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Abstract

We present a fully automatic method to segment the skull from 2-D ultrasound images of the fetal head
and to compute the standard biometric measurements derived from the segmented images. The method
is based on the minimization of a novel cost function. The cost function is formulated assuming that
the fetal skull has an approximately elliptical shape in the image and that pixel values within the skull
are on average higher than in surrounding tissues. The main idea is to construct a template image of the
fetal skull parametrized by the ellipse parameters and the calvarial thickness. The cost function evaluates
the match between the template image and the observed ultrasound image. The optimum solution that
minimizes the cost is found by using a global multiscale, multistart Nelder-Mead algorithm. The method
was qualitatively and quantitatively evaluated using 90 ultrasound images from a recent segmentation
grand challenge. These images have been manually analyzed by 3 independent experts. The segmen-
tation accuracy of the automatic method was similar to the inter-expert segmentation variability. The
automatically derived biometric measurements were as accurate as the manual measurements. Moreover,
the segmentation accuracy of the presented method was superior to the accuracy of the other automatic
methods that have previously been evaluated using the same data.

Key words: biparietal diameter; head circumference; energy minimization; fetal biometry; image
analysis; global optimization;

1. Introduction

Ultrasound measurements of fetal biometry is a standard method for dating pregnancies and for as-
sessment of fetal growth. Standard biometric measurements include biparietal diameter (BPD), occipito-
frontal diameter (OFD), head-circumference (HC), abdominal circumference (AC), crown-rump length
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Figure 1: The standard biometric measurements of the fetal head on a 2-D ultrasound image. The biparietal diameter (BPD)
is measured as the distance between the outer borders of the parietal bones (outer to outer) at the widest part of the skull.
The occipitofrontal distance (OFD) is measured between the outer borders of the occipital and frontal edges of the skull at
the point of the midline (outer to outer) across the longest part of the skull. HC is computed based on OFD and BPD as
HC = π(OFD + BPD)/2.

(CRL) and femur length (FL). Based on these measurements, the gestational age and size of the fetus can
then be estimated using charts or regression formulae [5, 15, 8]. In particular, biometrics related to the
fetal head, i.e., BPD and HC as shown in Figure 1, are recommended for measuring the gestational age
during second or third semester and are used for assessing the fetal size [5, 15, 13].

Currently, expert users perform these measurements manually. This is not only time consuming but
also it results in high intra- and inter-observer variability of these measurements. Thus, automating mea-
surement processes could provide significant benefits to both pregnant women and clinicians [2]. How-
ever, designing a fully automatic procedure is a challenging task because of the highly variable image
quality that is a typical characteristic of ultrasound images. In addition, various image artefacts and sur-
rounding tissues further complicate the automatic measurement of fetal biometrics. These problems are
easy to appreciate in Figure 2, whose panels (a) and (b) show two low quality but still typical ultrasound
images.

Given the importance of the problem, several automatic and semi-automatic methods for computing
biometric measurements from ultrasound images have been proposed. These methods have mostly been
based on the segmentation of the ultrasound images [22]. Approaches for the fetal skull segmentation
have been based on deformable spline [12] and contour models [4, 20], supervised learning [2], and
ellipse fitting through (randomized) Hough transform [10, 17, 27]. The deformable contour or spline
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model [4, 20, 12] based approaches rely on the user to indicate a point close to the center of head and
construct an initial contour model based on this information. This initial contour model is then deformed
by minimizing a cost function.

The ellipse fitting approaches first segment pre-processed ultrasound images through clustering or
histogram analysis [10, 17] or perform edge detection [27], in either case producing a binary image of
the fetal skull. The Hough transform [10] or the randomized Hough transform (RHT) [17, 27] is then
utilized to fit the ellipse model to the binary image. As Hough transform and RHT are very sensitive to
image artifacts, these methods require the user to define an initial region of interest (ROI) [27] or their
application is limited to images where head contour is complete and is not overlapped by other structures
[10].

The supervised learning approach of [2] is different from the methods cited above as it directly ex-
ploits expert annotations of the images to produce the segmentations. More specifically, the method of
[2] searches for a minimal bounding box containing the head of the fetus in the ultrasound image. The
method works by training a three-stage classifier, termed constrained probabilistic boosting tree, based
on manually segmented images.

In this paper, we present a new method for the fetal skull segmentation from 2-D ultrasound images.
Based on the skull segmentations, it is then straightforward to compute the biometric measurements
of BPD, OFD, and HC. The method is completely automatic and it requires no user interaction unlike
many methods cited above. This new method is named Difference of Gaussians revolved along Elliptical
paths or DoGEll. The idea is to construct a template image of the fetal skull parametrized by both the
calvarial thickness (the thickness of the skull) and an ellipse modelling the contour of the skull. This
is unlike previous ellipse fitting methods [10, 17, 27] that try to fit a single ellipse into the image, i.e.,
these previous methods do not model the skull as an entity having a finite thickness but instead make
use of image processing operations that try to reduce its thickness to a single pixel. In constructing the
template image, we assume that the image intensity is high within pixels representing the skull (due to a
high acoustic impedance of the bone) and lower immediately inside and outside the skull. The template
is then matched to the ultrasound image by minimizing a cost function designed to measure the lack
of match between our parametric elliptical image model and the observed image. More specifically,
for a given ellipse, we construct a surface that models the pixel values of the skull and surrounding
areas by revolving a difference of Gaussians (DoG) along the elliptical path and define the cost function
as a negative correlation between the observed image and the surface. This cost function is robust to
various image imperfections as demonstrated in Fig. 2. To find the optimum parameters defining the
ellipse and calvarial thickness, the cost function is globally minimized by a multiscale multistart Nelder-
Mead algorithm [19, 14] devised specifically for this purpose. Notice that this new method differs from
the previous region based methods [12, 2] in that instead of trying to maximize the match the image
segmentation (consisting of foreground and background regions) as in the previous methods, it matches a
template image constructed based on the skull parameters to the observed image. This way it is possible
to reduce the sensitivity of the method to the high intensity artifacts in the background region.
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(a) (b)

