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PART 1



Best approximation in a closed subspace M of a Hilbert space H

¢ = argmin [[p — f]|,
peM

Solution: ¢ is the orthogonal projection of f onto M

Let {¢, }, be a system of generators for M, then

%) Z( [ 0n)py &n  for {o,}, orthonormal system, or

n

Ay
Il

Z (f, an)H ¢, for {¢,}, frame and {$,.}n dual frame.

n



Window / weight function, associated measure and space
window function w ~» H = L? (Rd, u) (w > 0 density of u)

o)y = / fgdp = / £ (0) g @yw (v) do
12, = fi = / P d = / 1 @) (0) do



Best approximation in a closed subspace M C L? (Rd,u) =H

= axgmin ;o £, = avguin [ o= 1 dp = axgmin [ o (0) = £ (0 w (o) do
peM pEM weEM

Let {¢,}, be a frame for M and {&n}n its dual frame, then

5= [ féndus, fo (v) dv,

Matrix form:
¢ = argmin [[¢ — fHH = argmin ((90 - f)TW(QO - f))
peM peM

. 9T
= ¢ wf,
where w = diag w is the weight matrix, ¢ is the frame matrix,

o= (;S(I)f is the dual frame matrix, and ® = ¢ w¢ is the Gramian matrix.

This is equivalent to a standard weighted least-squares problem.



Pointwise estimation ~~ kernel estimates

Ay
—

(@)
=

= Y D00 0 = (£.5,6,6,0) =

- / F )3, B (@) (0) 1w (v) d = / £ (0) g (v) do

The kernel gaq depends only on M (i.e. on M and w).

“Moving” least-squares method ~-» convolution estimates
i=2®9m= [2(~v)gulo)dv

7 (z) =@, (0), where ¢, = argmin,, e x4 llo = Zzllyy and 2, = 2z (x — -).

Equivalently, the convolution against g yields, for every point x, the pointwise value (in
) of the best approximation of the function z in the subspace M,={p: ¢ (z —-) € M}.
Here, “best approximation” and the “subspace” structure are intended with respect to the
windowing measure fi, (“centered” at x) defined as fi, () = —p (2 — -), that is implicitly
imposed on a superspace, say H, = L2 (R?, i), of M,.



LPA (local polynomial approximation)
M is a subspace of real polynomials

There are only two design parameters for M:
polynomial order O, : M = {¢: ¢ (v) = > oco,, oV}

window function w: M CH, (f, g)y = /fgdu = /f (v) g (v)w (v)dv



Function and derivative estimation kernels 9

Clearly, ¢ does not depend on the frame used to construct M. Nevertheless, it is very
convenient to use a basis whose generators are monomes, and in particular an ideal choice
is to use the standard Taylor basis,

n={g} m

where ol = 01! --04!, 0 = 0(n) € N, ¢, (v) = % Indeed, since ¢,, (0) = 6 (n — 1), the

functz'on-estz’mation kemel is

gm ( Zasl (1,n) 6, (0) = w( Zdn 1) (2)

The use of Taylor basis allows to deﬁne the derwatwe estimation kernels as

g% (v Z@ ). (3)

The convolution against them yields an ebtlmate for the function and all its derivatives
(for all orders o € O,,)

(o(n)) =2® g(O(n)) /z ( — ) 95&(")) (1}) dv,

where §(°) (z) = (D(O)Eo;) (z),with &, = &, (- — 2) being the best approximation of z in
the space M. Thus, §(°) () is in fact an estimate of the o-th (partial) derivative of y.



Vanishing moments 10

Because of the perfect-reconstruction property for polynomials in M, the following equa-
tions, or moments conditions, hold,

/ g (W)dv = 1, (4)

/vogM (v)dv = 0, o0€O0,\{0}. (5)

The relations from the last equation are often called vanishing moments conditions.

Zero-order LPA

For the zero-order LPA (i.e. m = 0), the set of generators consists of only the con-
stant term, {¢,},, = {¢1} = {1}, and the function estimation kernel coincides with the
normalized window function,

ga = wiy ( [aowue) dv)l - Tl (6)



LPA kernels (function and derivative estimation): examples
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Figure 1: Function and derivative estimation LPA kernels obtained for m = (2,1) using
the characteristic function of a disk as the window function w.
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Figure 2: Function and derivative estimation LPA kernels obtained for m = (2,1) using a
Gaussian window function w.



LPA kernels (function and derivative estimation): examples (continued) 12
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Figure 3: The function estimation LPA kernel and some of the derivative estimation LPA
kernels obtained for m = (5, 3) using the characteristic function of a disk as the window
function w.
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Scale parameter h

wh () = w (-/h), h € R,
gn () =g (-/h).

h controls the “size” of the kernel support
—v)gp (v)dv =

2= o)W gan (/) do = [~ o) gaa (0) o,

13



LPA kernels as smoothers 14

In frequency domain, we have
Vi = ZGh = ZF (h™gm (-/h)) = Zh™F (gpa (/1)) = ZGaa (1),
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Figure 4: Function estimation LPA kernels obtained for m = (2,1) using the characteristic
function of disk as the window function w;,. Kernels are shown for four different values of
h, from small (left) to large (right). The absolute value of the kernels’ Fourier transforms
are shown in the bottom row of the Figure. To improve the visualization, the vertical scale
of the space-domain plots is larger for the kernels of a larger scale.

