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Variance Stabilization for Noisy+Estimate
Combination in Iterative Poisson Denoising

Lucio Azzari and Alessandro Foi

Abstract—We denoise Poisson images with an iterative algo-
rithm that progressively improves the effectiveness of variance-
stabilizing transformations (VST) for Gaussian denoising filters.
At each iteration, a combination of the Poisson observations with
the denoised estimate from the previous iteration is treated as
scaled Poisson data and filtered through a VST scheme. Due to
the slight mismatch between a true scaled Poisson distribution
and this combination, a special exact unbiased inverse is designed.
We present an implementation of this approach based on BM3D.
With a computational cost only twice that of the non-iterative
scheme, the proposed algorithm provides significantly better
quality, particularly at low SNR, outperforming much costlier
state-of-the-art alternatives.

Index Terms—image denoising, photon-limited imaging, Pois-
son noise, Anscombe transformation, iterative filtering.

I. INTRODUCTION

Denoising of images affected by Poisson noise is commonly
executed by: 1) applying a variance stabilizing transforma-
tion (VST) to standardize the image noise, 2) denoising the
image with an AWGN filter, 3) returning the image to its
original range via inverse transformation. The most common
VST for this purpose is the Anscombe transformation [1],
[2]. Being inexpensive, simple, and independent from the
adopted denoising algorithm, this procedure is very appealing.
However, at very low counts (e.g., less than one count per
pixel, with SNR�0dB), the Anscombe transform can be
quite inaccurate [3]. For these cases, denoising algorithms
specifically designed for Poisson noise [3], [4] were shown to
provide better performances than combinations of VST with
Gaussian filters.

In this letter we propose an iterative algorithm based on the
VST framework, that is capable of dealing with challenging
cases with extremely low SNR, and that outperforms state-
of-the-art algorithms, both in terms of image quality and
execution time.

At each step we apply the VST approach to a combination
of the initial observed image and its most recent estimate,
improving the effectiveness of the stabilization and filtering.
We analyze the statistics of this combination, which deviate
from a Poisson distribution, and introduce the corresponding
exact unbiased inverse to be used in this VST framework. We
present an implementation of this approach based on BM3D.
With a computational cost only twice that of the non-iterative
scheme, the proposed algorithm provides significantly better
quality, particularly at low SNR, outperforming much costlier
state-of-the-art alternatives.
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sity of Technology, Tampere, FI-33101, Finland (e-mail: lucio.azzari@tut.fi;
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II. PRELIMINARIES AND MOTIVATION

Let z be an observed noisy image composed of pixels z(x),
x ∈Ω⊂Z2, modeled as independent realizations of a Poisson
process with parameter y(x) ≥ 0:

z(x) ∼ P (y(x)) , P(z(x) |y(x)) =



y(x)z (x )e−y (x )

z(x)! z ∈ N∪{0}
0 elsewhere.

The mean and variance of z(x) coincide and are equal to y(x):

E {z(x) |y(x)} = var{z(x) |y(x)} = y(x) .

For conciseness, henceforth we will omit x from notation.
Our goal is to compute an estimate ŷ of y from z. To

this purpose, in the archetypal VST framework, the Anscombe
forward transformation a [1] yields an image

a(z) = 2
√

z + 3/8

which can be treated as corrupted by additive white Gaussian
noise (AWGN) with unit variance. Thus, it can be denoised
using any filter Φ designed for AWGN. If the denoising is
ideal, we have

Φ [a(z)] = E {a(z) |y} .

The so-called exact unbiased inverse of a [2]

IPa : E {a(z) |y} 7→ E {z |y} = y,

is used to return the denoised image to the original range of
z, thus yielding an estimate of y:

ŷ = IPa (Φ [a(z)]) .

However, for small y, when the SNR is very low, the
stabilization is imprecise and the conditional distribution of
a(z) is far from the assumed normal, in terms of both scale
and shape, leading to ineffective filtering with Φ. This issue
has been commonly addressed either by applying VST after
binning, i.e. by stabilizing sums of adjacent pixels instead of
individual pixels [3]–[9], or by similarly stabilizing transform
coefficients [10] (essentially inserting the VST within the de-
noising method itself). All these stratagems aim at increasing
the SNR of the data subject to the VST.