(c) (d)

Figure 2: Two example images from the ISBI 2012 ultrasound segmentation challenge [22] and their DoGEll segmentations.
(a) 28 week old fetus. (b) 33 week old fetus. In both panels (a) and (b), the skull is only partially visible, has different contrast
in different image regions, and there are artifacts with bright intensity in the images that create a considerable challenge to
automatic segmentation methods. (c) and (d): DoGEll segmentations of these two images demonstrating the robustness of
DoGEll against image artifacts. The three yellow contours are the estimates of the inner, medial, outer contour of the skull
produced by the DoGEll method.
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This DoGEll method won the first prize of the head sub-challenge in the Challenge US: Biometric
Measurements from Fetal Ultrasound Images, held in conjunction with and supported by the IEEE In-
ternational Symposium on Biomedical Imaging (ISBI) 2012 in Barcelona, Spain [22]. The contributions
of the present paper are two-fold. First, we present a detailed account of the winning DoGEll method
for the first time. The method has not been published in peer-reviewed literature. A short account of it
has been presented in the Challenge proceedings [9] and one paragraph summary was presented in [22].
Second, we present a new, improved implementation of the DoGEll method typically running in under 5
seconds per image, thus yielding a 60 fold savings in computation time as compared to the one winning
the segmentation challenge. The difference in the quantitative results between the implementations due
to speed ups is minimal and the new, faster implementation would have won the segmentation challenge
as well. The main specific differences between the old [9] and new (this paper) method are i) the new
minimization algorithm that uses considerably fewer restarts and embeds an insertion sort strategy to
accelerate the Nelder-Mead algorithm, ii) a cost function (Eq. (3)) that is modified to be better principled
mathematically as explained in more detail in Section 2, and iii) faster image pre-processing.

The evaluation of our method is carried out with the dataset used in the Challenge US: Biometric
Measurements from Fetal Ultrasound Images. This consists of 90 2-D fetal ultrasound images of the
head, some of which are purposely of very low quality, acquired on fetuses at different gestational ages.
The segmentations and biometric parameters derived from the automatic DoGEll method are compared
to the manual analysis of three independent experts. The evaluation in this paper is based on the same
principles as in the challenge, i.e., the method development and evaluation were completely independent
and the method developers (AF, MM, AP and JT) did not have access to the manual segmentations nor
to the biometric measurements. The evaluation results show that the DoGEll method can automatically
segment the fetal skull from ultrasound images with an accuracy similar to the inter-expert variability of
the manual segmentation.

The paper is organized as follows. In Section 2, we describe the cost function that we minimize to
obtain the segmentations. In Section 3, we describe the applied image pre-processing, the algorithm for
the minimization of the cost function, and the procedure for computation of biometric parameters based
on the segmentation results. Section 4 describes the quantitative validation of the method using ISBI
2012 Challenge data, Section 5 presents the results of the validation, and Section 6 concludes the paper
by discussing the methodological contributions and experimental results.

2. Cost function

In this section, we describe the cost function to segment fetal skulls from ultrasound images. As
already mentioned, we assume that the head contour of the fetus can be modeled by an ellipse. The
main rationale behind the proposed cost function, as illustrated in Fig. 3, consists of fitting of an image
model which comprises of three nested elliptical annuli to the image: the centermost representing the
skull of the fetus characterized by high image intensity values (bright pixels); the inner and the outer

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 3: An illustration of the principal idea of the cost function. The red region in the figure models the fetal skull and we
expect the pixel values in this area to be high. The green regions model the regions surrounding the skull where the pixel
values are to expected to be lower than in the skull. The transition between the skull region (in red) and background (in green)
is smooth (see also Fig 4.) and this border area is colored in yellow. The pixel values in the non-colored region contribute
minimally to the value of cost function.

representing the surrounding areas, usually exhibiting relatively low image intensity values. The image
model is constructed based on a single ellipse and a parameter modeling the thickness of the skull. We
use a difference of Gaussians, see Fig. 4 (a), along each half line leaving from the center of ellipse in
modelling the regions.

2.1. Image model
In more detail, we parametrize each ellipse E(a) with 5 parameters: center coordinates c1, c2, semi-

axis lengths r1, r2, and rotation angle in radians θ, organized into the vector

a = [c1, c2, r1, r2, θ].

Let h(x1,x2,a) be the radial half-line leaving from the center (c1, c2) and passing through the point (x1, x2).
Using h(x1,x2,a), we measure the radial distance d(x1, x2, a) between (x1, x2) and the ellipseE(a), as well
as the normalized radial distance r0(x1, x2, a) between (x1, x2) and (c1, c2), i.e. the distance between
those two points divided by the radius of the ellipse along h(x1,x2,a). Then we define a surface

g(x1, x2, a, s) =
fs(d(x1, x2, a))− f3s(d(x1, x2, a))

r0(x1, x2, a)
, (1)

where fs and f3s are two univariate Gaussians centered at zero with standard deviations equal to s and
3s, respectively. This is our image model for a given ellipse. An example of the surface g(x1, x2, a, s) is
shown in Fig. 4 (b) and the rationale for its design is described in Fig. 4 (c).
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Before introducing the cost function based on the image model, we provide a few facts about the
function g, including the choice of the standard-deviation parameters of the DoG, geometric properties
of g, and its zero-mean radial property.

