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ABSTRACT

We propose an extension of the BM4D volumetric filter to the denoising of data corrupted by spatially non-
uniform noise. BM4D implements the grouping and collaborative filtering paradigm, where similar cubes of voxels
are stacked into a four-dimensional “group”. Each group undergoes a sparsifying four-dimensional transform,
that exploits the local correlation among voxels in each cube and the nonlocal correlation between corresponding
voxels of different cubes. Thus, signal and noise are effectively separated in transform domain. In this work
we take advantage of the sparsity induced by the four-dimensional transform to provide a spatially adaptive
estimation of the local noise variance by applying a robust median estimator of the absolute deviation to the
spectrum of each filtered group. The adaptive variance estimates are then used during coefficients shrinkage.
Finally, the inverse four-dimensional transform is applied to the filtered group, and each individual cube estimate
is adaptively aggregated at its original location.

Experiments on medical data corrupted by spatially varying Gaussian and Rician noise demonstrate the
efficacy of the proposed approach in volumetric data denoising. In case of magnetic resonance signals, the
adaptive variance estimate can be also used to compensate the estimation bias due to the non-zero-mean errors
of the Rician-distributed data.

Keywords: Volumetric data denoising, nonlocal methods, adaptive transforms, non-uniform noise, variance
estimation, magnetic resonance imaging

1. INTRODUCTION

The most powerful methods for image restoration rely on the self-similarity and nonlocality characteristics of
natural images. The state-of-the-art BM3D image denoising algorithm1 couples the nonlocal filtering paradigm
proposed in2,3 with the grouping and collaborative filtering approach. The method leverages an enhanced sparse
representation in transform domain enabled by the grouping of similar 2-D image patches into 3-D data arrays
which are called “groups”. Collaborative filtering includes three successive steps: 3-D transformation of a group,
shrinkage of transform spectrum, and inverse 3-D transformation. Due to the similarity between the grouped
blocks, the transform can achieve a highly sparse representation of the true signal so that the noise can be
effectively attenuated by shrinkage. In this way, the collaborative filtering reveals even the finest details shared
by grouped fragments and at the same time it preserves the essential unique features of each individual fragment.

The grouping and collaborative paradigm can be also effectively exploited in volumetric data restoration and,
in particular, it is the foundation of recently proposed BM4D volumetric denoising algorithm.4 Instead of using
blocks of pixels as basic data patches, BM4D naturally utilizes similar 3-D cubes of voxels which are stacked
together to form the 4-D group. The local correlation present among voxels in each cube as well as the nonlocal
correlation between the corresponding voxels of different cubes induce a sparse representation of the group in
transform domain. After collaborative filtering and inverse transformation, we obtain individual estimates of the
grouped cubes, which are then aggregated at their original locations using adaptive weights.

This work was supported by the Academy of Finland (project no. 213462, Finnish Programme for Centres of Excel-
lence in Research 2006-2011, project no. 129118, Postdoctoral Researcher’s Project 2009-2011, and project no. 252547,
Academy Research Fellow 2011-2016), and by Tampere Graduate School in Information Science and Engineering (also
known as TISE).



The original BM4D volumetric denoising algorithm has been utilized in the denoising of magnetic resonance
(MR) images corrupted by either Gaussian- or Rician-distributed noise having uniform variance.4 However, in
some applications, e.g., parallel acquisition techniques such as sensitivity encoding (SENSE)5 or generalized au-
tocalibrating partially parallel acquisitions (GRAPPA),6 the noise corrupting the observed data is characterized
by a spatially varying variance. In literature, the approaches addressing this problem generally adhere to the
following scheme: at first, the variance of the noise is locally estimated, then, a filtering technique, adjusted de-
pending on the strength of the estimated noise, is adaptively applied to the data. For example, in7 the variance
is estimated using the noise distribution map and the denoising is performed via anisotropic diffusion kernels.
A different approach, presented in,8 relies on the high-frequency subband of the wavelet coefficients to estimate
the variance, and on a coefficients shrinkage in transform domain to filter the noisy observation. A limitation of
both approaches is the assumption of data corrupted by additive zero-mean Gaussian noise. The optimized 3-D
nonlocal means filter proposed in9 also addresses the Rice distribution, and it proposes to estimate the variance
from the minimum distance between the high-pass components of noisy patches. This approach exploits the
relation between the expectation of the squared `2-distance and the variance of the noise.3

In this work, we present an extension of the BM4D denoising algorithm to data corrupted by either Gaussian
or Rician noise having spatially varying variance. Exploiting the sparsity of the representation of the group
in transform domain, the noise variance is accurately estimated from the outcome of robust median operations
applied to the spectrum coefficients. Subsequently, the estimate is used during the collaborative filtering and the
aggregation to calibrate the amount of coefficients shrinkage and the adaptive weights, respectively. Experimental
results on volumetric data from the BrainWeb database demonstrate the state-of-the-art denoising performance
of the proposed algorithm. In particular, our filter outperforms the method proposed in,9 which is currently,
to the best of our knowledge, the best-performing denoising method for volumetric data corrupted by spatially
varying noise.