In this letter, we introduce an alternative and more direct
way to improve the SNR prior to VST, by combining the noisy
observation z with a previously obtained estimate of the noise-
free data y, leading to the following simple iterative algorithm.
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III. PROPOSED ITERATIVE ALGORITHM

A subscript index denotes a symbol’s instance at a particular
iteration, e.g., ŷi is the estimate of y at iteration i.

We initialize the algorithm by setting ŷ0 = z. At each
iteration i = 1, . . . , K we compute a convex combination of
ŷi−1 and z

z̄i = λi z + (1 − λi) ŷi−1, (1)

where 0<λi ≤1. Provided we can treat ŷi−1 as a surrogate for
y, we have E{ z̄i |y}= y=λ−2

i var { z̄i |y}; thus z̄i has higher SNR
than z. We then apply a VST f i to z̄i and obtain an image ¯̄zi=
f i ( z̄i), which we denoise with a filter Φ for AWGN to obtain
a filtered image Di = Φ

[ ¯̄zi
]
. Assuming Di = E{ f i ( z̄i) |y}, the

exact unbiased inverse of f i , I
λi
fi

: E{ f i ( z̄i) |y} 7→ E{ z̄i |y}= y,
brings this image to the original range, yielding

ŷi = I
λi
fi

(Di) ,

which is either used for the next iteration if i < K , or output
as final estimate ŷK = ŷ.

Let us provide further details on the above basic procedure.

A. Forward variance-stabilizing transformation

Consider the scaled variable λ−2
i z̄i and let us model ŷi−1 as y.

Setting qi (t)=λit −
1−λi
λi

y, the conditional probability

P
(
λ−2
i z̄i |y

)
=




y
qi(λ−2

i
z̄i )e−y

qi(λ−2
i z̄i )! qi

(
λ−2
i z̄i

)
∈ N∪{0}

0 elsewhere .
(2)

Unless λi=1, this is not a Poisson distribution. However, the
mean and variance of λ−2

i z̄i do always coincide:

E
{
λ−2
i z̄i

���y
}
= var

{
λ−2
i z̄i

���y
}
= λ−2

i y.

Hence, λ−2
i z̄i resembles P

(
λ−2y

)
and indeed one can prove

[11] that it is asymptotically stabilized by the Anscombe
transformation a. Thus, we set f i (·) = a

(
λ−2
i (·)

)
.

B. Exact unbiased inverse transformation

The exact unbiased inverse Iλi
fi

is defined upon (2) as

E { f i ( z̄i) |y} =
∑

z̄i :qi(λ−2
i z̄i )∈N∪{0}

a
(
λ−2
i z̄i

)
P
(
λ−2
i z̄i

���y
)
7→ E { z̄i |y} = y. (3)

We have Iλi
fi
≈λ2

iI
P
a , with I1

fi
=IPa [2]. The appendix describes

how to accurately compute (3) in practice.

C. Binning

It is natural to combine the convex combination (1) with a
linear binning; this can be especially beneficial at the first
iterations, when ŷi−1 is a poor estimate of y. Specifically, a
binning operator Bhi can be applied to z̄i , yielding a smaller
image where each block (i.e. bin) of hi × hi pixels from z̄i
is replaced by a single pixel equal to their sum. Bhi clearly
commutes with (1) and

Bhi [z̄i] = λiBhi [z] + (1 − λi) Bhi

[
ŷi−1

]
.