How to choose h?



Accuracy analysis of the LPA: bias and variance of the LPA estimates 15

Let the observations be of the form
z=1y+on, n iid noise, n (+) ~ N (0,1).
and consider the LPA estimate
In (x) = (@ gn) (2) .
The bias and variance (i.e. the deterministic and stochastic error) of gy, (z) are
bias{gn ()} = my, @) =E{y@) —dn(2)} =
= y(@) - E{gn (@)} =y (@) - (E{z}®g) (z) =y () — (y ® gn) (),

var {jn (2)} = 0%, (o) = E{(E{in (@)} — g (2))°} =
—E{((v-2) ) @)*} = (02 9 37) (@) = [ g} (0)do = o* 3.

The pointwise mean squared error (MSE), or (quadratic) risk, can be decomposed in the
sum of the squared bias and the variance,

~ 2
linie) = B{ (4 (@) = g0 @)} = m2, (o) + 0%, (.

Our aim is to determine h in such a way that lg, ) is minimized: find the optimal scale.



Asymptotic error analysis 16

Let = be a fixed estimation point. We can rewrite the expression for the variance as an
explicit function of the scale parameter,

2 _ 2
o = 0 llanlls = ?[[hga (/D] =
= 02h72d/g3\4 (v/h)dv = Uthd/gi,l (v)dv = o*h™¢ HgMHS
Similarly, for the bias, by exploiting a similar change of variable, we obtain

My = 9 () / y (& — v) h=lgpq (/) dv = y (z) - / y (& — hv) gau (v) do.

Let us consider a Taylor-type expansion at x of the function y,

—1 o o o
ve-=yv@+ Y 0@+ R,
0€0,\{0} ’
where the remainder term R (t) = _ 40, O (¢°) and O (¢°) denotes a function such that
is asymptotic to t° as t — 0.




Asymptotic error analysis (continued) 17

Because of the perfect-reconstruction property for polynomials whose monomes have orders
in O, the bias is made only from the contribution of the remainder:

Moy = y () — / y (2 — ho) gad (v) dv = / R (hv) gau (v) do.

There are many possible representation of the remainder R. However, the standard choice
is to express it in Lagrange form. It means that |R(w)| < > L, |w®| where L, is some
uniform bound on the o-th partial derivative of y. Depending on the order m of the
LPA, the dimension d, of course, actual the smoothness of y, various accurate bounds the
remainder can be obtained.

Nevertheless, for all the coming considerations, it is enough to consider the following
generic upper bound on the modulus of the asymptotic bias of the LPA estimate,

Mg, ) = TR lgamlly = ah®, (7)

and its variance

—_ 2 —_
05 @ = 0 h " gmlly = B°n (8)
The upper bound of the asymptotic risk is the ideal risk

T _ o 2 272 27 -2
Here b and 8 depend only on the kernel (variance of the estimate is not affected by the
estimated function), a depends on the uniform bound L, and « is influenced by the order

of the LPA (i.e. by the polynomial components of the remainder).



Ideal scale

The pointwise ideal scale h* = h* (x) is defined as the minimizer of lyh ()
h* = argmlnlyh(x),

and can be found by solving B
ahl?)h(x) = 0.

It gives B
ahl@h(w) =2a’ah?* ! — 2b2ﬂh72ﬂ71 =0,

1
b2 2a+28
. (B 2) .
aa

and the ideal scale h* as

18



Let us use this ideal scale into the bias and variance expressions (7) and (8). We obtaint?

5 2a 3 5 aﬁ
_ 2 _ 2 [ Bb? 228 o [ Bb% |t
m'gh,* (w) - a (aa2 ) =a aa? ’
_—=28 =B
o2 - 2 Bb% \ 2aF28 b2 8%\ «FB
Ogpr(z) = aa? - aa? )

Observe that the ratio between then upper bound of the squared bias and the variance at
the ideal scale h*,

M2 B
mgh*(z) . (522)a+5b Q(S_Zz)aw :agb_gﬁ_bzzﬁ _ 2 (10)
Tgn= (@) aam«

does not depend on a. It means that it does not depend on the local behaviour of the
function at x.

The upper bound of the risk at the ideal scale h*, so-called ideal risk, has the following
form:

2 2
lz}h*(w) = Jg}h*(:c) (1 + Y ) . (11)
Since the ratio m? /07 ) is a monotonically increasing function of h, we have that

L {<70 v Yh<h

M) ) > 20t VRS bt (12)

These inequalities, which turn into an equality only at h = h*, can be then used to test
the hypothesis h § h*.



