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ABSTRACT
We introduce a new approach to image reconstruction from highly
incomplete data. The available data are assumed to be a small col-
lection of spectral coefÞcients of an arbitrary linear transform. This
reconstruction problem is the subject of intensive study in the recent
Þeld of �compressed sensing� (also known as �compressive sam-
pling�). Our approach is based on a quite speciÞc recursive Þltering
procedure. At every iteration the algorithm is excited by injection of
random noise in the unobserved portion of the spectrum and a spa-
tially adaptive image denoising Þlter, working in the image domain,
is exploited to attenuate the noise and reveal new features and details
out of the incomplete and degraded observations. This recursive al-
gorithm can be interpreted as a special type of the Robbins-Monro
stochastic approximation procedure with regularization enabled by a
spatially adaptive Þlter. Overall, we replace the conventional para-
metric modeling used in CS by a nonparametric one.

We illustrate the effectiveness of the proposed approach for two
important inverse problems from computerized tomography: Radon
inversion from sparse projections and limited-angle tomography. In
particular we show that the algorithm allows to achieve exact recon-
struction of synthetic phantom data even from a very small number
projections. The accuracy of our reconstruction is in line with the
best results in the compressed sensing Þeld.

Index Terms� compressed sensing, sparsity, inverse problems,
Radon transform, limited-angle tomography.

1. INTRODUCTION

During the last three years, compressed sensing (CS) has received
growing attention, mainly motivated by the positive theoretical and
experimental results shown in [1], [2], [5], [7], [11], [12], [13]. The
basic settings of signal reconstruction under conditions of CS are as
follows. An unknown signal of interest is observed (sensed) through
a limited number linear functionals. These observations can be con-
sidered as an incomplete portion of the spectrum of the signal with
respect to a given linear transform T . Thus, conventional linear re-
construction/synthesis (e.g., inverse transform) cannot in general re-
construct the signal. For example, when T is the Fourier transform,
CS considers the case where the available spectrum is much smaller
than what is required according to the Nyquist-Shannon sampling
theory. It is generally assumed that the signal can be represented
sparsely with respect to a different relevant basis (e.g., wavelets) or
that, alternatively, it belongs to a speciÞc class of functions (e.g.,
piecewise constant functions). In the publications cited above, it is
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shown that under such assumptions, stable reconstruction of the un-
known signal is possible and that in some cases the reconstruction
can be exact. These techniques typically rely on convex optimiza-
tion with a penalty expressed by the !0 or !1 norm [15] which is
exploited to enable the assumed sparsity [6]. It results in paramet-
ric modeling of the solution and in problems that are then solved by
mathematical programming algorithms.

In this work, we propose to replace the traditional parametric
modeling used in CS by a nonparametric one. The nonparamet-
ric modeling is implemented by the use of spatially adaptive Þl-
ters. Overall, this represents a new and alternative paradigm for
compressed sensing signal reconstruction. The logic behind of our
approach is as follows. The regularization imposed by the !0 or !1
norms (or by more general criteria) is essentially only a tool for de-
sign of some nonlinear Þltering. Let us replace this implicit regular-
ization by explicit Þltering, exploiting spatially adaptive Þlters sen-
sitive to image features and details. If these Þlters are properly de-
signed we have reasonable hopes to achieve better results than it can
be achieved by the formal approach based of formulation of imag-
ing as the variational problem with imposed global constraints. In
imaging, the regularizations with global sparsity penalties (such as
!p norms in some domain) often results in inefÞcient Þltering. It
is known (e.g., [14]) that a higher quality can be achieved when the
regularization criteria are local and adaptive. This is demonstrated in
particular in the context of image denoising, where the performance
of advanced spatially adaptive (both local and non-local) methods
signiÞcantly overcomes that of the traditional approaches (e.g., [4]
and references therein).

Our approach to CS signal reconstruction is realized by a recur-
sive algorithm based on spatially adaptive image denoising. At every
iteration the algorithm is excited by injection of random noise in the
unobserved portion of the spectrum. The denoising Þlter working in
the image domain attenuates the noise and reveals new features and
details out of the incomplete and degraded observations. Roughly
speaking, we seek for the solution (reconstructed signal) by stochas-
tic approximations whose search direction is driven by the denoising
Þlter.