The remainder of paper is organized as follows. In Section 2 we define the adopted observation models, for both
Gaussian and Rician noisy observations. Section 3 is devoted to the formal description of the fundamental steps
of the algorithm, together with the techniques used to estimate the variance of the noise of both distributions.
The implementation of the spatially adaptive BM4D algorithm is then formalized in Section 4. The results of the
experimental validation of the proposed method are reported in Section 5, and the final discussions and general
conclusions are summarized in Section 6.

2. OBSERVATION MODELS

2.1 Gaussian-Distributed Noise

We consider the noisy volumetric Gaussian observation zN : X → R as

zN (x) = y(x) + η(x), x ∈ X, (1)

where x = (x1, x2, x3) is a 3-D coordinate belonging to the domain X ⊂ Z3, y is the (unknown) original noise-free
signal, and η(x) ∼ N

(
0, σ2(x)

)
is independent additive white Gaussian noise having spatially varying standard

deviation σ : X → R+.

2.2 Rician-Distributed Noise

The observation model of a Rician observation zR : X → R+ is

zR(x) =
√

(cry(x) + σ(x)ηr(x))2 + (ciy(x) + σ(x)ηi(x))2, x ∈ X, (2)

where x = (x1, x2, x3) is again a 3-D coordinate belonging to the domain X ⊂ Z3, cr and ci are constants such
that 0 ≤ cr, ci ≤ 1 = c2r + c2i , and ηr(·), ηi(·) ∼ N (0, 1) are i.i.d. random vectors following the standard normal
distribution. In this way, zR(x) ∼ R (y(x), σ(x)) represents the raw magnitude MR data, modeled as a Rician
distribution R of parameters y and σ : X → R+, which denote the (unknown) original noise-free signal and the
spatially varying standard deviation, respectively.



3. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate ŷ of the original volumetric signal y from the
observed data zN or zR. The proposed adaptive BM4D algorithm comprises the grouping, collaborative filtering
and aggregation step as in,4 with an additional step performed after the grouping, devoted to the groupwise
estimation of the noise variance.

3.1 Grouping
Let CzxR

denote a cube of L × L × L voxels, with L ∈ N, extracted from the generic observation z at the 3-D
coordinate xR ∈ X, which identifies its top-left-front corner. The 4-D groups are formed by stacking together,
along an additional fourth dimension, 3-D cubes similar to CzxR

. Specifically, the similarity between two cubes
is measured via the squared `2-norm of the intensities difference of their voxels, normalized with respect to the
size of the cube:

d
(
Czxi

, Czxj

)
=

∣∣∣∣Czxi
− Czxj

∣∣∣∣2
2

L3
. (3)

The set containing the indices of the cubes extracted from z that are similar to CzxR
is defined as

SzxR
=
{
xi ∈ X : d(CzxR

, Czxi
) ≤ τmatch

}
, (4)

thus, two cubes are considered similar if their distance (3) is smaller or equal than a predefined threshold τmatch.
The set SzxR

is consequently used to build the group associated to the reference cube CzxR
as the disjoint union

of the matched cubes
Gz
Sz

xR
=

∐
xi∈Sz

xR

Czxi
. (5)

Observe that each set Gz
xR

necessarily contains the reference cube CzxR
because d(CzxR

, CzxR
) = 0.

3.2 Groupwise Variance Estimation
We assume that the noise level in the groups (5) can be treated as constant. This is a reasonable assumption
since the map σ is typically a slowly varying function, and the grouped cubes have usually nearby coordinates.
Consequently, only a single standard deviation estimate σ̂xR

is needed for each group. We remark that a precise
estimation of the variance is a crucial step during the denoising, because the amount of filtering operated on the
noisy observations is proportional to the strength of the corrupting noise.

