= &�2

1

°°°°°T2D
©
�RI��

ª
� T2D

©
�RI�

ª

2D

°°°°°
2

2

, (6)

where �RI�� is the current reference block, �
RI
� is an arbitrary block in the search neighborhood, and the operations

between the three &1 × &1 arrays T2D
©
�RI��

ª
, T2D

©
�RI�

ª
, and 
2D are elementwise. After the best-matching

blocks are found (their coordinates are saved as the elements of the set 9��) and grouped together in a 3D
array, collaborative hard-thresholding is applied. It consists of applying the 3D transform T3D on the 3D group,
hard-thresholding its spectrum, and then inverting the T3D . To attenuate the colored noise, the hard-threshold is
made dependent on the variance of each T3D -transform coe�cient. Due to the separability of T3D , this variance
depends only on the corresponding 2D coordinate within the T3D-spectrum; thus, along the third dimension of a
group the variance and hence the threshold are the same. The hard-thresholding is performed by an elementwise

multiplication of the T3D-spectrum T3D
n
zRI���

o
with the 3D array h�� defined as

h�� (�	 ;) =

(
1, if

¯̄̄
T3D

n
zRI���

o
(�	 ;)

¯̄̄
, -3D
2D (�)

0, otherwise,
, �� = 1	 � � � 	&2

1 , �; = 1	 � � � 	 |9�� | 	

where � is a spatial-coordinate index and ; is an index of the coe�cients in the third dimension, -3D is a fixed
threshold coe�cient and |9�� | denotes the cardinality of the set 9�� .

After all reference blocks are processed, the filtered blocks are aggregated by a weighted averaging, producing
the denoised image �̂RI. The weight for all filtered blocks in an arbitrary 3D group is the inverse of the sum
of the variances of the non-zero transform coe�cients after hard-thresholding; for a 3D group using �� � � as
reference, the weight is

�ht�� =
1X

�=1������2
1

�=1�����|��� |

h�� (�	 ;)

2
2D (�)

.

2.2. BM3D with collaborative Wiener filtering (Step 2.2)

The BM3D with collaborative empirical Wiener filtering uses �̂RI as a reference estimate of the true image �.
Since the grouping by block-matching is performed on this estimate and not on the noisy image, there is no need
to modify the distance calculation as in Eq. (6). The only modification from Step 2 of the original BM3D filter
concerns the di�erent variances of the T3D -transform coe�cients in the empirical Wiener filtering. This filtering

is performed by an elementwise multiplication of the T3D -spectrum T3D
n
zRWI
���

o
with the Wiener attenuation

coe�cients w�� defined as

w�� (�	 ;) =

¯̄̄
T3D

nbyRI���o (�	 ;)¯̄̄2¯̄̄
T3D

nbyRI���o (�	 ;)¯̄̄2 + 
22D (�)
, �� = 1	 � � � 	 &2

1 	�; = 1	 � � � 	 |9�� | ,

where, similarly to Eq. (5), the variances 
22D of the T2D -transform coe�cients are computed as


22D (�) =

2

|�|

°°°8RWIF
n
'
(�)
T2D

o°°°2
2
, �� = 1	 � � � 	&2

1 . (7)
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For an arbitrary �� � �, the aggregation weight for its corresponding filtered 3D group is

�wie�� =
1X

�=1������2
1

�=1�����|��� |

w2
�� (�	 ;)


2
2D (�)

.

The flowchart of the BM3D with collaborative Wiener filtering extended for color-noise attenuation is given in
Figure 2(b).

3. RESULTS AND DISCUSSION

We present simulation results of the proposed algorithm, whose Matlab implementation is available online.13

All parameters, obtained after a rough empirical optimization, are fixed in all experiments (invariant of the
noise variance 
2, blur PSF �, and image �) and can be inspected from the provided implementation. In our
experiments, we used the same blur PSFs and noise combinations as in.4 In particular, these PSFs are:

• PSF 1: � (�1	 �2) = 1�
¡
1 + �21 + �22

¢
	 �1	 �2 = �7	 � � � 	 7,

• PSF 2: � is a 9× 9 uniform kernel (boxcar),

• PSF 3: � = [1 4 6 4 1]� [1 4 6 4 1] �256,
• PSF 4: � is a Gaussian PSF with standard deviation 1.6,
• PSF 5: � is a Gaussian PSF with standard deviation 0.4.

