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ABSTRACT
A spatially adaptive restoration of a multivariable anisotropic func-
tion given by uniformly sampled noisy data is considered. The pre-
sentation is given in terms of image processing as it allows a con-
venient and transparent motivation of basic ideas as well as a good
illustration of results. To deal with the anisotropy discrete direc-
tional kernel estimates equipped with varying scale parameters are
exploited. The local polynomial approximation (LPA) technique is
modiÞed for a design of these kernels with a desirable polynomial
smoothness. The nonlinearity of the method is incorporated by an
intersection of conÞdence intervals (IC I ) rule exploited in order to
obtain adaptive varying scales of the kernel estimates for each di-
rection. In this way we obtain the pointwise varying scale algorithm
which is spatially adaptive to unknown smoothness and anisotropy
of the function in question. Simulation experiments conÞrm the ad-
vanced performance of the new algorithms.

1. INTRODUCTION

Points, lines, edges, textures are present in all images. They are
locally deÞned by position, orientation and scale. Often being of
small size these speciÞc features encode a great proportion of in-
formation contained in images. To deal with these features ori-
ented/directional Þlters are used in many vision and image process-
ing tasks, such as edge detection, texture and motion analysis, etc.

The key question is, how to design a kernel for a speciÞed di-
rection. A good initial idea arises from a deÞnition of the right-
hand directional derivative for the direction deÞned by the angle θ ,
∂+θ y(x) = limρ→0+ (y(x1+ρ cosθ, x2+ρ sinθ)− y(x1,x2))/ρ.
Whenever y is a differentiable function, elementary calculations
give the well known result

∂+θ y(x)= ∂θ y(x)= cosθ ·∂x1 y(x)+ sinθ ·∂x2 y(x). (1)
Thus, in order to Þnd the derivative for any direction θ it sufÞces
to estimate the two derivatives on x1 and x2 only. This concept has
been exploited and generalized by the so-called steerable Þlters [4].

Although continuous models of the discrete image intensity are
widely used in image processing, estimates such as (1) are too rough
in order to be useful for those applications where the sharpness and
details are of Þrst priority. For discrete images lacking global differ-
entiability or continuity the only reliable way to obtain an accurate
directional anisotropic information is to calculate variations of y in
the desired direction θ and, say, to estimate the directional deriva-
tive by the Þnite difference counterpart of ∂+θ y(x). In more general
terms this means that the estimation or image analysis should be
based on directional kernels, templates or atoms which are quite
narrow and concentrated in desirable directions. Since points, lines,
edges and textures can exist at all possible positions, orientations
and scales one would like to use families of Þlters that can be tuned
to all orientations, scales and positions.

Recent development shows an impressive success of methods
for this sort of directional image/multivariable signal processing. In
particular, narrow multidirectional items are the building blocks of
the new ridgelet and curvelet transforms [14].

The nonparametric regression originated in mathematical statis-
tics offers an original approach to signal processing problems (e.g.
[5], [2], [6]). It basically results in kernel Þltering with the kernels

designed using some moving window local approximations. Adap-
tive versions of these algorithms are able to produce efÞcient Þl-
tering with the varying window size (scale, bandwidth) which is
pointwise adaptive (see [11], [13] and references therein). This
pointwise adaptive scale selection is based on the following idea
known as Lepski�s approach. The algorithm searches for a largest
local vicinity of the point of estimation where the estimate Þts well
to the data. The estimates ŷh(x) are calculated for a set of window
sizes (scales) h ∈ H and compared. The adaptive scale is deÞned
as the largest of those windows in the grid which estimate does not
differ signiÞcantly from the estimators corresponding to the smaller
window sizes. The intersection of conÞdence intervals (IC I ) rule
[7] being one of the versions of this approach has appeared to be
quite efÞcient for the adaptive scale image restoration [8], [9].

Cited above papers on the adaptive scale kernel estimation
concern a scalar scale parameter and assume that the estimators
can be ordered by their variances. Vector scale parameter ker-
nels in d-dimensional space, x,h ∈ Rd , are of special interest for
anisotropic function with highly varying properties at different di-
rections. Imaging is one of the typical examples of such problems.

A direct generalization of the Lepski�s approach to adaptive
smoothing with a vector scale parameter h ∈ Rd faces a princi-
pal obstacle as the variance of the estimates calculated for different
h ∈ Rd cannot be ordered and can be only semi-ordered as there
could be many estimators with the same or similar variance [13].