We demonstrate the viability of our proposed approach and il-
lustrate its effectiveness for two important inverse problems from
computerized tomography: Radon inversion from sparse projections
and limited-angle tomography. The former problem has been used
by many authors as a benchmark for testing CS reconstruction algo-
rithms. In particular we show that our algorithm allows to achieve
exact reconstruction of synthetic phantom data even from a very lim-
ited number projections. An example of image reconstruction from
low-frequency data is also given.
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2. ALGORITHM

2.1. Observation model and notation

Let θ and y = T {θ} be, respectively, the image intensity and its
2D transform. If all elements of the spectrum y are given then the
signal can be recovered by inverting the transform, θ = T −1{y}.
However, in CS problems only a small portion of the spectrum is
available, which makes the reconstruction of θ an ill-posed problem.

Introduce a sampling operator as the characteristic function
S = χΩ (with values 0 or 1) of the available portion Ω of the
spectrum. Thus, the pointwise products S.∗ y and (1− S).∗ y pro-
duce a decomposition of the spectrum in two complementary parts
y1 = S.∗ y, y2 = (1− S) .∗ y, with the equation

y = y1 + y2 = S.∗ y + (1− S) .∗ y.

Here, y1 and y2 are the observed (known) and the unobserved (un-
known) part of y, respectively. The goal is reconstruct θ (or equiva-
lently y2) from the available data y1.

2.2. Recursive system

Given an estimate �y(k)2 of y2, we deÞne the estimate �y(k) of y as

�y(k) = y1 + �y
(k)
2 ,

where the superscripts denote the corresponding iteration. With this
notation, our algorithm is deÞned by the recursive system (1) dis-
played at the top of this page. The ßowchart of the system is shown
in Figure 1. The system is initialized by setting �y(0)2 = 0. Then,
each iteration (k ≥ 1) comprises of the following steps:

� Image-domain estimate Þltering. We Þlter the reconstructed
image estimate T −1{�y(k−1)} with a spatially adaptive Þlter
Φ in the image domain
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The ÞlterΦ speciÞcally takes into consideration the pointwise
smoothness of the image estimate. In this way the elements
of the image appeared from the spectrum �y

(k−1)
2 are recre-

ated from the given y1. According to the discussion in the
introduction, Φ should be a Þlter with good adaptivity prop-
erties which is appropriate for the considered class of signals.
In this work we consider a spatially adaptive denoising Þlter
such as [4].

� Noise addition (excitation). Some pseudo-random noise ηk is
introduced in the unobserved portion of the spectrum. The ad-
ditive noise (1−S).∗ ηk works as a random generator of the
missing components in the spectrum. During the subsequent
iterations, these components are attenuated or enhanced by
the action of the Þlter Φ, depending to what extent they agree
with the image features enabled by the observed spectrum y1.

Fig. 1. Flowchart of the recursive system (1).

� The update of the estimate �y(k)2 uses a difference between the
estimate �y(k−1)2 and the prediction of this spectrum obtained
after Þltering and noise addition. Note that both terms are
projected onto the unknown portion of the spectrum by multi-
plication against (1− S). The factor γk scales the prediction
difference and controls the rate of evolution (step size) of the
algorithm.

2.3. Comments

Stochastic approximation. The recursive algorithm (1) can be treat-
ed as the Robbins-Monro stochastic approximation procedure (see,
e.g., [9]). If the step size parameter γk satisÞes the standard condi-
tions
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&
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&
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If there is no smoothing in the Þlter Φ, the equation (4) becomes the
identity �y2 = (1−S).∗ T

'
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= �y2. Thus, any �y2 satisÞes to the equation (4), there is no image
reconstruction and the algorithm does not work. Therefore, in order
for the solution �y2 to be non-trivial, the adaptive smoothing in (4)
should be strong enough.