Adaptive scale: Intersection of Confidence Intervals (ICI) rule 20

The ICI rule (Goldenshluger&Nemirovski, 1997) is a practical method that selects an
adaptive scale b (x) whose corresponding estimate Un+(z) is close to the ideal gy« (4)-
This is can be done without knowledge on smoothness of the signal, i.e. without knowing
L or a. Note that the ideal scale depends on these parameters:

2\ Tatzs
o ()7
aa



Intersection of Confidence Intervals (ICI) rule: the idea (sketch of the proof")‘l

Again, let = be a fixed estimation point and gy, () an LPA estimate at xz. The total
estimation error |y (x) — g (z)| can be bounded by the sum of the moduli of the bias error
My, (z) and the random error 74, oy = E{gn (z)} — Jn (v),

[y () = 9n (@)] < [mg, )| + |75 @) -

The random error ry, ;) is a normal-distributed random variable with variance o2

in ()
and zero mean, 7, ;) ~ N (O, O’;h (I)). The following inequality holds with probability
p=1-A
@) | < X1-a/200 @),
where X;_, /o is a (1 — A/2)-th quantile of the normal distribution A/ (0,1). Hence, with
same probability p,
ly (@) = 9 (@)] < | Mg, @) + X1-2/2050 ()

From the inequalities (12) we obtain, for h < h* (x),

[y (@) — 0n ()] < (v +X1-2/2)0g02) = T4, T'=(7+x1-2/2)- (13)
Equivalently, we can express the above inequality as

gn (@) —Tog, ) < y(@) < gn(@) +Tog,), A< (2),
determining a confidence interval D (h),
D (h) = [ (z) = Lo, (@) Gn (x) + Tog, @]



for the estimate g (z): for h < h*, with probability p, we have y (x) € D (h). Accordiﬁg
to (8), the width of the confidence intervals D (h) is a monotonically decreasing function
of h. We may say that the confidence intervals “shrink” as h increases.

Let H ={hy,...,hs}, h1 <--- < hy, be an increasing set of scales and the correspond-

1
variable with variance 02} ()" With some probability p’, all confidence intervals D (h;),
'

ing estimates {th (z) }j: . Each one of these estimates is a normal-distributed random

h; < h* (x) have a point in common, namely, y (z).

Let 5 be the largest of those j for which all D (h;) with i < j have a point in common.
Observe that h;+ > h*~ £ max {h; : hj < h*(z)}, i.e. all D (h;) with h; < h*~ have non-
empty intersection. This condition, together with the shrinking of the confidence intervals,
ensures that the estimate g+ (x) is within a certain range from the true signal y ().

Indeed, y (z) € (n,<n=-D (hy), hence |y () — G- (x)| < Loy, (r). Similarly, since
D(h*7)ND (k') # 2, [§n-— (x) — n+ ()] < Toy ,_(w) +Toy (o). Combining these, we
conclude that

ly () — g+ (z)] < 21—‘09;1*7(5”) + FO'?;th (@) < 3F0’2§/h*7(m)' (14)

Provided that the set of scales H is sufficiently rich, one has h*~ >~ h*, and thus oy, . (2) =~
04, (x)- 1t follows that the error of the adaptive estimate g+ is at most 3" times the ideal
deviation oy, (z)-



Intersection of confidence intervals (ICI) rule 23

D] j’lq A

bias®

The estimates g, (z) are calculated for a set H = {h;}7_, of increasing scales. The ICI rule
yields a pointwise adaptive estimate g+ (x), where for every z an adaptive scale h™ (z) € H
is used. We have that g+ () = §j+(s)(x), in practice one can think that h* (z) = h* (z).

The ICI rule is as follows: Consider the intersection of confidence intervals

j
T,=(\Di, where D;= [yh (2) — Loy, gn, (@) + Toy,
i=1
and T'>0 is a threshold parameter, and let j*+ be the largest of the indexes j for which I;
is non-empty, L+ #@ and L+, =@. Then, bt is defined as h"=h;+ and the adaptive
estimate is Jp+ ().



Pseudo-code of the ICI adaptive-scale selection algorithm

ht = h1 initialization of adaptive scale and of

Yp+ = th } / corresponding estimate and variance

U=dgn + FJth } / initialization of upper and

L =74, — Failhl lower bounds of intersection

forj=2,...,J / loop on j (scale index)
U = min{U, gn, + Foghj}
L =max{L,jn, — Loy, }
T=U2>L / test for non-empty intersection
ht = th + h+NOT(T) } /update adaptive scale and
Ut = Z)th + gp+NOT(T)

end / end loop on j (scale index)

/ update bounds of intersection

adaptive-scale estimate

24



ICI: choice of I' parameter

Adaptive scales and adaptive-scale estimates obtained for different values of I'. The
adaptive scales are represented using a darker shade of gray for the smaller scales, black
being the smallest scale (which corresponds to a Dirac-delta estimate), and white being

the maximum scale (corresponding to a kernel whose support is a disc of radius 35 pixels).



ICI: choice of T' parameter (continued) 26
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“MSE vs. I'” plots for three different images (0 = 25). The same kernels used for the
experiment shown in the previous figure are used.

The plots show that for the three images the best found values of I' are all close to
2, and that variations of +0.2 around these best found values do not affect the objective
quality of reconstruction. Therefore, with this family of kernels, I' = 2 can be used for all
the images achieving a performance close to the one achieved with an “oracle” T



Anisotropy: motivation 27

In some cases the geometry of symmetric kernels is not sufficient to adapt to the image
structure. Goal: adapt to the image using approximations of starshaped supports.