The groups are sparsely represented in transform domain as the energies of the signal and the noise are well
localized in the low- and high-frequencies portions of the spectrum, respectively. Thus, an accurate groupwise
variance estimation can be obtained from the median of absolute deviation10,11 (MAD) of the high-frequencies
coefficients in the 4-D group spectrum.12

3.2.1 Gaussian-distributed data

In case of Gaussian-distributed data (z ≡ zN ), we apply an orthonormal separable 4-D transform T4D to the
group (5), obtaining

ΦSzN
xR

= H
(
T4D

(
GzN
S

zN
xR

))
, (6)

where H is a high-pass filter that discards the DC hyperplane of the transform applied to the fourth dimension
of the group.

A robust estimate σ̂xR
of the standard deviation is consequently calculated as

σ̂zNxR
=

1
0.6745

·MAD
(

ΦSzN
xR

)
=

1
0.6745

·median
({∣∣∣φk −median

(
ΦSzN

xR

)∣∣∣}) , φk ∈ ΦSzN
xR
, (7)

where φk is the kth coefficient of the high-passed spectrum ΦSzN
xR

. The orthonormality of T4D ensures that the
noise standard deviation in transform and spatial domain coincide. Even though this would strictly require
the independence of the data, i.e. non overlapping cubes,12 we have experimentally found that the potential
underestimation due to overlaps does not significantly affect the final denoising quality.



3.2.2 Rician-distributed data

If the data follows the Rician distribution (z ≡ zR), we first estimate the mean-variance pair (µxR
, s2xR

) of the
median value of y over the Rician group GzR

S
zR
xR

as

µ̂xR
= median

(
GzR
S

zR
xR

)
, (8)

ŝxR
=

1
0.6745

·MAD
(

ΦSzR
xR

)
, (9)

where ΦSzR
xR

is the 4-D spectrum calculated as in (6). It can be shown that from the pair (µ̂xR
, ŝ2xR

) one can
univocally and directly obtain a robust estimate σ̂zRxR

of the parameter σ in (2).

3.3 Collaborative Filtering

The first phase of collaborative filtering, executed on Rician observations only, is the application of a variance
stabilization transform (VST) specifically designed for the Rice distribution,13 in order to remove the dependen-
cies between the noise and the underlying grouped data. In this way, the stabilized data can be filtered using
the constant standard deviation value c > 0 induced by the VST.

During collaborative filtering, each group is first transformed by a decorrelating separable four-dimensional
transform T4D, then the coefficients of the so-obtained spectrum are thresholded through a generic shrinkage
operator Υ (e.g., hard thresholding or Wiener filtering) parametrized by the estimated noise level s. The filtered
group Ĝy

Sy
xR

is eventually produced by inverting the original four-dimensional transform as

T −1
4D

(
Υs

(
T4D

(
Gz
Sz

xR

)))
= Ĝy

Sz
xR

=
∐

xi∈Sz
xR

Ĉyxi
, (10)

where T4D is the combination of four 1-D linear transform that are separately applied to each dimension of the
group, and s = σ̂zNxR

or s = c if the noise is Gaussian- or Rician-distributed, respectively. The shrinkage is never
applied on the DC coefficient of the 4-D spectrum, in order to preserve the mean value of the group. Each Ĉyxi

is an estimate of the original Cyxi
extracted from the unknown volumetric data y.

Finally, in case of Rician noise, the filtered group undergoes the exact unbiased inverse variance stabilization
transform as in13 that simultaneously inverts the VST and produces an unbiased estimate for the underlying y.

3.4 Aggregation

Since the cubes in the different group estimates Ĝy
Sz

xR

(as well as the cubes within the same group) are likely to
overlap, we may have multiple estimates for the same voxel. Therefore the final volumetric estimate ŷ is obtained
through a convex combination with adaptive weights formulated as

ŷ =

∑
xR∈X

(∑
xi∈Sz

xR

wxR
Ĉyxi

)
∑
xR∈X

(∑
xi∈Sz

xR

wxR
χxi

) , (11)

where each cube estimate Ĉyxi
is assumed to be zero-padded outside its domain, and χxi : X → {0, 1} denotes the

characteristic function of the domain of a cube Ĉyxi
located at xi. In other words, χxi

= 1 over the coordinates
of the voxels of Ĉyxi

and χxi
= 0 elsewhere. The aggregation weights wxR

are defined to be the reciprocal of the
total residual noise variance in the estimate of the corresponding groups.

4. IMPLEMENTATION

The general procedure described in Section 3 is implemented in two cascading stages, each composed of the
grouping, noise variance estimation, collaborative filtering and aggregation steps.