All PSFs are normalized so that
P

� = 1.
Table 1 presents a comparison of the improvement in signal-to-noise ratio (ISNR) for a few methods3, 4, 6, 14—16

among which are the current best.3, 4 The results of ForWaRD6 were obtained with the Matlab codes17 made
available by its authors, for which we used automatically estimated regularization parameters. The results
of the SA-DCT deblurring3 were produced with the Matlab implementation,18 where however we used fixed
regularization parameters in all experiment in order to have fair comparison (rather than using regularization
parameters dependent on the PSF and noise). The results of the GSM method19 and the SV-GSM4 are taken
from.4 In most of the experiments, the proposed method outperforms the other techniques in terms of ISNR. We
note that the results of the four standard experiments used in the literature (e.g.,3, 6, 7, 20) on image restoration
are included in Table 1 as follows.

• Experiment 1: PSF2, 
2 = 0�308, and Cameraman image.
• Experiment 2: PSF1, 
2 = 2, and Cameraman image.
• Experiment 3: PSF1, 
2 = 8, and Cameraman image.
• Experiment 4: PSF3, 
2 = 49, and Lena image.

The visual quality of some of the restored images can be evaluated from Figures 4, 5, and 6. One can see
that fine details are well preserved and there are few artifacts in the deblurred images. In particular, ringing can
be seen in some images such as the ones shown in Figure 3, where a comparison with the SA-DCT deblurring3

is made. The ringing is stronger (and ISNR is lower) in the estimate obtained by the proposed technique. We
explain this as follows; let us recall that each of the noisy images �RI and �RWI (input to the extended BM3D
filter) is sum of a bias and additive colored noise; the exact models of �RI and �RWI are given by Eq. (3) and
(4), respectively. The ringing is part of the bias and thus it is not modeled as additive colored noise. Hence, if
the ringing magnitude is relatively high, the BM3D fails to attenuate it and it is preserved in the final estimate,
as in Figure 3.

By comparing the results corresponding to �̂RI and �̂RWI in Table 2, one can see the improvement in ISNR
after applying the second step (RWI using BM3D with collaborative Wiener filtering) of our two-step restoration
scheme. This improvement is significant and can be explained as follows. First, the regularized Wiener inverse is
more e�ective than the regularized inverse because it uses the estimated power spectrum for the inversion given
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Blur: PSF2, 
2 = 0�308 SA-DCT deblurring3 Proposed method
(PSNR 20.76 dB) (ISNR 8.55 dB) (ISNR 8.34 dB)

Fragments of the SA-DCT result Fragments of the result by the proposed method

Figure 3. Comparison of the proposed method with the SA-DCT deconvolution method for Cameraman and PSF 2 blur
kernel.

in Eq. (4). Second, the block-matching in the BM3D filtering is more accurate because it is performed within
the available estimate �̂RI rather than within the input noisy image �RWI. Third, the empirical Wiener filtering
used by the BM3D in that step is more e�ective than the simple hard-thresholding used in the first step. In
fact, the first step can be considered as an adaptation step that significantly improves the actual restoration
performed by the second step.

In Table 2, we also provide (in the row corresponding to �̂RWI
naive) the results of the naive approach of using the

original BM3D filter10 rather than the one extended for colored noise. This filter was applied on �RI and �RWI

by assuming additive i.i.d. Gaussian noise, whose variance was computed as 
2WGN = &�2
1

P�2
1

�=1 

2
2D (�), where


22D (·) is defined in Eq. (5) and (7) for �RI and �RWI, respectively. This variance calculation was empirically
found to be better (in terms of ISNR) than estimating a noise variance from the noisy images �RI and �RWI.
The benefit of using the BM3D for colored noise reaches 1 dB; in particular, the benefit is substantial for those
experiments where the noise in �RI and �RWI is highly colored.

4. CONCLUSIONS

The developed image deblurring method outperforms the current best techniques in most of the experiments.
This performance is in line with the BM3D denoising filter10 which is among the current best denoising filters.
The proposed colored-noise extension of the BM3D is not restricted to the developed deblurring method and it
can in general be applied to filter colored noise.