Anisotropic estimator based on directional adaptive-scale: idea 28

b) c)

Piecewise constant approximation of r* (f) and its representation by adaptive-size sectors.



Directional LPA 29

The window is characterized by a direction 6 and is denoted as wy.

The polynomials are expressed with respect to a #-rotated coordinate system:
M= {SO fp (ur,uz) = Zznj nguﬁujg} )
(u1,u2) = (v1 cosf + vy sin b, vy cos @ — vy sinf) = Uyo.

Typically, wg is obtained by rotating a “basic” window w = wq through an angle 6,
wy = w (Ugv). When also a scale parameter h is exploited, the resulting estimates and
kernels are denoted as wp, g, gn.0, respectively.



30

Directional LPA: examples of directional kernels

Figure 5: Function estimation directional LPA kernels, o = (0,0), obtained for m = (2, 1)
using the characteristic function of a conical sector as the window function wy. Kernels are
shown for three different direction 6; the absolute value of the kernels’ Fourier transforms
are shown in the bottom row of the Figure.



Anisotropic LPA-ICI 31

da ptive-scale
| directional window

For each specified direction 6;, the ICI rule is exploited in order to find the adaptive-scale
directional-LPA estimates Jp+(z.0,),0, (T)-



32

Anisotropic LPA-ICI: examples

A A A

Cheese and Cameraman (detail): adaptive anisotropic neighborhoods U obtained
through ICT using sectorial kernels.



Anisotropic LPA-ICI: kernel supports used in the practice

OX XX XYY XX X ]
XX )

[ XX ]
O XX XXX}
XX ]
[ XXX XXX ]

O XX X}

3 7 11

The supports of the discrete kernels g, 7/, hj =1,2,3,5,7,11. The origin pixel is
marked with a circle.

1 s 2 $ 3

@
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ing a darker shade of gray.

Smaller scales are represented us



Clockwise from top-left, the adaptive-scale estimates J,+(z.0,) () Va,

0p = 5,32 3% 7 38 Z Z 0, and, in the center, the fused anisotropic estimate §.



Anisotropic LPA-ICI: fusing 36

The adaptive-scale directional estimates g5+ (5,9,),0, (*) are “fused” into the final anisotropic
estimate 7 by the convex linear combination

glx) = Z A(, ei)thr(xG')G'(x)v
A(x’al) = Uyh+ 107),0; () /Z Uh+ %,05).05 ()’ (15)

where the inverse of the variance of the adaptlve estimates is used as the weighting factor.

O 0 #/4 =n/2 3n/4 =« 5r/4 3n/2 Tn/4 g

ISNR (dB) | 4.13 3.57 4.08 356 4.11 344 4.07 3.55 8.07
SNR (dB) | 18.52 17.96 18.47 17.95 1850 17.83 18.46 17.95 [ 22.46
MAE (%) | 10.67 11.55 10.80 11.59 10.69 11.70 10.82 11.58 6.44
RMSE (£2) | 15.90 16.95 16.00 16.98 15.93 17.21 16.01 16.98 || 10.10

MAX (€°) | 131.6 114.7 124.2 117.0 112.6 1425 1144 125.9 85.3

Criteria values for the denoising of the Cameraman image using 8 directional adaptive
estimates. The fused estimate is much better than each of the directional ones.




Anisotropic LPA-ICI: comparison with TI wavelets 37

Noisy image, not shown, o = 255/10. Clockwise from top-left: original image, anisotropic
LPA-ICI estimate, ISNR=8.1dB, translation-invariant (TT) Daubechies Db4 wavelets (or-
acle threshold), ISNR=7.4dB, TI Haar wavelets (oracle threshold), ISNR=7.8dB.



Fusing: why o727 38

1. for uniform kernels, the fused estimate is exactly the average of the signal over the
anisotropic adaptive neighborhood U (as shown in figure below);

2. assuming that the directional adaptive estimates are independent and unbiased, such
fusing is the maximum-likelihood estimate of y (x) given {Jn+(x,0,),0% (x)}szl

(1.) Uniform anisotropic kernel
The anisotropic estimate can also be obtained as the integration against the anisotropic
kernel g7 = >, M@, 0i)gn+(2,0,),0,> U(T) = J z(z —v) g} (v) dv. This is not a convolution.

-

Directional LPA (uniform w and m = 0) adaptive kernels gj+(5,9,),9, and the resulting
fused anisotropic kernel g




Fusing: why 0727 (2.) ML fusing 39

Let us assume that the directional adaptive estimates g5+ (4.,9,),0, (), K =1,..., K, are
independent and unbiased. This latter condition is generally never satisfied. However,
when combining multidirectional estimates, the choice of the I" parameter (in ICI) is such
that the resulting bias is much smaller than the variance. Independency is guaranteed if
the kernels supports are non-overlapping.