In DoGs, the ratio between the standard deviations of the two Gaussian functions mainly controls the
rate at which the negative tails approach zero relative to the width of the central positive lobe. A larger
ratio gives longer tails, and hence, in our case, more sensitivity to the surround distant from the skull.
As the ratio approaches unity, the DoG approaches the minus second derivative of a Gaussian. In most
applications the ratio takes values between 1.5 and 5. For our purposes a value of 3 provides sufficient
sensitivity to the surrounding region of the skull [18, 16].

The numerator of g enjoys two distinct symmetries. First, it is radially symmetric, i.e., the profile
along each radial line is one and the same: it is the DoG. Equivalently we can say that the numerator of g
is constant along the contour lines. Second, each radial profile is symmetric about the point of intersection
between the radius and the ellipse (a trivial consequence of the symmetry of the DoG). Overall, it means
that the numerator of g assumes the same value on any two distinct contour lines sharing the same radial
distance from the ellipse (one contour line internal to the ellipse, and the other one external). Even though
the DoG is by construction a zero-mean function, after elliptical revolution the integral balance is lost
due to the nonuniform radial geometry, as shown in Fig. 4(c)). In particular, the green patches illustrate
two finite area elements. Riemann integration of a bivariate function is the limiting summation over these
elements, as their respective area tends to zero. Observe in the figure that the size of the area elements
increases proportionally to their radial distance from the center. Therefore, by dividing the numerator by
r0, we restore the integral balance.

Clearly,
∫ +∞
−∞ fs(ξ) − f3s(ξ)dξ = 0. However, when defining g, each radial line is bounded, on

one side by the center of the ellipse, and on the other side by the image boundary. This means that the
argument d(x1, x2, a) ranges from d(c1, c2, a) to a finite positive value attained at the intersection of the
radial line with the image boundary. Therefore, the tails of the DoG are formally missing from g. This
notwithstanding, due to their exponential decay, the tails are numerically negligible for all parameter
combinations of practical relevance1. Thus,∫∫

Θ

g(x1, x2, a, s)dx1dx2 = 0 (2)

for any radial support Θ, such the wedge drawn in yellow in Fig. 4(c), including as maximal Θ the whole
image domain Ω.

1The DoG is numerically negligible outside of the interval (−18s, 18s), with the radius 18s being the six-sigma range for
the standard deviation 3s of the wider Gaussian f3s. All cases of practical relevance satisfy the inequality d(c1, c2,a) > 18s
by a large margin, which means that tails of the DoG have no numerical relevance.
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2.2. Integral cost function
Consequently, for an image z and an ellipse E(a), the cost function is written as

C(z, a, s) = −
∫∫
Ω

z(x1, x2)g(x1, x2, a, s)dx1dx2

+ λ(max(0,
max(r1, r2)

min(r1, r2)
− CI))2, (3)

where λ = 0.5 is a regularization parameter selected experimentally, and the term CI = 1.4 is used
to model the inverse of the minimal allowable cephalic index, see, e.g., [13] for a justification of this
value. The regularization term is introduced to speed up the convergence of the minimization algorithm
in those images where the skull is not fully visible (e.g. see the right-most panels in Fig. 2). Practically,
the regularization term allows to reduce the number of the re-starts of the minimization algorithm by
preventing the convergence of the algorithm to obviously incorrect solutions.

The cost function C(z, a, s) is affine with respect to z and, due to the characteristics of g(x1, x2, a, s),
it is not affected by the presence of large uniform regions in the image. As observed in Eq. (2), the
integral

∫∫
Ω

g(x1, x2, a, s)dx1dx2 = 0 for all reasonable a and s, therefore, if the image is noninformative

(has a constant value in every pixel), every ellipse receives the score zero. This property is important
because it ensures that an addition of a constant to the image intensities does not alter the value of the
cost function, i.e. C(z + B, a, s) = C(z, a, s), where B is a scalar and z + B is to be interpreted as
adding B to each intensity z(x1, z2).

2.3. Discretization of Cost Function
For an N1 ×N2 image z, the integral in Eq. (3) is computed as the following discrete sum:

C(z, a, s) = −
N1∑
i=1

N2∑
j=1

z(i, j)g(i, j, a, s)

+ λ(max(0,
max(r1, r2)

min(r1, r2)
− CI))2, (4)

where z(i, j) denotes the intensity of z in the spatial position (i, j). Image padding is necessary for the
zero-score condition (2) to hold for the noninformative images whenever the integral is approximated
as in Eq. (4). We did not implement the image padding in the original challenge submission and had
to compensate for it by introducing a multiplicative regularization term and an additional regularization
parameter (γ in Eq. (1) of [9]). However, by implementing the image padding, we can safely eliminate
this regularization and the corresponding parameter. Based on the same considerations given in Footnote
1, only a narrow innermost portion of the padding border is numerically significant with respect to the
image model g. Our implementation uses a padding border 120-pixel wide, which was found to be
sufficient in all experiments.
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(a) (b)

(c)

Figure 4: (a) Difference of Gaussians. The two univariate Gaussian probability density functions fs and f3s with standard
deviation s and 3s, respectively, and their difference fs−f3s. The central gray band depicts the interval

[
−κs2 ,

κs
2

]
of width κs

that corresponds to the skull thickness (κ = 2.45). The regions where the difference of Gaussians is negative capture instead
the tissues having density lower than that of the skull, as illustrated in the panel (b), which shows a cross-section of the surface
g(x1, x2,a, s) shown on the top of an ultrasound image. (c) The grid in the figure shows the coordinate system upon which
the numerator of g is constructed. The grid is composed by radial lines stemming from the center of the ellipse, and by contour
lines located at fixed radial distance from the ellipse (the distance is measured along the radial lines). The green patches in the
figure illustrate two finite area elements; the denominator of g is proportional to their areas, making the integration of g over
radial wedges (yellow) to be equivalent to integration of the DoG at the numerator over a rectilinear domain.
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3. Methods

The DoGEll method works by minimizing the cost function described in Section 2 based on a mod-
ified multiscale, multistart Nelder-Mead algorithm (described in Section 3.2). However, we will start
this section by describing the applied image preprocessing in Section 3.1. Finally, we will describe the
computation of the biometric parameters based on the segmentation results in Section 3.3.