Algorithm 1 Iterative Poisson Image Denoising via VST
1: ŷ0 = z
2: for i = 1 to K do
3: z̄i = λi z + (1 − λi) ŷi−1
4: ¯̄zi = f i

(
Bhi [z̄i]

)
5: Di = Φ

[ ¯̄zi
]

6: ŷi = B
−1
hi

[
I
λi
fi

(Di)
]

7: end for
8: return ŷ = ŷK

Algorithm 2 Debinning ŷi = B
−1
hi

[
I
λi
fi

(Di)
]

1: ŷi,0 = 0
2: for j = 1 to J do
3: r j = I

λi
fi

(Di) − Bhi

[
ŷi, j−1

]

4: ŷi, j = max
{
0 , ŷi, j−1 +Uhi

[
h−2r j

] }

5: end for
6: return ŷi = ŷi,J

Since Bhi [z] ∼ P
(
Bhi

[
y
] )
= P

(
E

{
Bhi [z]��y

})
, and modeling

again ŷi−1 as y, we have that Bhi [z̄i] (resp. λ−2
i Bhi [z̄i]) is

subject to the same conditional probability of z̄i (resp. λ−2
i z̄i),

which means that the adoption of binning does not interfere
with the subsequent VST, denoising, and inverse VST. Thus,
we can define ¯̄zi= f i

(
Bhi [z̄i]

)
without modifying f i .

Debinning: An inverse binning operator B−1
hi

is applied after
the exact unbiased inversion,

ŷi = B
−1
hi

[
I
λi
fi

(Di)
]
,

returning a full-size image estimate ŷi such that

Bhi

[
ŷi

]
= I

λi
fi

(Di) . (4)

All the above steps are summarized in Algorithm 1 and as

ŷi = B
−1
hi

[
I
λi
fi

(
Φ

[
f i

(
Bhi

[
λi z + (1 − λi) ŷi−1

] )] )]
.

IV. IMPLEMENTATION AND RESULTS

For Φ we adopt the BM3D denoising algorithm [12]; yet, other
AWGN filters such as, e.g., SAFIR [13] may be used as well.

In the debinning step, to compute B−1
hi

[
I
λi
fi

(Di)
]
, Iλi

fi
(Di)

is first divided by h2
i , i.e. by number of pixels in the bin, and

upscaled to the size of z via cubic spline interpolation Uhi . To
enforce the constraint (4), the output of interpolation is recur-
sively binned by Bhi and subtracted from the target Iλi

fi
(Di),

giving a residual which is upsampled and accumulated. This
subroutine, summarized in Algorithm 2, is an instance of the
recursive shaping regularization with nonnegativity [14], [15].

Our current implementation1 of Algorithm 1 is determined
by four parameters: K (number of iterations), λK , h1, hK (first
and last bin sizes); other values of λi and hi are defined as
λi = 1− i−1

K−1 (1−λK ) and hi = max{hK, h1−2i+2}. We use
decreasing hi since binning can cause loss of image details

1Matlab software available at http://www.cs.tut.fi/~foi/invansc/

http://www.cs.tut.fi/~foi/invansc/
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Table I
PSNR (dB) DENOISING RESULTS VS [2]–[4], [6], WITH AND WITHOUT 3×3 BINNING. AVERAGES OVER 5 NOISE REALIZATIONS. P4IP VALUES FROM [6].

Method Peak Flag2562 House2562 Cam2562 Man5122 Bridge2562 Saturn2562 Peppers2562 Boat5122 Couple5122 Hill5122 Time2562