Distribution: §p+(z,0,),0, () ~ N (y (x) 7J§lz,+(z,ek),ek(x)) :

R 2
Loglikelihood L = 1nH(2m§)‘%e’ﬁ(y’ﬁ(lﬁk)’%(f”)*y“)) _

- z 2 (Gt w0000 (0) =y @) +n (2m) 2071,

2

2 A
where o3 (x) = Tt (e.01).00 (@)



ML fusing (continued) 40

Differentiating L with respect to y, we obtain
oL o
5y = 20k (I won, (0) —u (@)
k

By solving g—i = 0, we come to the fusing formula
Yy (:C) Z 0-122 = Z U};Qgh*(xﬂk),ek (:C) )
E E
—2

>k Ok 2 Oht (2,00).00 () o
y(x) = 5 = — U+ (2,00),05 (T) -
Zk O_kQ Zk: Zj G_j 2 k)Yk




Deconvolution (deblurring): observation model 41

We wish to recover an image y from blurred and noisy observations
z=(®@y)+on,
where v is the point-spread function (PSF') of the optical system. For simplicity, it is
assumed that the PSF is known and that the noise 7 is standard Gaussian.

In the frequency domain the observation equation has the form
Z =YV +on, (16)

where capital letters are used for the discrete Fourier transform of the corresponding
variables. We assume an orthonormal Fourier transform.



Deconvolution (deblurring): observation example

Original Cameraman image (left) and noisy blurred observation (9x9 boxcar v,
BSNR=40dB) (right)

42



Anisotropic LPA-ICI RI-RWI deconvolution algorithm: directional estimatés

The considered technique is based on the following regularized inversion (RI) and reg-
ularized Wiener inversion (RWI) algorithms, using the directional-LPA kernels g, g,

~ RI VGh’g

Yio, = —|V|2 n 2% Z, (RI), (17)
~ RWI 7|Y|2Gh 0

Y, = ——k7 RWI 18
h,0} |VY|2 +E§O’2 ) ( )’ ( )

where €1,e2 > 0 are regularization parameters. Equivalently, using the standard convolu-
tions in space domain:

_RI - VZz

Ung, = F 1<|‘/2—+E%)®gh,9k’ (RI),
RWI _ V|Y‘QZ

i = 7 (rmias) sne w0

The final estimate of y is given as an anisotropic RWI estimate which uses an anisotropic
RI estimate as the reference signal Y in (18). Thus, we arrive to a two steps procedure
(see figure in the next slide).



Anisotropic LPA-ICI RI-RWI deconvolution algorithm: flowchart 44

L e e ) N
RI X ICI > >
&
RWI—— ICI e I e
z {y h Qk}h hl {y +0k} ¥

.....

(1) Estimates {§;’y, then are calculated according to (17) for a set of scales H and ICI
selects the best scales for each direction and for each pixel. In this way, we obtain the direc-
tional adaptive-scale estimates g;;(m 00),0%" k=1,..., K, which are fused into anisotropic

§8 according to (15) (i.e., inverse variances).

(2) The g*’ serves as the reference signal in the RWI procedure. The adaptive RWI
algorithm is similar and gives the ICI adaptive varying scales estimates Qgﬁ’(r 01),01 for
each direction and x. Then, the final estimate §#" is obtained by fusing these directional
ones again according to (15).



Anisotropic LPA-ICI RI-RWI deconvolution algorithm: ICI 45

ICI rule requires the standard deviations of the individual varying scale directional
estimates {§;'y, tren and {;'y tren. These standard deviations can be easily calculated

by the l2—n0rm of the frequency response of the corresponding filters:

oo _ VG, VGho,
Yh,64 |V|2 + 51 )
V|Y|2Gh 0
O 5RWI ——5 =
yh 05 _|_ & 0-2
Fusing: RI

gt (z) = Z X”( )yh+(x 1), gk( ),
N (@) = o 2 (2) /30,00 (),

RI—2
o2 (2) =1/02 ﬂ(w)g(x).

Fusing of RWI estimates QZX‘(’z 00),0% is analogous.



Anisotropic LPA-ICI RI-RWI deconvolution algorithm: result 46

L WL n

Anisotropic RWI estimate "' (final restored image), ISNR=8.23dB (left) and adap-
tive scales scales h™(-,7/4) (right). Smaller scales are darker. The ICI adaptive scales
h* (-, 0y) represent the distribution of image features across the direction 6.



Derivative estimation from noisy blurred observations 47

Let us replace in the RWI stage of the algorithm (18) the function estimation (smooth-
ing) kernels by the derivative-estimation kernels. Then, the ICT output QZK{ 0, is the esti-
mate of the directional right-hand derivative 0,9, y. The figure shows the diagonal deriva-
tive estimate 592 calculated for § = 7/4 as the mean of the two one-sided directional

derivatives with 0y = /4 and 05 = 65 + 7 = 51 /4, Dp, = (G5, — ntp,)/2-



Edge detection from noisy blurred observations 48

Further, for the edge detection, we calculate the sum of the absolute values of the
. . . . . 4 A
directional derivative estimates »_, _; [g,|-



PART 2

49



Pointwise Shape-Adaptive DCT filters: idea and motivation 50

“ Use the adaptive neighborhoods U;‘ defined by the

Anisotropic LPA-ICI as supports for some transform. 7

By demanding the local fit of a polynomial model, we are able to avoid the presence
of singularities or discontinuities within the transform support. In this way, we ensure
that data are represented sparsely in the transform domain, significantly improving the
effectiveness of shrinkage (e.g., thresholding).
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Figure 6: From left to right: a detail of the noisy Cameraman showing an adaptive-shape
neighborhood U, determined by the Anisotropic LPA-ICI procedure, and the image inten-
sity corresponding to this region before and after hard-thresholding in SA-DCT domain.