3.1. Preprocessing
To minimize the adverse effects caused by the heterogeneous contrast and the black background

outside the field of view (see Fig. 2), we carry out the following two preprocessing operations on each
unprocessed image, which we denote as zorig. First, we extrapolate the image inside of the scanned area
to fill the areas outside the field-of-view as well as a padding border which is appended to the four sides
of the images. Without such an extrapolation, the boundary of the field of view might be confused with
the boundary of skull that might cause the optimization algorithm in Section 3.2 to fail. This is done by
a constrained iterative diffusion process illustrated in Fig. 5. Leaving the content within the field of view
untouched, at each iteration we convolve the image with an isotropic smoothing kernel whose support
has radius proportional to the maximum distance the between the already diffused image and the image
boundary. In this way, as the diffused image reaches the boundary, the smoothing kernel approaches
a Dirac delta. By doing so we achieve fast convergence of the diffusion process, as well as a smooth
junction between the diffused image and the unmodified image in the scanned area. In particular, as
illustrated in Fig. 5, we use a Kaiser 2-D kernel whose support radius is a quarter of the maximum
distance between the already diffused image and the image boundary. About 18 iterations suffice for
the diffusion to reach the boundary. We denote the extrapolated image as zextr. Note that zextr and zorig

coincide within the field of view.
The second preprocessing operation consists of a stabilization of the local contrast and intensities

of zextr leveraging discrete cosine transform (DCT) domain smoothing [21]. We achieve a smoothly
varying local stabilization of the intensities and contrast of zextr by 1) computing its DCT spectrum, 2)
attenuating the low-frequency portion of the spectrum, and 3) by inverting the transform. In particular, the
attenuation follows the usual zig-zag sorting of the coefficients [21]. This stabilized image is denoted as
z (see Figure 6 for an example). The DCT-domain filtering is a practical tool (but not the only reasonable
one) to perform a strong smoothing needed for the stabilization and a better alternative to the convolutive
high pass filter that would require a large support and require more computational effort.

3.2. Optimization Algorithm
The cost function (3) is non-convex with respect to a and s and has several local minima. Therefore,

we must use an algorithm which aims to find its global minimum to avoid the sensitivity to the algorithm
initialization. We employ a multistart Nelder-Mead (NM) algorithm that repeats the following steps T
times (T is defined below):

10
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(a) (b)

Figure 5: The iterative diffusion process. At each diffusion iteration, we convolve the image with an isotropic smoothing
kernel whose radius is proportional to the maximum distance between the image boundary and the previously diffused data.
The image intensities within the field of view are preserved during the diffusion. As the diffusion progresses the data gets
closer to the boundary and thus the smoothing kernel shrinks, yielding a seamless junction between the scanned and the
extrapolated areas. The two subfigures show the intermediate results of diffusion (a) after the first and (b) after the eighth
iteration, together with a few of the smoothing kernels. The red contour lines illustrate the Manhattan distance from the
boundary.

Figure 6: From left: zorig, z, and lower scale versions of z z(D) for D = [32/
√

2, 16, 16/
√

2, 8, 8/
√

2, 1]. z is larger than zorig
because of the addition of the padding border.
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1. generate an initial a;
2. execute the NM minimization algorithm and if the minimum found is the best so far, save it;
3. apply a random perturbation to the best found solution, and go to step 2.

To further accelerate the convergence of the minimization algorithm, we follow a coarse-to-fine approach
by first fitting the ellipse on a lower-resolution version of z and then using the found fit as the initial
point on the higher-resolution image. We implement this approach recursively, using root-dyadic down-
scaling factorsD = [

√
2

9
,
√

2
8
,
√

2
7
,
√

2
6
,
√

2
5
,
√

2
0
], i.e., D = [32/

√
2, 16, 16/

√
2, 8, 8/

√
2, 1] (see Fig.

6). The low-resolution image corresponding to the downscaling factor D is denoted as z(D). The mul-
tistart scheme is run for T = 500, 75, and 25 times for the three highest downscaling factors (the three
lowest resolution images)

√
2

9
,
√

2
8
,
√

2
7
, respectively, and only once for the other downscaling factors

(
√

2
6
,
√

2
5
, 1). These values are chosen empirically to produce a compromise between computational

cost and reliability. For the initial ellipse, we use a small circle centered at the center of the image for the
lowest resolution image and set the initial rotation angle as zero. For the subsequent resolution levels,
the ellipse is initialized with the output of the previous resolution level. We emphasize that the algorithm
initialization does not require any user intervention and the algorithm is not sensitive to its initialization.