Future developments might target attenuation of ringing artifacts by exploiting the SA-DCT transform21

which, as shown in Figure 3, is e�ective in suppressing them.
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Blur PSF 1 PSF 2 PSF 3 PSF 4 PSF 5

2 2 8 0�308 49 4 64

Cameraman
Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82
ForWaRD6 6.76 5.08 7.34 2.40 3.14 3.92
GSM19 6.84 5.29 -1.61 2.56 2.83 3.81
EM16 6.93 4.88 7.59 - - -
Segm.-based Reg.15 7.23 - 8.04 - - -
GEM14 7.47 5.17 8.10 - - -
BOA20 7.46 5.24 8.16 - - -
Anis. LPA-ICI7 7.82 5.98 8.29 - - -
SV-GSM4 7.45 5.55 7.33 2.73 3.25 4.19
SA-DCT3 8.11 6.33 8.55 3.37 3.72 4.71
Proposed 8.19 6.40 8.34 3.34 3.73 4.70

Lena
Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03
Segm.-based Reg.15 - - - 1.34 - -
GEM14 - - - 2.73 - -
BOA20 - - - 2.84 - -
ForWaRD6 6.05 4.90 6.97 2.93 3.50 5.42
EM16 - - - 2.94 - -
Anis. LPA-ICI7 - - - 3.90 - -
SA-DCT3 7.55 6.10 7.79 4.49 4.08 5.84
Proposed 7.95 6.53 7.97 4.81 4.37 6.40

House
Input PSNR 25.61 25.46 24.11 28.06 27.81 29.98
ForWaRD6 7.35 6.03 9.56 3.19 3.85 5.52
GSM19 8.46 6.93 -0.44 4.37 4.34 5.98
SV-GSM4 8.64 7.03 9.04 4.30 4.11 6.02
SA-DCT3 9.02 7.74 10.50 4.99 4.65 5.96
Proposed 9.32 8.14 10.85 5.13 4.56 7.21

Barbara
Input PSNR 23.34 23.25 22.49 24.22 23.77 29.78
ForWaRD6 3.69 1.87 4.02 0.94 0.98 3.15
GSM19 5.70 3.28 -0.27 1.44 0.95 4.91
SV-GSM4 6.85 3.80 5.07 1.94 1.36 5.27
SA-DCT3 5.45 2.54 4.79 1.31 1.02 3.83
Proposed 7.80 3.94 5.86 1.90 1.28 5.80

Table 1. Comparison of the output ISNR [dB] of a few deconvolution methods (only the rows corresponding to “Input
PSNR” contain PSNR [dB] of the input blurry images).
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Blur: PSF1, 
2 = 2 Output ISNR 9.32 dB

Blur: PSF1, 
2 = 8 Output ISNR 8.14 dB

Blur: PSF2, 
2 = 0�308 Output ISNR 10.85 dB

Figure 4. Deblurring results of the proposed method for House.
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Blur: PSF3, 
2 = 49 Output ISNR 4.81 dB

Blur: PSF4, 
2 = 4 Output ISNR 4.37 dB

Blur: PSF5, 
2 = 64 Output ISNR 6.40 dB
Figure 5. Deblurring results of the proposed method for Lena.
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Blur: PSF1, 
2 = 8 Output ISNR 3.94 dB

Blur: PSF2, 
2 = 0�308 Output ISNR 5.86 dB

Blur: PSF3, 
2 = 49 Output ISNR 1.90 dB
Figure 6. Deblurring results of the proposed method for Barbara.

151



Blur � PSF 1 PSF 2 PSF 3 PSF 4 PSF 5

2 � 2 8 0�308 49 4 64

�̂RI 7.13 5.16 7.52 2.31 3.23 2.46
�̂RWI 8.19 6.40 8.34 3.34 3.73 4.70
�̂RWI
naive 7.17 6.25 8.14 2.57 2.71 4.63

Table 2. ISNR comparison for: the basic estimate �̂RI ; the final estimate �̂RW I ; the final estimate �̂RW I
naive obtained using

the original BM3D filter instead of the one extended for colored noise. The test image was Cameraman.
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