Shape-Adaptlv

@

DCTo
DCTy
DCT7
DCTg
DCT3

Spatial domain

S

DCT5
DCT,

DCTy

DCT3

DCTo

DCTo

DCTY

SA-DCT
Verse SA-DCT

Dlscrete Cosine Transform (SA-DCT) (Sikora et al., 1995) o1

o —— IDCT3

%)
Z{>
o
®)
-3
Q
S
Q
=

IDCT5 s

IDCT5

IDCTy

IDCT3g

IDCTo

IDCTo

IDCT]

Transformation

Shape-Adaptive Discrete Cosine Transform (SA-DCT) and its inverse.
is computed by cascaded application of one-dimensional varying-length DCT transforms,
along the columns and along the rows.



Shape-Adaptive Discrete Cosine Transform (SA-DCT)

direct generalization of the classical block-DCT (B-DCT);

on rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
the same computational complexity as the B-DCT (separable);

SA-DCT is part of the MPEG-4 standard;

efficient (low-power) hardware implementations available;

shape must be coded separately (constitutes some overhead);
before 2005, it had been used only for image and video compression.
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Orthonormal SA-DCT 53

The orthonormalization of the SA-DCT is obtained by normalization of the individual one-
dimensional transforms that are used for transforming the columns and rows. In terms of
their basis elements, they are defined as:

Yo T(n) = Cmcos(w» m,n=0,...,L—1, (19)

co = 1/L, ¢y =+/2/L, m>0. (20)

Here L stands for the length of the column or row to be transformed. A different normal-
ization of the 1D transforms would produce, on an arbitrary shape, a 2D transform that
is non-orthogonal.

Notation

We denote by Ty : U — Vy the orthonormal SA-DCT transform obtained for a region
UC X, whereld = {f :U — R} and Vy = {p : Viy — R} are function spaces and Vi; C Z?
indicates the domain of the transform coeflicients. Let T}, L. Vy — U be the inverse
transform of Ty. We indicate the thresholding (or quantization) operator as Y. Thus,
the SA-DCT-domain processing of the observations z on a region U can be written as
o = T (Y (Tis () G+ U — .



54

Hard-thresholding in SA-DCT domain: DC separation

mean subtraction SA-DCT

inverse SA-DCT

mean addition
The image data on an arbitrarily shaped region is subtracted of its mean. The zero-mean
data is then transformed and thresholded. After inverse transformation, the mean is added
back.

(Orthonormal SA-DCT with DC separation and ADC compensation, Kauff et al. 1997)



Pointwise SA-DCT: fast implementation of anisotropic neighborhood Uj 55

adaptive amsotroplc neighborhood
\ adaptlve -scale kernel support

Figure 7: “Linewise” one-dimensional directional LPA kernels are used for 8 directions.
The anisotropic neighborhood U is constructed as the polygonal hull of the adaptive-
scale kernels’ supports (left). Thus, only the adaptive scales h™ are needed to construct
the neighborhood. Some examples of the anisotropic neighborhoods U'j used for SA-DCT
filtering of the noisy Cameraman image (right), 0=25. In our implementation we use
he H={1,2,3,57,9}.



Pointwise SA-DCT: local estimates (hard-thresholding) 56

For every point 2 € X, we take the anisotropic neighborhood ﬁ;‘ and construct a local
estimate Jg+ : U} — R of the signal y by thresholding in SA-DCT domain
Jor =Tt (Ya (#20)) +mg (2), (21)
where the transform-domain coefﬁments ¢, Vg+ — R are calculated as
P = T (Z\U;r — M+ (Z)) ; (22)
and Y, is a hard-thresholding operator based on the threshold

o\/2In|Uf |+ 1. (23)

This threshold is essentially Donoho’s “universal” threshold.

Overcompleteness

Anisotropic neighborhoods corresponding to nearby points are usually overlapping, and
since the SA-DCT is a complete system (basis) for an individual support U, the overall
approach is obviously overcomplete. As a consequence, different local estimates ?Uﬁ and

Y+ do not coincide where they overlap (i.e., on U N U;?,)



Pointwise SA-DCT: global estimate as aggregation of local estimates 57

In order to obtain a single global estimate j : X — R defined on the whole image domain,
all the local estimates (21) are averaged together using adaptive weights w, € R in the
following convex combination:

X S eex Wadp+™
g = =, (24)
> vex WaXgt
-2
w, = — 2 (25)

(1+ Nkan) | U]
where N2 is the number of non-zero coefficients after thresholding (so-called “number of
harmonics”).

Here, o (1 + N}c‘ar) is an estimate of the total sample variance of g+, given as sum of
xT
variances of the transform coefficients which are used for reconstruction.