4.1 Hard-Thresholding Stage

In the first stage, the cubes are extracted from the generic observation z, and the group Gz
Sz

xR

is then formed

testing the similarity measure (3) with a predefined threshold τht
match. After the standard deviation σ̂ht

xR
of the

noise is estimated from the group Gz
Sz

xR

as described in Section 3.2, collaborative filtering is realized by hard
thresholding the coefficients of the spectra in (10) with an adaptive threshold value σ̂xR

·λ4D in case of Gaussian
noise, or c · λ4D in case of Rician noise, being c the value of the stabilized standard deviation. In the latter case,
the group undergoes a forward and inverse VST before and after the filtering (10), respectively.

The outcome of hard-thresholding stage, ŷht, is obtained by aggregating the estimated cubes obtained ob-
tained from collaborative filtering via the convex combination (11). The adaptive weights wxR

in (11) are
reciprocal to the residual noise variance in the estimate which, in case of hard thresholding is approximated with
the number Nht

xR
of coefficients retained after thresholding times the estimated variance as

wht
xR

= σ̂−2
xR
Nht−1

xR
, (12)

thus penalizing groups having higher estimated variance of the corrupting noise, as well as rewarding sparser
groups. Note that Nht

xR
≥ 1, since at least the DC coefficients is retained.

4.2 Wiener-Filtering Stage

In the Wiener-filtering stage, the grouping is performed within the hard-thresholding estimate ŷht, thus for each
reference cube C ŷ

ht

xR
with xR ∈ X we look for similar cubes in ŷht via (4) using a similarity threshold τwie

match.
Since the noise is considerably reduced after the first stage, the cube-matching in ŷht is far more accurate. The
improved correlation properties of the group are consequently beneficial to collaborative filtering because they
enable a better sparsification of the data in transform domain.

The set of coordinates Sŷ
ht

xR
is used to form two groups: one from the observation z, and the other from the

basic estimate ŷht, termed Gz

Sŷht
xR

and Gŷht

Sŷht
xR

, respectively. The standard deviation σ̂xR
of the noise is estimated

from the noisy data grouped in Gz

Sŷht
xR

, and collaborative filtering is consequently realized through an empirical

Wiener filter. Element by element, the group spectrum is multiplied by the Wiener shrinkage coefficients, defined
from the energy of the transformed spectrum of the basic estimate group as

W
Sŷht

xR

=

∣∣∣T wie
4D

(
Gŷht

Sŷht
xR

)∣∣∣2∣∣∣T wie
4D

(
Gŷht

Sŷht
xR

)∣∣∣2 + s2
, (13)

where s = σ̂xR
or s = c when the noise follows a Gaussian or Rician distribution, respectively. As usual, the

Rician-distributed data is first stabilized by a VST that shall be eventually inverted after the filtering.

The final estimate ŷwie is produced through (11) using aggregation weights defined as

wwie
xR

= σ̂−2
xR

∣∣∣∣∣∣W
Sŷht

xR

∣∣∣∣∣∣−2

2
, (14)

which, similarly to (12), give an estimate of the total residual noise variance of the corresponding Wiener filtered
group.1

5. EXPERIMENTS

We evaluate the denoising performances of the proposed algorithm, termed BM4D-AV, on magnetic resonance
(MR) images. As quality measure, we compute the PSNR of the denoised data as

PSNR (y, ŷ) = 10 log10

(
D2|X̃|∑

x∈X̃ (ŷ(x)− y(x))2

)
, (15)



Figure 1. From left to right: original cross-section of the BrainWeb phantom; noise modulation map, with modulation
factors ranging from 1 (black) to 3 (white); noisy BrainWeb phantom corrupted by Gaussian noise with standard deviation
σ ∈ [15% ∼ 45%] varied with the modulation map; realization of the spatially varying Gaussian noise.

Table 1. Standard deviation values maximizing the PSNR denoising performance of the non-adaptive ODCT3D,14 PRI-
NLM3D,14 and BM4D4 filters applied to the BrainWeb phantom corrupted by spatially varying noise.

Noise Filter
σ

1% ∼ 3% 3% ∼ 9% 5% ∼ 15% 7% ∼ 21% 9% ∼ 27% 11% ∼ 33% 13% ∼ 39% 15% ∼ 45%

Gauss.