The Þrst algorithm and analysis results concerning the multi-
variable scale adaptive kernel algorithms have been reported in [10].
This work is concentrated on theoretical aspects of the problem and
is formulated in continuous variables. It is shown, in particular, that
a new proposed adaptive algorithm is able to exactly attain the min-
imax rate for a large class of anisotropic Besov spaces. The multi-
dimensional kernel gh(x) used in [10] is deÞned as a product of the
corresponding univariate ones, (di=1gi (xi/hi ). This poses a basic
limitation of the approach as the neighborhood used for estimation
can only be scaled along the components of x .

Similar to [10] the main intention of the new approach intro-
duced in the present paper is to obtain in a data-driven way a largest
local vicinity of the estimation point in which the underlying model
Þt the data. We assume that this vicinity is a star-shaped set, which
can be approximated by some sectorial segmentation with say K
non-overlapping sectors. We use special directional kernels with
supports embedded in these sectors. The kernels are equipped with
univariate scale parameters deÞning the size of the supports in the
sector. The IC I rule is exploited K times, once for each sector, in
order to Þnd the optimal pointwise adaptive scales for each sector�s
estimates which are then combined into the Þnal one. In this way,
we reduce the d-dimensional scale selection problem to a multiple
univariate one.

Contribution of this paper can be summarized as follows. A
new approach to multidimensional scale selection is proposed for
a wide class of kernel estimators. The local polynomial approx-
imation technique is modiÞed for a design of discrete directional
kernels of desirable polynomial smoothness. Fast adaptive scale se-
lection algorithms are developed for image processing including the
following problems: denoising, deblurring, edge detection. Simu-
lation experiments conÞrm advanced performance of the new algo-



rithms. Overall these results can be considered as a further devel-
opment of the algorithms studied in [8], [9].

2. MOTIVATION AND IDEA

Introduce a covering of the unit sphere ∂Bd = {x ∈ Rd : )x) = 1}
with a Þnite family {Dθ i }i=1,...,K of non-overlapping contractible
bodies (in the sphere topology) Dθ i ⊂ ∂Bd whose baricenters have
spherical angular components θ i . For any given h ∈ R+, Shθ i =!
0≤α≤h αDθ i are then the corresponding positive cones constitut-

ing an alike covering of the ball hBd ={x ∈ Rd : )x) ≤ h} with an-
gular sectors having their vertex in the origin and oriented as θ i . Let
gh,θ i be a compactly supported kernel such that suppgh,θ i = Shθ i
for all values of the scalar scale parameter h. Then, the introduced
directional estimator has the following generic form

ŷ(x)=
"

i λ(θ i )ŷh,θ i (x), ŷh,θ i (x)= (gh,θ i ~ z)(x), (2)

where λ(θ i )≥ 0,
#
i λ(θ i )= 1, and the directional kernel gh,θ i (x)

satisÞes vanishing moment conditions
(gh,θ i~1)(0)= 1, (gh,θ i~xt )(0)= 0, 0≤ t≤m, |t | /=0.

Here and in what follows a compact multi-index notation is used. A
multi-index t is a d-tuple t of nonnegative integers t j , j = 1, ...,d,
t = (t1, ..., td ), where t j ≥ 0 and |t | is used to denote the length#d
j=1 t j . Then xt = xt11 · . . . · xtdd for x ∈ Rd , and 0≤ t ≤m means

0≤ t j ≤m j , j = 1, ...,d. Although in applications and illustrations
we discuss imaging and assume d = 2, the kernel design procedure
considered later is quite general and will be given in a form appli-
cable for d-dimensional signals.

The ŷh,θ i (x) in (2) is the estimate of y(x) using the observa-
tions from the sector Shθ i . Optimization of h for each of the sector
estimates gives the adaptive scales h∗(θ i ) depending on θ i . The
union of the supports of gh∗(θ i ),θ i ,

!
i suppgh∗(θ i ),θ i , can be there-

fore considered as an approximation of the best local vicinity of x
in which the estimation model Þt the data.

Figure 1 illustrates this concept and shows sequentially: a lo-
cal best estimation neighborhood U∗, a sectorial segmentation of
the unit ball, and the sectorial approximation ofU∗ using the adap-
tive scales h∗(θ i ) deÞning the length of the corresponding sectors.
Varying size sectors enable one to get a good approximation of
any neighborhood of the estimation point x provided that it is star-
shaped body.