These weights favour estimates which correspond to sparser representations.



Pointwise SA-DCT: local estimates (Wiener filtering) 58

Using the same approach as for thresholding, we introduce an empirical Wiener filter in
the SA-DCT domain. It assumes that an estimate ¢ of y is known. In practice, we obtain
this estimate using the above hard-thresholding technique.

For every x € X, let ¢ , : Viz+ — R be the SA-DCT (on U;) coefficients of § where
the mean mg+ (2 (2) of z is subtracted before applying the transform:

Py =Tt (?m — Mgt (Z)) : (26)
The local Wiener estimate y;‘]L is defined as
Q}% = T[ﬁ (wap, o) + wemg+ (2), (27)

where the SA-DCT coefficients ¢, , of z are calculated as in (22), and w, € Vg+ and
w, € R are respectively the Wiener attenuation factors for ¢, . and for the subtracted
mean value mg+ (2),

— Wy = —5 VI (28)
Poto w2 (5) + o2/ 03]

Wy =



Pointwise SA-DCT: global estimate as aggregation of local Wiener estimate¥

The global estimate §™' can be obtained analogously as in (24), using the convex combina-
tion with the adaptive weights w}':

e WX
erX U}gi){ﬁ:— ,

o2

RS S

Awi

Again, the term o?(w? +y,  w?) in the adaptive weights corresponds to an estimate of
Uz

the total sample variance of QWU;*



Pointwise SA-DCT: aggregation in action, an illustration 60

- individual estimates

09 — observations

== aggregated estimate

— true signal

L L L L L L L L L L L \ L L L L L L L L |
140 150 160 170

Details of a cross-section of length 31 pixels from the Peppers image (6=25): the dots show
all the individual estimates which are aggregated in order to obtained the final estimates
at each position. For each pixel there are about 200 individual estimates.



Pointwise SA-DCT: denoising results 61

A fragment of Lena: original, noisy observation (0=25, PSNR=20.18dB), BLS-GSM es-
timate (Portilla et al.) (PSNR=31.69dB), and the proposed Pointwise SA-DCT estimate
(PSNR=31.66).
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Pointwise SA-DCT: denoising results

A fragment of Cameraman: noisy observation (0=25, PSNR=20.14dB), BLS-GSM esti-
mate (Portilla et al.) (PSNR=28.35dB), and the proposed Pointwise SA-DCT estimate
(PSNR=29.11dB).



JPEG

Pointwise SA-DCT: deblocking results
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Pointwise SA-DCT: extension to color, motivation 64

color transformation

u
Luminance-chrominance decompositions: “structural correlation”

Thus, separate denoising of the three channels (even luminance-chrominance channels) is
often inadequate, and obviously far from optimal.



Pointwise SA-DCT: structural contraint in luminance-chrominance space 65

Use for all three channels the adaptive neighborhoods defined by the anisotropic LPA-ICI
for the luminance channel.



Pointwise SA-DCT: deblocking results 66

Fragments of the JPEG-compressed (=10, 0.25bpp, PSNR=26.87dB), and restored F-16
color image (PSNR=28.30dB) using the proposed Pointwise SA-DCT deblocking filter in
luminance-chrominance space.
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Pointwise SA-DCT: denoising results

Fragments of the noisy F-16 (0=30, PSNR=18.59dB), of ProbShrink-MB (Pizurica et al.)
estimate (PSNR=30.50dB), and of Pointwise SA-DCT estimate (PSNR=31.59dB).



Pointwise SA-DCT: block-DCT vs. shape-adaptive DCT

How important is the shape-adaptive transform?
Let us replace SA-DCT with square block-DCT with fixed or adaptive block-size.

“Straight” step “Diagonal” step

Original
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Pointwise SA-DCT  Adaptive-size B-DCT  Fixed B-DCT 16x16
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“Shape-Adapted” transforms: Gram-Schmidt orthonormalization 70

e Proposed by Gilge (1989): “shape-adapted” DCT or “shape-adapted” polynomials

e Better decorrelating performance than basic SA-DCT of Sikora (1995)

Slighly better than o.n. SA-DCT with DC separation of Kauff (1997)

e Computationally very demanding (requires orthonormalization, is not separable, im-
plemented as matrix multiplication)

e Not obvious what to do: elements are linearly dependent, which to discard (prune),
how to order? (excellent study by W. Philips, 1993)

Procedure

Start with a conventional basis (e.g., DCT basis) defined on a rectangular superset of the
arbitrary-shape domain of interest.

Restrict the basis elements on the domain of interest (drop samples outside domain).
Sort basis elements (e.g., zig-zag).

Prune restricted basis to remove linearly dependent elements.

Orthonormalize. E.g., Gram-Schmidt @ R-decomposition: the starting basis, after re-
striction and pruning, is represented as a matrix A whose column vectors are the individual
elements (vectorized, e.g., by raster scan of the support) and @ and R are, respectively,
an orthogonal and an upper-triangular matrix, such that QR = A. Depending on the
particular basis, there may exist faster orthonormalization procedures than G.-S. (e.g., for
polynomials see W. Philips, 1997).