ODCT3DN 2.33% 6.86% 11.34% 15.62% 19.91% 24.70% 29.01% 33.61%

PRI-NLM3DN 2.35% 6.39% 10.90% 15.11% 19.90% 23.39% 28.47% 32.83%

BM4DN 2.25% 6.98% 11.62% 16.80% 21.60% 27.22% 32.17% 38.25%

Rician

ODCT3DR 2.33% 5.96% 9.59% 12.64% 15.69% 18.88% 22.37% 25.27%

PRI-NLM3DR 2.18% 5.96% 9.45% 12.64% 15.69% 19.22% 22.23% 25.49%

BM4DR 2.25% 6.30% 9.37% 12.86% 15.52% 19.39% 22.42% 25.87%

where D is the peak of y, X̃ = {x ∈ X : y(x) > 10 · D/255} (in order not to compute the PSNR on the
background as in14), and |X̃| is the cardinality of X̃. Additionally, we evaluate the results of denoising via the
3-D extension of the structure similarity index (SSIM),14,15 which should better agree with subjective perceptual
quality.

The observations used in our experiments are corrupted by either Gaussian or Rician noise, and the volumetric
test data is the T1 brain phantom of size 181× 217 × 181 voxels from the BrainWeb database.16 According to
(1) and (2), we synthetically generate the noisy observations zN and zR by adding spatially varying Gaussian
and Rician noise having different ranges of standard deviation σ, expressed as percentage of the maximum value
of the signal y. Specifically, we first generate a realization of Gaussian or Rician noise with uniform standard
deviation σ, then we multiply each sample of such realizations by a volumetric noise modulation map as in,9

which smoothly increases the amount of noise from the extrema to the center of the volume up to a factor of
3. Figure 1 illustrates an example of noisy observation obtained by a modulated Gaussian noise with varying
standard deviation σ ∈ [15% ∼ 45%].

As a comparison, we validate the denoising performances of the proposed BM4D algorithm against the
optimized adaptive blockwise nonlocal means OB-AR-NLM3D-WM.9 The BM4D is tuned as proposed in,4 and
the noise-variance estimation and the collaborative filtering steps use the same transform, i.e. T4D ≡ T4D, both
in the hard-thresholding and Wiener-filtering stages. In this way, the groups need to be transformed only once.
We also present the performances of the current best-performing non-adaptive methods. In particular, we test
the BM4D,4 ODCT3D,14 and PRI-NLM3D14 filters, using constant standard deviation values found maximizing
the restored quality in terms of PSNR. Table 1 reports the optimum values of standard deviation used by the
three non-adaptive algorithms during the denoising of the BrainWeb phantom corrupted by spatially varying
noise having eight different ranges of standard-deviation. Moreover, we present the results obtained by an Oracle
filter, namely the state-of-the-art BM4D,4 having exact knowledge on the varying standard deviation σ(x) for
each x ∈ X.

As one can clearly see, both the objective performances reported in Table 2 and the visual appearance of the
denoised phantoms shown in Figure 2, substantiate the superior quality of the results produced by the proposed
BM4D-AV. In particular, BM4D-AV outperforms the state-of-the-art adaptive filter OB-AR-NLM3D-WM and
the non-adaptive state-of-the-art filter BM4D with PSNR improvements of up to 2.5dB and 0.5dB in case of
Gaussian observations, and about 0.2dB in case of Rician observations. Let us remark that BM4D-AV performs



Table 2. PSNR (left value in each cell) and SSIM15 (right value in each cell) denoising performances on the volumetric
test data from the BrainWeb database16 of the non-adaptive ODCT3D,14 PRI-NLM3D,14 BM4D4 filters, the adaptive
OB-AR-NLM3D-WM9 filter, and the proposed adaptive BM4D-AV (tuned with the modified profile as in4). Two kinds
of observations are tested, corrupted by spatially varying Gaussian and Rician noise, synthetically generated according to
the observation models (1) and (2), respectively. Both cases are tested under different ranges of standard-deviations σ,
expressed as percentage relative to the maximum intensity value of the original volumetric data. The ranges of variation
for σ are shown in the header of the table. The PSNR and SSIM values of the noisy data, and of the denoised phantoms
produced by an Oracle, namely BM4D with exact knowledge of the varying σ, are also shown for comparison. The
subscripts N (Gaussian) and R (Rician) denote the addressed noise distribution.

Noise Filter
σ

1% ∼ 3% 3% ∼ 9% 5% ∼ 15% 7% ∼ 21% 9% ∼ 27% 11% ∼ 33% 13% ∼ 39% 15% ∼ 45%

Gauss.