Our implementation of the Nelder-Mead simplex search algorithm, originally proposed in [19], is
based on [14]. However, we accelerate the implementation of [14] by incorporating an insertion sort
algorithm. This modification is briefly explained next. The Nelder-Mead algorithm is a direct optimi-
sation algorithm designed to iteratively find the minimiser of functions f : Rn → R (here, n = 6). At
each iteration, the algorithm transforms the geometry of a (n + 1)-points simplex in the domain of f ; in
particular, the simplex can be reflected, expanded, contracted, or shrunk. Operatively, each iteration of
the algorithm first evaluates f in each point of the simplex and optimizes the position of those having the
larger values retaining the position of the best one. Then, the n + 1 points of the newly formed simplex
are sorted based on their functional value, and the best n ones are used to compute a mean point. The
shrinkage requires the computation of n new points, whereas the expansion, reflection, and contraction
require the computation of just one new point. Thus, the latter cases, which are the most common in
practice, can be accelerated by sorting the points of the simplex using an insertion sort algorithm because
the old points of the simplex are already ordered [23]. Additionally, the new mean point can be computed
by updating the old one by subtracting the removed point and adding the new one, instead of averaging
all n points [23]. The coefficients of reflection, expansion, contraction, and shrinkage are as given in [14]
for the standard Nelder-Mead algorithm.

3.3. Computation of biometric parameters
The major and minor axes of the ellipse directly correspond to the OFD and BPD, when measured

from center-to-center of the skull, respectively. We denote these center-to-center measurements as

OFDcc := 2 max(r1, r2), BPDcc := 2 min(r1, r2).
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To obtain outer-to-outer measurements OFD and BPD definitions, as in the manual analysis in the ISBI
2012 challenge data [22], we should increment the center-to-center measures by the calvarial thickness
T:

OFD := OFDcc + T, BPD := BPDcc + T.

The thickness T is directly proportional to the standard-deviation parameter s of the fitted surface g.
Therefore, after minimization of the cost functional, we can estimate the thickness as

T̂ = κŝ,

where κ = 2.45 is the proportionality constant, as illustrated in Fig. 4 (a). This specific value of κ was
determined through the correction formula of [7], which expresses the typical value of the skull thickness
as a function of the BPDcc:

T (BPDcc) = 1.31− 0.119BPDcc + 0.00472BPD2
cc − 0.00003627BPD3

cc. (5)

where BPDcc is expressed in millimeters. This formula provides an alternative estimate of the thickness,
which depends on 2 min (r̂1, r̂2) and is independent of ŝ. The choice of κ must be such that the two
alternative estimates of T are consistent. Therefore, given a dataset of ultrasound images, we define κ as

κ = meanj

{
T (2 min (r̂1 (j) , r̂2 (j)))

ŝ (j)

}
,

where j is an index of the image in the dataset and the numerator gives the thickness estimate computed
from the estimated minor axis through (5). We used the dataset described in section 4.1 to define κ. Note
that this relies only on the automatic segmentations and we do not use any manually generated ground
truth to define κ.

4. Experiments

4.1. Material
For the evaluation of the DoGEll method, we used the image data and manual analysis of the Chal-

lenge US: Biometric Measurements from Fetal Ultrasound Images of the IEEE International Symposium
on Biomedical Imaging (ISBI) described in detail by [22]. However, we repeat the most important as-
pects of the used data here in order to make this paper self-contained. We use 90 ultrasound images of the
fetal head acquired by trained clinicians using the same mid-range ultrasound machine Philips HD9 and
following the protocols defined in [11]. The 90 images represented three different gestational ages (21,
28, and 33 weeks) with a total of 30 images per gestational age (90 different fetuses). For each gestational
age, images were graded as being of low, medium, or high quality and were selected as objectively as
possible to create real image data sets as used in clinical practice. The images were in an anonymized
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DICOM format and automatically cropped to the size of 756× 546 pixels. The pixel size varied between
the images.

A total of three experts, with different degrees of expertise, participated in defining the fetal head
ground truth. The ground truth consisted of 1) manually fitted ellipses to the fetal head and 2) standard
clinical measurements of BPD, OFD and HC (derived from BPD and OFD) on each image. All experts
fitted the ellipses and performed the measurements twice on each image. Therefore, altogether 540 (2
repetitions × 3 experts × 90 images) manual annotations were used in the experiments. The experts had
the following levels of expertise:

• Expert 1: Clinician (fetal medicine specialist) with 10 year postgraduate experience in fetal US
scans.

• Expert 2: Clinician (obstetrician) with 2 years experience in fetal US scans.

• Expert 3: Engineer with 1 year of experience.

4.2. Evaluation metrics
To report the quality of automatic segmentations in comparison to the manual ground truth, we have

selected three measures from the original corpus of seven measures applied in the challenge 2.
We denote the sets of pixels inside the manually fitted ground truth ellipses by M and inside the

automatically fitted ellipses by A. The Dice index [6] between the sets M and A is

Dice(A,M) =
2|A ∩M |
|A|+ |M |

.

The Dice index measures the overlap of two different fetal head segmentations. It ranges between zero
(no overlap) and one (perfect overlap), where higher Dice values indicate a better overlap. The Dice
index evaluates the similarity of two segmented regions and is depictive of the overall segmentation
quality. The Dice index is not especially sensitive to local differences between the segmentations and it
is dimensionless. Therefore, it is complemented by two other evaluation metrics in this work.

Denote the contours of M and A by ∂M and ∂A, respectively. The maximum symmetric contour
distance (MSD, also known as the Hausdorff distance) between the two contours is [26]

MSD(∂A, ∂M) = max(max
a∈∂A

min
m∈∂M

||a−m||, max
m∈∂M

min
a∈∂A
||a−m||).

2The quantitative results of all seven measures are provided in a supplement but we limit the discussion here to the 3
selected ones.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

MSD equals 0 if the two contours are identical and a higher MSD indicates more pronounced differences
between the contours. MSD is indicative for even very local differences between the two contours. The
average symmetric contour distance (ASD) between the two contours is

ASD(∂A, ∂M) =

∫
a∈∂A minm∈∂M ||a−m||+

∫
m∈∂M mina∈∂A ||a−m||)

|∂A|+ |∂M |
.