Formula (2) makes clear our basic intentions. We introduce the
directional estimates ŷh,θ i (x), optimize the scalar scale parameter
for each of the directions (sectors) and fuse these directional esti-
mates in the Þnal one ŷ(x) using the weights λ(θ i ). Two points
are of the importance here. First, we are able to Þnd good approx-
imations of estimation supports which can be of a complex form.
Second, this approximation is composed from the univariate scale
optimizations on h, thus the complexity is proportional to the num-
ber of sectors. What follows mainly concerns applied aspects of the
approach and includes:
• Design of the discrete directional kernels gh,θ ;
• Application of the IC I rule for the adaptive varying scale se-
lection for each direction;

• Fusing of the directional estimates into the Þnal one using the
data-driven weights λ(θ i );

• Application examples proving a good performance of the pre-
sented technique.

3. DIRECTIONAL LPA KERNEL DESIGN
Let us start from the LPA technique. Introduce linearly indepen-
dent d-dimensional polynomials xk/k! = xk11 /k1! · . . . · xkdd /kd !,
k1 = 0, . . . ,m1, . . . , kd = 0, ...,md ,

#
i ki ≤maxi (mi ). The vec-

tor φ(x) is composed from these polynomials starting from the
zero order term x0/0! = 1. The observations z are given on the

Figure 1: A neighborhood of the estimation point x : a) the best
estimation set U∗, b) the unit ball segmentation, c) sectorial ap-
proximation of U∗.

d-dimensional grid {x̃} and the estimates are needed for a de-
sired x . The weighted least square criterion Jh(C) =

#
x̃ wh(x −

x̃)(z(x̃)− ȳh(x− x̃))2 is commonly used for design of the nonpara-
metric regression estimates [5], [6], [2]. Here ȳh(x) = CT φh(x),
φh(x) = φ(x/h), h = (h1, . . . ,hd ) ∈ Rd is a vector scale parame-
ter, w is a window function used for localization of the estimates
and wh(x) = w(x/h), where x/h = x1/h1 · ... · xd/hd . Thus, we
produce a Þt of the observations z by the model CT φh(x) with un-
known C .

According to the idea of the LPA the minimizing Jh(C) on
C, gives Ĉ . Then, the estimates ŷ(r)h (x) of the function y and its
derivatives ∂(r)y(x), r = (r1, ...,rd ), are in the form

ŷ(r)h (x)= ĈT φ(r)(0)(−1)|r |/hr , φ(r) = ∂(r)φ,
where the estimate of the function corresponds to r = 0. Assuming
that the grids {x̃} and {x} are regular, identical and unrestricted,
these estimates can be given in the convolution form (e.g. [8], [9])

ŷ(r)h (x)= (z~ g(r)h )(x), (3)

g(r)h (x)= (−1)|r |h−rwh(x)φTh (x).−1h φ(r)(0),

.h =
"

x wh(x)φh(x)φ
T
h (x).

Conventionally the estimation kernels g(r)h have simple form
supports (square, discs, etc.), symmetric with respect to the origin
and/or the coordinate axes.

The directional version of the LPA method comprises three in-
dependent steps. First, the design of the basic window wh oriented
in the basic direction θ0 = 0. The support of the window is Þnite,
non-symmetric, elongated and well oriented in the basic direction
θ0. Second, the rotation of the window wh to the direction θ . Let
U(θ) be a matrix of the rotation operator and u = U(θ)x be new
rotated variables. Then the rotated window deÞned on the grid on
the original variable x is given as wh(U(θ)x). Third, the standard
LPA procedure is applied using the polynomials in the rotated vari-
ables u with the weights wh(u). Finally, the LPA kernel directed
to θ has the form

g(r)h,θ (u)= (−1)|r |h−rwh(u)φTh (u)x).−1h φ(r)(0), (4)

.h =
"

uwh(u)φh(u)φ
T
h (u), u =U(θ)x .

What differs this procedure from any attempt to interpolate the
kernels (3) to the desirable directions is that the directional LPA (4)
preserves the normalization and the polynomial smoothness of the
kernels (vanishing moment conditions) as well as the directionality
of the kernel support.

Let G(r)h,0 be the frequency characteristic of the basic kernel

g(r)h,0, then it can be shown that the frequency characteristic G
(r)
h,θ (ω)

of the directed LPA kernel is such that G(r)h,θ (ω)4 G(r)h,0(U (θ)ω).
It is an approximate equality as the rotation ofwh makes the grid of
the rotated kernel irregular in the new coordinate system.