Noisy data 34.34|0.90 24.80|0.62 20.36|0.44 17.44|0.33 15.26|0.25 13.51|0.20 12.06|0.16 10.82|0.13
ODCT3DN 40.04|0.98 34.09|0.94 31.43|0.90 29.69|0.86 28.42|0.83 27.40|0.80 26.52|0.77 25.74|0.74

PRI-NLM3DN 40.71|0.98 34.50|0.94 31.75|0.91 29.95|0.87 28.60|0.83 27.49|0.80 26.55|0.77 25.79|0.74
BM4DN 40.42|0.98 34.90|0.95 32.57|0.92 31.05|0.89 29.91|0.87 28.99|0.85 28.23|0.83 27.56|0.81

OB-AR-NLM3D-WMN 40.38|0.98 34.50|0.94 31.57|0.89 29.61|0.83 28.11|0.78 26.89|0.73 25.86|0.68 24.95|0.64
BM4D-AVN 40.45|0.98 35.48|0.96 33.10|0.93 31.48|0.90 30.24|0.87 29.22|0.85 28.35|0.82 27.59|0.79

OracleN 40.96 |0.98 35.56 |0.96 33.14 |0.93 31.56 |0.91 30.36 |0.88 29.40 |0.86 28.58 |0.84 27.87 |0.82

Rician

Noisy data 34.35|0.90 24.87|0.62 20.50|0.44 17.64|0.33 15.50|0.25 13.78|0.19 12.32|0.15 11.04|0.12
ODCT3DR 39.70|0.98 33.13|0.92 29.58|0.86 26.92|0.79 24.72|0.74 22.85|0.70 21.12|0.66 19.47|0.62

PRI-NLM3DR 40.53|0.98 33.21|0.93 29.29|0.87 26.21|0.80 23.71|0.74 21.68|0.69 19.88|0.65 18.21|0.61
BM4DR 40.34|0.98 33.76|0.93 30.19|0.86 27.37|0.80 24.95|0.73 22.89|0.68 21.07|0.63 19.39|0.59

OB-AR-NLM3D-WMR 40.28|0.98 34.29|0.94 31.16|0.87 28.73|0.81 26.43|0.74 24.17|0.67 22.00|0.60 20.00|0.54
BM4D-AVR 40.43|0.98 34.41|0.94 31.27|0.89 28.80|0.82 26.55|0.74 24.21|0.67 22.11|0.61 20.01|0.56

OracleR 40.90 |0.98 34.85 |0.95 31.59 |0.91 28.99 |0.85 26.82 |0.76 24.55 |0.70 22.43 |0.65 20.37 |0.61

ODCT3D PRI-NLM3D BM4D OB-AR-NLM3D-WM BM4D-AV

Figure 2. From left to right, denoising results of the ODCT3D, PRI-NLM3D, BM4D, OB-AR-NLM3D-WM, and the
proposed BM4D-AV filter applied to the BrainWeb phantom corrupted by spatially varying Gaussian noise with standard
deviation σ ∈ [15% ∼ 45%]. The original and corrupted data can be seen in Figure 1. For each algorithm, both the 3-D
and 2-D transversal cross-section of the phantom are presented in the top and bottom row, respectively.



only marginally worse than the Oracle filter, which, not surprisingly, always achieves the best performances.
Figure 2 confirms the objective results. We observe that the denoised phantom produced by OB-AR-NLM3D-
WM is considerably affected by residual noise, thus suggesting that the variance is underestimated during the
filtering. The non-adaptive filters behave reasonably well, even though the effects of a fixed level of noise are
clearly visible. In particular, the center of the phantom is under-smoothed as the applied amount of filtering is
not sufficient to completely remove the noise. Conversely, the peripheral areas are over-smoothed.

6. CONCLUSIONS
Experiments show that the proposed adaptive BM4D-AV achieves state-of-the-art performances in volumetric
data denoising under condition of spatially varying Gaussian- or Rician-distributed noise in terms of objective
(Table 2) and subjective visual (Figure 2) quality. The groupwise noise estimation embedded in the proposed
BM4D-AV allows for a correct filtering of the noisy data in any section of the phantom. As a matter of fact,
our filter is able to simultaneously preserve the edges of fine details and the smoothness of flat areas. We also
wish to remark that the proposed algorithm exhibits the most gentle performance decay as the level of noise
increases. Thus, BM4D-AV can be a viable and effective tool in medical image processing when there is no
precise knowledge about the statistics of the noise corrupting the observed data.
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