Examples and comparison of basis elements

71

We compare the SA-DCT basis elements with the basis elements of the “shape-adapted”

DCT and “shape-adapted” polynomials.

Six different supports, each of which is a subset of the 9 x 9 square. The coordinates within
the 9 x 9 square support are denoted as (n1,ns2), ni,ns = 0,...,8. Thus, the centre will

have coordinates (4,4).



Arrangement of the figures (rows) 72

For each shape, the figures of the basis elements are arranged as in a long horizontal table
(spanning four pages), where the rows are organized as follows:

| indicators (in transform domain) |

polynomial generators
cosine (DCT) generators

shape-adapted polynomials
shape-adapted DCT
shape-adaptive DCT (SA-DCT)




Arrangement of the figures (columns) &

In each column, the SA-DCT basis element is obtained by applying the inverse SA-DCT
on the indicator. Whereas for the “shape-adapted” bases, the indicator coincides with that
of the last generator used in the linear combination that yields the orthonormalized basis
element. In accordance with the “zig-zag” order, these generators are arranged column by
column in the following manner (for polynomials and DCT) (next page):

113/5/8 12
26104/
4]9]15¢/

7 135
1M+




Polynomial and cosine generators (sorted according to zig-zag order)

np —4 ng — 4
Cos (%) cos (%)
(n1 —4)° (ng — 4)°
cos (2”(2{;1“)) cos (%(2{18#1))
(ng —4) (ng —4) (ny — 4)

[ 37(2na+1)
COS (718 )

(nl - 4)2 (TLQ — 4)

[ 27 (2n1+1)  w(2n2+1)
cos (718 ) cos (718
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Alternative approach: eigenfunctions of the Laplacian 87

N. Saito, “Data analysis and representation on a general domain using eigenfunctions of
Laplacian”, submitted to Applied and Computational Harmonic Analysis, 27 August 2007
(available online at http://math.ucdavis.edu/"saito/publications/lapeig.html)
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Non-local approach 87

Idea: replace conventional local neighborhoods with data-driven non-local estimation
domains, where the mutual similarity between different local regions determines the
weights or the shape of the non-local domain.

- Non-local means (Buades+Coll+Morel, 2005)
- Patch-based (Kervrann+Boulanger, 2006)

- Grouping and collaborative filtering (Dabov+Foi+Katkovnik+Egiazarian, 2006)

A simple example of grouping in an artificial image, where for each reference block (with
thick borders), there exist perfectly matching ones, pointed to by corresponding arrows.



Grouping

Illustration of grouping blocks from noisy natural images corrupted by white Gaussian
noise with =15 and zero mean. Each fragment shows a reference block marked with “R”
and a few of its matched ones.




Block-Matching 3D filtering (BM3D) algorithm 89

Noisy Step 1 _«Basic estimate Step 2
image ' i ] .
z > i ! b Final
Block-wise estimates == Aggregation =g Block-wise estimates ==» Aggregation = Wicner
t I 1 s ' estimate
Inverse 3D transform 1 Inverse 3D transform '
. Grouping by 1 v
I

Grouping by
1710(5k'Y“?}‘¢]\|'\£§ Hard-thresholding - - - - —— -~ | hlocl‘f?m;}!ﬁ]lmg Wiener filtering -------- 3

v t Weight ‘ "gﬁ t t
i g = 3D transform g_’ 3D transform

Flowchart of the BM3D algorithm

Weight

> Process overlapping blocks in a raster scan. For each such block, do the following:

1. (a) Use block-matching to find the locations of the blocks that are similar to the cur-
rently processed one. Form a 3D array (group) by stacking the blocks located at
the obtained locations.

(b) Apply a 3D transform on the formed group.
(¢) Attenuate the noise by shrinkage the 3D transform spectrum.
(d) invert the 3D transform to produce filtered grouped blocks.

> Return the filtered blocks to their original locations in the image domain and compute

the resultant filtered image by a weighted average of these filtered blocks (aggregation).



Block-Matching 3D filtering (BM3D) algorithm 90

Collaborative filtering on the group is realized as shrinkage in 3D transform-domain.

The algorithm structure is similar to Pointwise SA-DCT:

— uses overcomplete local estimates aggregation;

— two-stage scheme with hard-thresholding/empirical Wiener filtering.
It is fast:

— uses predictive-search for block-matching;

— uses separable wavelets for the 3D transform (Haar/biorthogonal);

— scalable (controlling the level of overcompleteness and predictive-search).

e Extensions to color image denoising, video denoising, as well as to joint sharpening and
denoising have been reported.

To the best of our knowledge, it is currently the best performing denoising algorithm.

(Matlab software is publicly available)



(

(c) Man (PSNR 29.62 dB) (d) Boats (PSNR 29.91 dB) (f) Couple (PSNR 29.72 dB)
BM3D denoising algorithm: fragments of noisy (0=25) and denoised test images.




Publications, software, examples: 92

http://www.cs.tut.fi/"lasip (LPA-ICI)
http://www.cs.tut.fi/"foi/SA-DCT
http://www.cs.tut.fi/"foi/GCF-BM3D
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