ASD equals 0 if the two contours are identical and a higher ASD indicates more pronounced differences
between the contours.

We further subjected the values of these metrics to statistical testing to find if there were significant
differences between intra- and inter-expert segmentation variabilities and the automatic segmentation
accuracy. We used the standard two-tailed t-test for hypothesis testing.

We compared the biometric parameters of interest derived based on the automatic segmentation to
manual measurements. The criteria were the average difference d̄ (that can be considered as a measure
of bias) and its standard deviation sd between the automatic and manual biometric measures; the manual
measure for each fetus was selected to be the average of the two measurements of an expert to increase
its accuracy against intra-expert variability. These quantities are referred to as the Bland-Altman plots by
[22] (see [1]). Based on these two quantities, we can compute the root mean squared error RMSE =√
d̄2 + s2

d. RMSE provides a single indicator of the difference in the derived biometrics that simplifies
the method comparisons. Note that the point made in [1] against the use of correlation as a measure of
agreement is particularly relevant here, where the data is such that the biometrics to be determined vary
considerably due to different gestational ages of the fetuses. Therefore, we do not provide correlation
coefficients between automatic and manual biometrics.

5. Results

5.1. Computation time
The computation time of a Matlab-based implementation of the algorithm was on average 4.62 sec-

onds per image on a laptop (Intel(R) Core(TM) i5-3320M dual core CPU running at 2.60 GHz with
64-bit Windows 7 operating system, Matlab version R2013a). The maximal computation time per image
was 5.43 seconds. These timings include the time spent for preprocessing of Section 3.1, cost function
optimization of Section 3.2, and computation of biometric parameters of Section 3.3. A significant por-
tion of the computation time (on average 3.62 seconds) was spent on the cost function minimization.
Preprocessing required approximately 1 second per image.

The current Matlab-based implementation is sequential and single-threaded, where the Nelder-Mead
algorithm is implemented in C and compiled into a mex file, and the other parts of the method are
written in Matlab. Further improvements in computation time would be gained by exploiting a multicore
implementation and by a more significant usage of the more efficient C language. In particular, the
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early stages of the optimization involving the multistart strategy can be parallelized in a straightforward
manner.

5.2. Quantitative validation

Table 1: Quantitative evaluation measures. The top three rows provide the segmentation accuracy measures of two versions
of DoGEll and the method of [24] (ranked second in the segmentation challenge after DoGEll) averaged over all 540 expert
segmentations (6 segmentations of each of the 90 images). The values not involving DoGEll method are reproduced from
[22].

Method Dice (%) MSD (mm) ASD (mm)
DoGEll 97.73± 0.89 2.26± 1.47 0.91± 0.47

DoGEll (slow, [9]) 97.80± 1.04 2.16± 1.44 0.88± 0.53
[24] 97.23± 0.77 2.59± 1.14 1.07± 0.39

Table 2: Comparison of DoGEll and manual analysis. For the reference, the intra- and inter-expert accuracy measures are
given, see [22] for details. The rows ”DoGEll vs Expert” provide performance metrics when the automatic method was
compared to the manually fitted ellipses by a single expert. The values not involving DoGEll method are reproduced from
[22].

Method Dice (%) MSD (mm) ASD (mm)
DoGEll vs Expert 1 97.89± 0.95 2.12± 1.55 0.84± 0.47
DoGEll vs Expert 2 97.54± 0.99 2.38± 1.61 0.99± 0.51
DoGEll vs Expert 3 97.77± 1.08 2.29± 1.56 0.90± 0.55

Inter-expert 1 vs 2 97.87± 0.73 2.11± 1.12 0.86± 0.39
Inter-expert 2 vs 3 97.66± 0.77 2.24± 1.19 0.93± 0.42
Inter-expert 1 vs 3 97.83± 0.78 2.09± 0.99 0.86± 0.40

Intra-expert 1 98.24± 0.71 1.72± 0.81 0.69± 0.32
Intra-expert 2 98.28± 0.76 1.74± 1.09 0.68± 0.35
Intra-expert 3 98.01± 0.94 1.85± 1.10 0.79± 0.44

The quantitative evaluation results of the DoGEll are provided in Tables 1 and 2. Table 1 also provides
the corresponding results of the earlier (slower) implementation of DoGEll, which won the ultrasound
segmentation challenge [22], and the second best method [24] in the same segmentation challenge. Table
2 presents more detailed results of comparison between DoGEll and manual delineations. To simplify
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the comparison to the manual segmentation accuracy, we have also reproduced the intra and inter-expert
measures from [22] in Table 2. Note that all the results corresponding to [9] are given only for comparison
purposes and the discussion about the DoGEll refers to the fast implementation as presented in this work.
The results can be summarized as follows.

1. The segmentation accuracy of DoGEll was significantly better than that of any other segmentation
method participating to Challenge US: Biometric Measurements from Fetal Ultrasound Images.
In particular, the difference between the segmentation accuracy of DoGEll and the second best
approach in the challenge [24] was significant (one-sided p < 0.05 for all three measures (Dice,
MSD, and ASD)). This was computed only using information from [22] which necessitated the
use of an unpaired t-test. The differences in average performance between the slow version of
DoGEll in [9] (computation time of 5 min per image) and the fast implementation in this paper
(computation time of under 5 seconds per image) were not significant at the alpha-level p = 0.05 (
p > 0.3 for all three measures).

2. The average segmentation accuracy of the automatic DoGEll method was similar to the inter-expert
variability of the manual segmentations with all three measures. More specifically, the average Dice
coefficient and ASD of DoGEll were better than the corresponding average inter-expert measures
between experts 2 and 3. For other cases, the average measures of DoGEll were slightly worse
than the inter-expert variability (but not significantly, one-sided p > 0.05 for all expert pairs and
validation metrics).