Its strength can be controlled by evaluating the smoothing ef-
fects translated in y1. Indeed, if �y2 is given, the equation �y1 =
= S.∗ T

'
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spectrum �y1. The difference between y1 and �y1 can be used as an
objective measure of the correspondence between the Þltered data
and the given data at hand.
Excitation noise. The additive noise ηk used in the procedure (1)
does not inßuence the equation (4). There are two arguments in fa-
vor of excitation of the algorithm by the random noise. First of all it
improves the performance of the algorithm. It accelerates the transi-
tion process of the recursive procedure bringing it fast in the area of
solution where the random walks steadies. The amplitude of these
randomwalks decreases together with γk. It is well known (e.g., [8])
that the random search applied in optimization problems results in
random walks well concentrated in areas of global extremum. Thus,
the random search imposed by random excitation of the search tra-
jectory can be useful for separation of local and global extrema. In
a similar way, if the equation (4) has more than one solution, the



randomness can help to Þnd a �strong� solution with better quality
of imaging or lower values of some hypothetical criterion function
where the gradient (or quasi-gradient) can be deÞned as the vector
corresponding to �y2 − (1− S) .∗ T
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by varying the variance of the additive noise ηk one can control the
level of smoothing in the recursive procedure and hence the rate of
evolution of the algorithm. Thus, in practice, the assumptions (3) can
be relaxed and a Þxed γk can be used provided that var {ηk} →

k→∞
0.

Stopping rule. The algorithm can be stopped when the estimates
�y
(k)
2 approach numerical convergence or after a speciÞed number of
iterations. We do not excite the algorithm with noise at the Þnal
iteration kÞnal and set ηkÞnal ≡ 0.
Image estimates. An image estimate �θ
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better estimates because of the absence of the excitation noise. All
these estimates converge to T −1 (y1 + �y2) as k→∞.

3. EXPERIMENTS

The following experiments are carried out using a simpliÞed form
of the recursion (1), where γk ≡ 1 and ηk is independent Gaussian
noise with exponentially decreasing variance var {ηk} = α−k−β .
For the Þlter Φ, we use the block-matching and 3D Þltering algo-
rithm (BM3D) [3, 4]. The separable 3D Haar wavelet decompo-
sition is adopted as the transform utilized internally by the BM3D
algorithm.

We begin with illustrative inverse problems of compressed sens-
ing for computerized tomography. As in [1], we simulate the Radon
projections by �approximately� radial lines in the rectangular FFT
domain. Note that the initial image estimate �θ
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= T −1 (y1) always coincides with the conventional back-projection
estimate (minimum !2-norm estimate).

3.1. Radon inversion from sparse projections
First, we reproduce exactly the same experimental setup from [1],
where 22 radial lines are sampled from the FFT spectrum of the
Shepp-Logan phantom (size 256×256 pixels), as shown in Figure
2(left). Further, we reduce the number of available Radon projec-
tions from 22 to 11 (see Figure 2(center)). The initial back-projection
estimates are shown in Figure 3. As the recursive algorithm pro-
gresses, the reconstruction error improves steadily until numerical
convergence, as it can be seen from the plots in Figure 4. For both
cases the reconstruction is exact, in the sense that the Þnal recon-
struction error (PSNR '270dB) is comparable with the numerical
precision of this particular implementation of the algorithm (double

Fig. 2. Sample domain Ω for the FFT spectrum (i.e., the sampling
function S = χΩ) for the three experiments: 22 radial lines, 11
radial lines, 90 degrees limited-angle with 61 radial lines.

Fig. 3. Clockwise from top-left: back-projection estimates for 22
radial lines, 11 radial lines, 61 radial lines with limited-angle (90
degrees), and original phantom θ (unknown and shown here only as
a reference). For all three experiments, the estimates obtained after
convergence of the algorithm coincide with the original image.

Fig. 4. Progression of the PSNR (dB) of the reconstructed image
estimate �θ

(k)
with respect to the iteration count k for the three ex-

periments: 22 and 11 sparse projections (�22� and �11�) and limited-
angle (�LA�).

precision ßoating-point). We remark however that in practice such a
high accuracy is never needed: already at a PSNR of about 60dB the
image estimates can hardly be distinguished from the original.