This technique allows to design the estimates for smoothing and
differentiation which are important on their own and can be used in
many applications. They have a number of valuable beneÞts:
• Unlike many other transforms which start from the continuous
domain and then discretized, this technique works directly in



Figure 2: Directional smoothing (function estimation) kernel (a)
and differentiating kernel (b) obtained by the directional LPA de-
sign with m = [0,0] and m = [1,0] respectively.

the multidimensional discrete domain;
• The designed kernel are truly multivariable, non-separable and
anisotropic with arbitrary orientation, width and length;

• The desirable smoothness of the kernel along and across the
main direction is enabled by the corresponding vanishing mo-
ment conditions;

• The kernel support can be ßexibly shaped to any desirable ge-
ometry in order to capture geometrical structural and pictorial
information. In this way a special design can be done for com-
plex form objects and speciÞc applications;

• The smoothing and corresponding differentiating directional
kernels can be designed.

4. ADAPTIVE ALGORITHM

In general, the scaling vector h controls the size as well as the shape
of the kernel in (4). Consider d = 2 and let u1 be the axis directed
along the radius of partition sectors in Figure 1. Then, h1 and h2
(the last is a scale along the axis u2 perpendicular to u1) deÞne the
length and the width of the kernel. It has been proved byminimizing
the pointwise mean squared error on h1 and h2 that the following
anisotropic scaling law holds between the optimal length and width,

h1 ∝ h(m2+1)/(m1+1)2 , (5)
where m1 and m2 are the orders of the polynomials in the LPA on
u1 and u2, respectively. Then, assuming that h2(h1) we can treat
h as a vector function h (h1) of the unique scale parameter h1 and
implement the algorithm using a univariate scale parameter for each
sector as in (2). Results similar to (5) can be obtained also for d > 2.
Then, we can assume h j = h j (h1) for j ≥ 2 and apply univariate
scale estimates for a general multivariable case.

Note that provided natural assumptions thatm2 = 0 andm1 = 1
the formula (5) gives the scaling lawwidth∝length2 exploited in the
curvelet transform [14].

The univariate scale makes possible to apply the IC I rule [7],
[8], [9] for pointwise data driven selection of its values for each of
the estimates ŷh,θ i (x) in (2), i.e. for each direction θ i and for each
x . It gives the adaptive scales h∗(x,θ i ) which shapes the adaptive
estimation neighborhood

!
i suppgh∗(x,θ i ),θ i . In this way we arrive

to the spatially adaptive varying scale estimation.
Let ŷh∗(x,θ i ),θ i (x) be the adaptive estimate and σ

2
i (x) be the

variance of this estimate, then all these directional estimates can be
fused according to (2) in the Þnal one as follows [8], [9]

ŷ(x)=
"

iλ(θ i )ŷh∗(x,θ i ),θ i(x), λ(θ i )=σ−2i (x)/
"

jσ
−2
j (x). (6)

We use a linear fusing of the estimates with the inverse variances of
the estimates as the weights. Note that the weights λ(θ i ) in (6) are
data-driven adaptive as σ−2i (x) depend on the adaptive h∗(x,θ i ).

Concerning the algorithm complexity we note that the algo-
rithm is fast as based on the fast convolution operations. The cal-
culation of the estimate ŷh j ,θ i for a given scale h j is a linear con-
volution requiring Nconv ∼ n logn where n is the size of the signal.
This procedure is repeated J ·K times, where K is a number of the
sectors in the estimator and J is the number of the used scales h j .

Figure 3: Directional LPA-IC I regularized Wiener inverse algo-
rithm. In the Þrst line of the ßowchart the RI estimates are calcu-
lated for a set of scales and directions, the IC I is used to obtain
the pointwise optimal scale directional estimates that are then fused
into the ŷ RIh∗ estimate. In the second line the RW I estimates are
calculated using ŷ RIh∗ as a reference signal in Wiener Þltering, again
IC I and fusing are performed to obtain the Þnal ŷ RW Ih∗ estimate.

5. APPLICATIONS

To illustrate the improved performance arising from the proposed
directional kernels and adaptive varying scale selection we present
here some results for deblurring and edge detection.