NLSPCA [3] 0.1 14.60 17.63 16.63 18.35 16.71 20.45 16.17 18.14 18.49 18.80 89s
NLSPCA bin [3] 15.32 18.66 17.23 18.41 16.99 18.91 16.22 18.89 18.84 19.47 11s
SPDA [4] 13.51 14.58 14.34 – 14.67 17.57 14.34 – – – 8h
SPDA bin [4] 15.27 18.29 16.83 18.72 17.00 21.53 16.15 18.99 18.94 19.39 12min
P4IP [6] 13.30 18.30 16.88 – 16.45 21.55 16.28 – – – few mins
VST+BM3D [2] 12.38 15.69 15.44 16.95 15.60 18.40 15.15 16.22 16.50 16.79 0.70s
VST+BM3D bin [2] 13.97 18.22 16.99 18.61 16.93 20.09 15.84 18.91 18.62 19.23 0.11s
Proposed 16.01 18.48 17.45 18.96 17.29 21.64 16.45 19.32 19.31 19.68 0.48s
NLSPCA [3] 0.2 16.47 18.63 17.63 19.18 17.56 21.36 17.21 19.14 19.22 19.74 90s
NLSPCA bin [3] 15.63 19.21 17.87 19.12 17.40 19.67 16.69 19.48 19.37 19.99 12s
SPDA [4] 16.65 17.45 16.75 – 16.96 20.67 16.70 – – – 5h
SPDA bin [4] 17.41 18.95 17.80 19.73 17.81 22.90 17.25 19.85 19.72 20.36 27min
P4IP [6] 14.82 19.48 17.82 – 17.54 23.05 17.31 – – – few mins
P4IP bin [6] 17.26 19.96 18.58 – 17.54 23.79 17.44 – – – ∼30s
VST+BM3D [2] 13.53 17.79 16.90 18.69 17.12 21.38 16.96 18.23 18.47 18.80 0.69s
VST+BM3D bin [2] 16.85 19.27 17.88 19.82 17.70 22.94 17.19 19.79 19.71 20.09 0.12s
Proposed 17.48 19.68 18.40 19.94 18.13 23.15 17.54 20.09 20.04 20.49 0.83s
NLSPCA [3] 0.5 18.61 20.17 19.20 20.59 18.49 22.89 18.69 20.37 20.42 21.14 96s
NLSPCA bin [3] 15.76 20.48 18.26 19.77 18.17 21.65 17.69 20.11 20.01 20.67 19s
SPDA [4] 20.02 19.96 18.75 – 18.52 25.37 18.55 – – – 4h
SPDA bin [4] 18.40 20.57 18.87 20.70 18.57 25.93 18.52 20.84 20.70 21.35 23min
P4IP [6] 16.50 20.93 19.27 – 18.47 25.19 18.86 – – – few mins
VST+BM3D [2] 15.58 19.61 18.46 20.39 18.26 23.75 18.41 19.99 20.01 20.74 0.71s
VST+BM3D bin [2] 18.19 21.41 19.47 21.15 18.71 25.81 18.78 20.94 20.83 21.72 0.11s
Proposed 18.60 21.54 19.79 21.25 19.08 25.77 19.05 21.19 21.14 21.84 0.83s
NLSPCA [3] 1 19.68 21.57 20.25 21.46 19.02 24.75 19.50 21.19 21.14 21.94 86s
NLSPCA bin [3] 15.77 20.78 18.40 19.87 18.26 22.83 17.78 20.19 20.11 20.82 16s
SPDA [4] 22.97 22.14 20.15 – 19.30 27.05 19.97 – – – 5h
SPDA bin [4] 18.99 20.99 19.43 21.15 18.84 27.40 18.93 21.19 20.97 21.50 25min
P4IP [6] 19.07 22.67 20.54 – 19.31 27.05 20.07 – – – few mins
VST+BM3D [2] 18.46 21.64 20.19 21.62 19.43 25.82 19.71 21.47 21.14 21.92 0.78s
VST+BM3D bin [2] 19.28 22.53 20.69 22.07 19.59 27.59 20.22 21.97 21.81 22.72 0.10s
Proposed 19.74 23.03 21.07 22.30 19.86 27.35 20.44 22.17 22.08 22.85 0.82s
NLSPCA [3] 2 19.70 23.16 20.64 22.37 19.43 26.88 20.48 21.83 21.75 22.68 87s
NLSPCA bin [3] 15.52 20.85 18.35 19.87 18.32 21.27 17.78 20.29 20.21 20.98 12s
SPDA [4] 24.72 24.37 21.35 – 20.17 29.13 21.18 – – – 6h
SPDA bin [4] 19.26 21.12 19.53 21.66 18.87 28.54 19.17 21.43 21.24 21.94 25min
P4IP [6] 21.04 24.65 21.87 – 20.16 28.93 21.33 – – – few mins
VST+BM3D [2] 20.79 23.79 21.97 23.11 20.49 27.95 22.02 22.90 22.65 23.34 0.82s
VST+BM3D bin [2] 19.91 24.10 21.43 23.03 20.36 29.26 21.45 22.92 22.84 23.75 0.10s
Proposed 21.18 24.62 22.25 23.40 20.69 28.83 21.93 23.30 23.12 23.88 0.82s
NLSPCA [3] 4 20.15 24.26 20.97 22.93 20.21 27.99 21.07 22.49 22.33 23.51 123s
NLSPCA bin [3] 15.52 20.94 18.27 19.88 18.32 22.02 17.72 20.29 20.25 20.99 13s
SPDA [4] 25.76 25.30 21.72 – 20.53 31.13 22.20 – – – 8h
SPDA bin [4] 19.42 22.07 19.95 22.18 19.26 29.71 20.19 21.76 21.69 22.82 31min
P4IP [6] 22.49 26.33 23.29 – 21.11 30.82 23.88 – – – few mins
VST+BM3D [2] 22.93 25.49 23.82 24.32 21.51 29.41 24.01 24.16 24.10 24.47 0.74s
VST+BM3D bin [2] 20.43 25.49 22.22 23.99 21.13 30.87 22.57 23.92 23.84 24.69 0.10s
Proposed 23.51 26.08 24.10 24.52 21.71 30.11 24.04 24.53 24.34 24.82 1.41s