3. The segmentation accuracy of DoGEll was worse than the intra-rater variability (one-sided p <
0.05 in all cases) as expected. However, it is worth to note that the inter-expert variabilities were
also greater than intra-expert variabilities.

An interesting aspect was revealed when comparing the measures between our method and the seg-
mentation by Expert 1 (DoGEll vs Expert 1) - who is the most experienced one - versus the inter-rater
variabilities between Expert 1 and other experts (the rows Inter-expert 1 vs 2 and Inter-expert 1 vs 3
in Table 2). If we assume that the ground truth segmentation was the one by Expert 1 then our auto-
matic method would, on average, outperform the manual delineations of the Experts 2 and 3 in terms
of Dice index or ASD. However, it must be noted that differences were very small (insignificant at the
p < 0.05 level) and, if using MSD to judge performance, the Experts 2 and 3 would slightly outperform
our method.

It is interesting to study the worst cases in terms of segmentation accuracy. These are best iden-
tified by the MSD metric, which is sensitive to very local differences between the two segmentations
(automatic and manual). Eight worst cases of the total 90 in terms of the MSD averaged over all expert
segmentations are shown in Fig. 7. Figure 7 shows that the head contour by the automatic segmentation
mostly was in the space set by expert segmentations, and only very few clear local differences from all
expert segmentations can be observed. Figure 7 also shows the image with the median (46th) MSD for
reference in the bottom right panel.
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MSD 3.97 mm [2.10 mm, 7.76 mm] 4.06 mm [2.38 mm, 6.19 mm] 4.11 mm [2.08 mm, 6.46 mm]

MSD 4.70 mm [3.54mm, 6.17 mm] 6.11 mm [5.32 mm,7.44 mm] 6.98 mm [3.40 mm, 9.10 mm]

MSD 7.95 mm [5.88 mm, 9.46 mm] 9.18 mm [6.24mm, 12.10 mm] 1.79 mm [1.01mm, 3.25mm]

Figure 7: Eight worst cases and the average case (the bottom right panel) of the total 90 in terms of the MSD averaged over
all the expert segmentations. The outer head contour by the automatic method is shown in yellow and outer head contours by
the experts are shown in magenta (Expert 1), green (Expert 2), and black (Expert 3). Below each image, the average MSD
over all expert segmentations is reported followed by the range of MSDs, i.e., the minimum and maximum MSD between the
automatic segmentation and six different expert segmentations.
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The mean values (biases) and standard deviations of the differences between the manual and auto-
matic biometric measurements are reported in Table 3. Table 3 also provides inter-observer variabilities
reproduced from [22] and the corresponding RMSEs computed based on these. A few observations can
be made based on these values.

1. The average differences (d̄) for the automatic measures by DoGEll were larger than between expert
average differences. Moreover, d̄ for DoGEll was always negative meaning that, on average, bio-
metric parameters as estimated by DoGEll were slightly smaller than the corresponding parameters
estimated by experts. However, if this bias is considered to be important, it can be easily corrected
by tuning the parameter κ of Section 3.3. We here tuned the parameter κ based on automatic seg-
mentations, but to reduce the bias, it could be tuned by manual segmentations. However, in this
case, the method development and evaluation would not be independent and we wanted to avoid
this.

2. The standard deviations of the differences (sd) can be argued to be more important than the average
differences (d̄) because they cannot be improved by simple parameter tuning (unlike the average
differences). In Table 3, sd for the automatic measurements as compared to between expert sd were
(on average) smaller for the BPD, larger for the OFD, and almost equal for the HC. For example,
treating again the measurements of the most experienced expert (E1) as a gold standard and sd
as a performance index, the automatic method outperformed the Expert 2 in the measurement of
BPD (sd = 1.25mm vs. sd = 1.66mm, F-test between the two s2

d values p < 0.01, one-sided),
the expert 2 outperformed the automatic method in the measurement of OFD (sd = 3.12mm vs.
sd = 2.36mm, F-test p <0.01, one-sided) and, for HC, the difference in s2

d was non-significant
(sd = 4.71mm vs. sd = 4.16mm), according to F-test at the alpha level p = 0.05).

3. RMSEs for the automatic method were lower for the BPD measures than the inter-observer RMSEs
between Expert 1 and Experts 2 or 3. Instead, the BPD measurements of Experts 2 and 3 were well
in line, consistently resulting in a RMSE of only 1.00 mm, which is less than the corresponding
RMSEs for DoGEll (1.37 mm and 1.54 mm). For OFD and HC, the RMSEs by the automatic
method were slightly higher than inter-expert RMSEs.

6. Discussion

We have presented an automatic method, DoGEll, for the segmentation of the fetal skull from 2-D
ultrasound images. The DoGEll method is based on a global optimization of a novel cost function by
a multi-start multi-scale Nelder-Mead algorithm. The cost function is based on the assumption that the
cross-section of the skull has a roughly elliptical shape. The main difference between our cost function
and previous ellipse-fitting methods [10, 17, 27] are that in our cost function the skull has a finite thickness
instead of being modeled with an ellipse contour as in and our cost function models the image intensity
also around the skull. Moreover, we do not consider the calvarial thickness to be a user defined constant
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Table 3: The accuracy of BPD, OFD and HC measurements. All values are expressed in millimeters. Expert 1 is abbreviated
as E1. The columns ’ vs. all experts’ provide the average performance of automatic methods with respect to all expert
measurements. The column ’[24] vs. all experts’ refers to the average performance of the second best method [24] after
DoGEll in the ISBI segmentation challenge [22]. For BPD, the method of Sun [25] achieved quantitative values closer to
the manual ground truth (d̄ = 0.58mm, sd = 1.24mm,RMSE = 1.37mm) than DoGEll. The RMSEs for [24, 25] were
computed based on d̄, sd values presented in [22].