3.2. Limited-angle tomography
In the two previous experiments, the available Radon projections
were uniformly distributed with respect to the projection angle. A
more difÞcult case arises when the angles under which the projec-
tions are taken are limited. Similarly to [10], we consider an overall
aperture for the projections of 90 degrees. This restriction is essen-
tial, since all frequency information is completely missing along half
of the orientations, which makes the reconstruction of, e.g., edges
across these orientation extremely hard. We complicate the problem
further, by taking only a smaller subset of 61 projections (a total of
256 properly-oriented projections would be required to cover a 90
degrees aperture). These sparse, limited-angle projections are illus-



trated in Figure 2(right). Although the convergence is here much
slower than in the previous two experiments, the algorithm eventu-
ally achieves exact reconstruction.

In the above three experiments, as soon as the estimate reaches a
quality of about 70dB, the recursion enters a phase of improvement
at a constant rate (linear in terms of PSNR since var {ηk} decreases
exponentially) which appears to be limited only by the used arith-
metic precision.

3.3. Reconstruction from low-frequency data
The proposed recursive procedure can be applied also to more con-
ventional image-processing problems. As a Þnal example, we present
the result of reconstruction of a non-synthetic test image, namely
Cameraman (256×256 pixels), from the low-frequency portion of
its Fourier spectrum. In particular, the set Ω is a 128×128 square
centered at the DC. In Figure 5 we show the initial estimate �θ

(0)

(by zero-padding in FFT domain, thus minimum !2-norm) and the
reconstructed image obtained after few iterations of the algorithm.
Despite the reconstruction is not exact, the salient details of the im-
age are properly restored and there are no signiÞcant artifacts (e.g.,
ringing) thanks to the spatial adaptivity embedded in our procedure.

Further illustrations and animations showing the evolution of the
recursive algorithm can be found on our research project�s website
at http://www.cs.tut.fi/~comsens .

4. CONCLUSIONS AND FUTUREWORK

The proposed approach is rather different from the other cited tech-
niques. The spatially adaptive Þlter replaces the global penalties
based on !p-norms. It means that traditional parametric modeling
for the unknown signal is replaced by a nonparametric one. We ar-
gue that this modeling provides a more ßexible and effective form of
regularization for approximating the sought solution. The introduc-
tion of noise at every iteration and the consequent stochastic nature
of our recursion are in sharp contrast with the deterministic itera-
tions used by the standard mathematical programming applied for
CS. On the other hand, the reader may Þnd similarities between our
approach and other random search techniques such as simulated an-
nealing. We note that this kind of stochastic algorithms have been
shown to be very effective alternatives to conventional deterministic
approaches also for the solution of a number of different large-scale
optimization problems (e.g., traveling salesman). Our results con-
Þrm this observation for the case of CS reconstruction. In particular,
in the experiments we demonstrated that our procedure can match
and also overcome the performance of sophisticated techniques such
as [1].

The algorithm and results shown in this paper are mostly aim-
ing at suggesting an alternative and innovative approach to CS prob-
lems. A lot of work remains to be done. SufÞciency conditions
which can guarantee the asymptotic perfect reconstruction have not
yet been established. We believe that these conditions shall be based
on the sparsity of the signal with respect to some (overcomplete)
basis (e.g., the particular local transforms which are used within the
spatially adaptive ÞlterΦ). We are currently working on accelerating
convergence of the recursive algorithm, enabling adaptive feedback
between the action of the ÞlterΦ and the excitation noise ηk, aiming
at the reduction of the overall complexity.

Applications other than those shown in this paper have already
been considered and have not been included here because of length
limitation. They will be presented on our project�s website and in
forthcoming publications.

Fig. 5. Cameraman: initial estimate �y(0) (zero-padding)
(PSNR=27.32dB), and reconstructed estimate �y(62) after 62 itera-
tions (PSNR=29.10dB).
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