and it becomes progressively less useful when λi gets larger
and the role of ŷi−1 dominates in improving the SNR of the
VST input. Obviously, B1 and B−1

1 are identity operators.

The Poisson image z is the only input to our algorithm; the
parameters K , λK , h1, hK are adaptively selected based on the
quantiles of z, following a training over 6 images not included
in the experiments test dataset; we fix J = 9.

PSNR (dB) results of the proposed algorithm and [2]–[4],
[6], as well as their versions with binning, are reported in
Table I. Table II gives a separate comparison with [7], over
the different dataset of 256×256 downscaled images adopted
by its authors. The tables demonstrate the superior overall
performance of the proposed algorithm, also confirmed by
visual inspection of the examples in Figure 1.

The complexity of Algorithm 1 is dominated by the filter
Φ and possibly by the debinning operators B−1

hi
. The overall

execution time depends especially on the number of iterations
K and on hK , which sets the size of the largest image to be
filtered by Φ; all our results have K ≤4. Table I and Table II
report also the average execution times for 256×256 images.
We ran the proposed algorithm and [2]–[4] on a single thread
of a 3.4-GHz Intel i7 CPU; the runtimes for [6], [7] are taken
from the respective articles, where [7] uses a 3.3-GHz Intel i7,
and [6] also uses an Intel i7. The proposed algorithm and [2]
are significantly less expensive than any of the other methods.

V. DISCUSSION AND CONCLUSIONS

We presented an iterative VST framework for Poisson denois-
ing. The iterative combination with a previous estimate refines



4

Table II
PSNR (dB) DENOISING RESULTS VERSUS THOSE REPORTED IN [7]. AVERAGES OVER 5 NOISE REALIZATIONS.

Method Peak Peppers2562 Bridge2562 Boat2562 Couple2562 Hill2562 Mandrill2562 Man2562 Time2562

MMSE est [7] 1 20.38 19.55 20.24 20.26 20.98 18.43 20.49 ∼14min
Proposed 20.44 19.86 20.65 20.47 21.23 18.56 20.50 0.82s
MMSE est [7] 2 22.26 20.65 21.28 21.22 22.05 18.98 21.60 ∼14min
Proposed 21.93 20.69 21.46 21.40 22.32 19.14 21.62 0.82s
MMSE est [7] 4 23.92 21.60 22.32 22.26 23.23 19.56 22.79 ∼14min
Proposed 24.04 21.71 22.53 22.52 23.29 19.66 22.75 1.41s

Original image y NLSPCA (19.18 0.30) NLSPCA bin (18.31 0.26)

Poisson image z (3.49 0.04) SPDA (19.36 0.32) SPDA bin (18.93 0.29)

Proposed (19.81 0.36) VST+BM3D (19.43 0.34) VST+BM3D bin (19.59 0.34)

Figure 1. Denoising of Bridge at peak 1. PSNR (dB) and SSIM [16] of ŷ
are given in brackets. For clarity, z is visualized on a compressed range.

the stabilization and helps to cope with extreme low-SNR
cases, in which a standard VST approach [2] underperforms
even when endowed with binning.