Measurement DoGEll vs. E1 DoGEll vs. E2 DoGEll vs. E3 DoGEll vs. all experts
d̄ sd RMSE d̄ sd RMSE d̄ sd RMSE d̄ sd RMSE

BPD −1.01 1.25 1.60 −1.22 0.95 1.54 −0.84 1.09 1.37 −1.02 0.97 1.41
OFD −1.72 3.12 3.56 −0.27 3.16 3.17 −0.62 2.98 3.04 −0.87 2.84 2.97
HC −2.25 4.19 4.76 −2.99 4.43 5.34 −1.76 3.79 4.19 −2.34 3.72 4.39

E1 vs. E2 E2 vs. E3 E1 vs. E3 [24] vs. all experts
BPD 0.39 1.66 1.71 −0.47 0.89 1.01 −0.08 1.84 1.84 −1.65 0.93 1.89
OFD −1.55 2.36 2.82 1.09 2.75 2.96 −0.45 2.24 2.28 −0.96 2.92 3.07
HC 0.68 4.15 4.20 0.65 3.76 3.83 1.33 4.07 4.28 −3.46 4.06 5.33

as in [12] but as a hyper-parameter to be optimized along with the five ellipse parameters. This means
that we do not fit an ellipse or some other contour to an image as in [10, 17, 27, 12] but, instead, we
first construct a template image of the fetal skull based on the ellipse parameters and then we match the
resulting model with the observed ultrasound image. In this way, we are able to circumvent thresholding
and skeletonization operations usually required by Hough transform based methods [10, 17, 27]. Also,
our image model is different from the simple two-component (skull and background) mixture model of
the region based segmentation method in [12] and we avoid the manual initialization in [12]. As a result,
the DoGEll method is fully automatic and, at the same time, extremely robust against image imperfections
as demonstrated by experiments presented in this paper.

We have presented a quantitative validation of the DoGEll method based on 90 images from a recent
ultrasound segmentation challenge [22]. In particular, the automatic segmentations and the biometric
parameters (BFD, OFD, and HC), derived from the segmentations, were validated against the corre-
sponding manual analysis provided by three experts. The images for the challenge were purposefully
selected so that the image quality varied between the images. We have shown that, even for the low qual-
ity images, our method yielded segmentations with an accuracy comparable to inter-expert variability
of segmentations. We statistically tested if the accuracy differences between any two analysis methods
were significant. However, we should point out that a statistically significant difference between the
measurements by two different analysis methods does not imply that the difference would affect clinical
decisions. Likewise, even if the measurement differences were not statistically significant, they could
still result in different clinical decisions depending on the patient and the nature of the decision being
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made.
Only few works on automated segmentation of fetal ultrasound images have addressed the accuracy of

head segmentations against manual segmentations. Carneiro et al. [2] reported mean Hausdorff distances
(MSDs) of 4.83 mm (their set 1) and 4.15 mm (their set 2) and average distances (ASDs) of 3.39 mm and
2.76 mm when comparing automatic head contour delineations to the delineations by experts. Chalana
and Kim [3] reported mean Hausdorff distance of 4.64 mm and the average distance of 2.09 mm. The
corresponding error measures for our method, listed in Table 1, were: an average MSD of 2.26 mm and
the average ASD of 0.91 mm. Thus, in the light of this comparison, the performance of our method
appears superior to these two albeit it must be stressed that the validation results may not be comparable
because of the different sets of images used. A majority of the reports on automated fetal ultrasound
segmentation have provided quantitative validation in the terms of the derived biometric parameters. For
example, Yu et al. [27] reported mean absolute difference (MAE) of 2.5 mm for BPD and 5.7 mm for
HC between automatically and manually derived biometric parameters. Noting that the RMSE is always
greater than MAE, the biometric parameters by our method appeared more accurate than those reported
in [27]; however, we must repeat the earlier note that the validation results cannot be directly compared.
In particular, the gestational ages of the fetuses studied in [27] were somewhat higher than those in this
paper.

Although comparisons to the previous methods in literature are problematic due to different datasets
used for validation and a poor availability of the software implementations of the methods, the segmenta-
tion accuracy by our method can be directly compared to the results of other methods which participated
in the Challenge US: Biometric Measurements from Fetal Ultrasound Images held in conjunction of the
ISBI 2012 conference [22] 3. As already noted, the segmentation accuracy of our method was superior
to that of the other methods which participated in the Challenge (see Section 5.2). Also, when using
RMSE as the performance measure, the biometric measurements by our method were the most accurate
for OFD and HC (all experts RMSEs 2.97 mm (OFD) and 4.39 mm (HC) against RMSEs of 3.07 mm
and 5.33 mm of [24] which was the second best method in the challenge in this respect), and the second
most accurate for BPD (RMSE of 1.41 mm compared to RMSE of 1.37 mm of [25]). However, having
a small standard deviation sd can be considered more important than having a small bias d̄ and sd of our
method was smaller than that of [25] for all three biometric measurements. The RMSEs for [24, 25] were
computed based on d̄, sd values presented in [22].

Finally, the source-code of DoGEll is available at http://www.cs.tut.fi/˜foi/dogell/
under an license permitting free non-commercial use of it.

3The Challenge data will be made available to the research community. The estimated date for data release to the
research community is anticipated to be in autumn 2014. The challenge website http://www.ibme.ox.ac.uk/
challengeus2012 will then be updated to allow new segmentation results to be uploaded for evaluation and compari-
son to previous methods.
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