5.1 Adaptive deblurring algorithm
We wish to recover an image y from noisy observations z =
(v~ y)+ ση, where v is the point spread function (PSF) of the
blurring system. It is assumed that the PSF is known and that the
noise η is standard gaussian. In the frequency domain the observa-
tion equation has the form Z( f ) = Y ( f )V ( f )+ση( f ), where f
is the frequency and capital letters are used for the discrete Fourier
transform of the corresponding variables. The considered technique
is based on the following regularized inversion (RI ) and regularized
Wiener inversion (RW I ) algorithms, using the directional LPA
kernels gh,θ [9]:

Ŷ
RI
h,θ ( f )=

V (− f )Gh,θ ( f )
|V ( f )|2+ε21

Z( f ), (RI ), (7)

Ŷ
RW I
h,θ ( f )=

V (− f )|Y ( f )|2Gh,θ ( f )
|V ( f )Y ( f )|2+ε22 σ2

Z( f ), (RW I ). (8)

The estimate of y is given by the RW I deconvolution scheme (8)
that uses the IC I based RI estimate as a reference signal Y . Thus,
we arrive to two steps procedure (see Figure 3). The adaptive proce-
dure assumes that the estimates {ŷ RIh,θk }h∈H are calculated accord-
ing to (7) for a set of scales H and the IC I rule selects the best
scales for each direction and for each pixel. In this way we ob-
tain the directional varying scale adaptive estimates ŷ RIh∗(x,θk ),θk ,
k = 1, . . . ,K , which are fused in the Þnal one ŷ RIh∗ according to (6).
This ŷ RIh∗ serves as the reference signal in the RW I procedure (see
Figure 3). The adaptive RW I algorithm is similar and gives the
IC I adaptive varying scales estimates ŷ RW Ih∗(x,θk ),θk for each direc-
tion and x . Then, the Þnal estimate ŷ RW Ih∗ is obtained by fusing these
directional ones again according to (6).

The IC I adaptive scales h∗ (·,θk) represent the distribution of
image features across the direction θk , as shown in Figure 5 (right).
Exploiting the directional nature of the kernel supports, we improve
the adaptive scale selection by embedding directionally-weighted
order-statistics Þlters within the IC I algorithm. These specially
designed Þlters effectively remove the possible outliers in h∗ (·,θk)
and yet preserve accurate edge adaptation.

Table 1 presents results for four different experiments: Camera-
man image, 9× 9 boxcar v, BSNR=40dB (Experiment 1, see Fig-
ure 4); v (x1,x2) = (1+ x21 + x22 )−1, x1,x2 = −7, . . . ,7, σ 2 = 2
(Exp.2) or σ2 = 8 (Exp.3), and Lena image, v is a 5× 5 separa-
ble Þlter with the weights [1,4,6,4,1]/16 in horizontal and vertical



Figure 4: Original Cameraman image (left) and noisy blurred ob-
servation (Experiment 1) (right)

Figure 5: LPA-ICI algorithm performance: restored image,
ISNR=8.23dB (left) and adaptive scales scales h∗( · ,π/4) (right)

directions, BSNR=15.93dB (Exp.4). For these experiments a set of
eight directions, {θk}8k=1={0,π/4,π/2, . . . ,7/4π} and Þve scales,
#H = 5, are used. Function estimation kernels were designed on
conically-supported windows choosing the LPA orders m = [1,0]
and m = [0,0] for the RI and RW I stages, respectively. These ker-
nels are shown in Figure 2. For smaller scales in H the suppwh is
a 1-pixel-width line.

Overall, the SNR improvement (ISNR) in Table 1 shows that the
new developed RW I algorithm demonstrates a good performance
and outperforms some state-of-the-art techniques. Visual inspec-
tion is also in favor of the new algorithm. Figure 5 (left) shows a
fragment of the restored Cameraman image.

The directionality of the kernels is an important element of
this good performance. For example, in the same algorithm non-
directional quadrant kernels give ISNR=7.52dB for Exp.1 (see [9])
versus ISNR=8.23dB in Table 1.

5.2 Derivative estimation and edge detection
As a further illustration of the ßexibility of our approach we present
two examples of differentiation of y using the noisy blurred ob-
servations. Let us replace in the RW I stage of the algorithm (8)
the smoothing kernels g(0,0)h,θk by the discrete differentiation kernels
g(1,0)h,θk (4). Then the output ŷ

RW I
h∗,θk of the two stage algorithm gives

the estimate of the directional right-hand derivative ∂+θk y. Figure
6 (left) shows the diagonal derivative estimate ∂̂θ2 calculated for
θ = π/4 as the mean of the two one-sided directional derivatives
with θ2 = π/4 and θ5 = θ2+π = 5π/4, ∂̂θ2 = (ŷ RW Ih∗,θ2− ŷ RW Ih∗,θ5 )/2.

Further, for the edge detection we calculate the sum of the ab-
solute values of these derivatives

#4
k=1 |∂̂θk |. The image of this

sum is shown in Figure 6 (right). It demonstrates a very accurate
recovery of the image edges from the blurred noisy image data.
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