To analyze the importance of embedding the VST frame-
work within the iterations, in Table III we compare our results
from Table I with those by a simplified version of Algorithm 1,
where the VST is external to the loop: f i and Iλi

fi
are replaced

by identity operators and a and IPa are applied outside of the
algorithm. The significant gain in the table confirms that the
improvement over [2] is not a mere consequence of a better
denoising due to iterative filtering at multiple scales.

Also P4IP [6] relies on iterative AWGN filtering to de-
noise the Poisson z. In contrast to P4IP, which formulates
an optimization problem to be solved upon convergence of
ADMM [17] iterations, each iteration of Algorithm 1 attacks
the Poisson denoising problem directly, so any ŷk can be
treated as an estimate of y, with ŷ1 already coinciding with
[2]. This results in a more efficient, stable, and substantially
faster procedure, where Φ (e.g., BM3D) is used as explicit
denoiser for AWGN with variance 1 set by the VST without
need of empirical tuning.

Table III
PSNR GAIN (AVERAGE OVER ALL IMAGES IN TABLE I) OF ALGORITHM 1

OVER ITS SIMPLIFICATION WITH external VST (SEE SECTION V).

Peak 0.1 0.2 0.5 1 2 4
PSNR (dB) gain 0.64 0.66 0.38 0.22 0.11 0.13

The proposed algorithm achieves state-of-the-art quality
in only a tiny fraction of the time required by competitive
algorithms.

APPENDIX: COMPUTING THE EXACT UNBIASED INVERSE

As in [2], we compute E
{
a
(
λ−2
i z̄i

)
|y

}
numerically over a finite

grid of values of y and λi , from which we interpolate Iλi
fi

(3)
at values within the grid range. Outside of the grid range,
we leverage the available implementation [2] of the exact
unbiased inverse for Poisson IPa : E

{
a
(
λ−2
i ζ

) ���y
}
7→ λ−2

i y,
where λ−2

i ζ ∼ P
(
λ−2
i y

)
, through the composition

E
{
a
(
λ−2
i z̄i

) ���y
}
7−→ E

{
a
(
λ−2
i ζ

) ���y
}
7−→ λ−2

i y 7−→ y. (5)

To deal with the first of the three mappings (5), we study
the difference between E

{
a
(
λ−2
i z̄i

) ���y
}

and E
{
a
(
λ−2
i ζ

) ���y
}
. For

p∼P (µ), the mean of a generic g(p)=2
√

(p+d)/γ is [1], [18]

E{g(p) |µ} = 2
√
µ+d
γ

(
1 − 1

8
µ

(µ+d)2 + (6)

+ 1
16

µ

(µ+d)3 −
5

128
3µ2+µ

(µ+d)4 + O
(
µ−3

) )
.

It yields E
{
a
(
λ−2
i z̄i

) ���y
}

when µ= y, γ = λi , d = 1−λi
λi

y + 3
8λi ,

and E
{
a
(
λ−2
i ζ

) ���y
}

when µ=λ−2y, γ=1, d= 3
8 . Then

E
{
a
(
λ−2
i ζ

) ���y
}
−E

{
a
(
λ−2
i z̄i

) ���y
}
=

λ2
i (λi−1)

8 y−
3
2+O

(
y−

5
2
)
, (7)

which is however expressed as a function of y, while (5)
requires a function of E

{
a
(
λ−2 z̄

) ���y
}
. From (6), we can ap-

proximate large y as

y =
(
λi
2 E

{
a
(
λ−2
i z̄i

) ���y
})2
+ O(1) . (8)

On substituting (8) into (7) we obtain

E
{
a
(
λ−2
i ζ

) ���y
}
− E

{
a
(
λ−2
i z̄i

) ���y
}
= (9)

=
λi−1
λi

(
E

{
a
(
λ−2
i z̄i

) ���y
})−3
+ O

(
E

{
a
(
λ−2
i z̄i

) ���y
})−4

.

Outside of the grid range we can discard the higher-order terms
from (9) and compute Iλi

fi
(Di) using IPa [2] as

I
λi
fi

(Di) = λ2
iI
P
a

(
Di +

λi−1
λi

D−3
i

)
.
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