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Figure 1: Anisotropic local approximations achieved by combining a number of
adaptive-scale directional windows. The examples show some of these windows se-
lected by the directional LPA-ICI for the noisy Lena and Cameraman images.

Introduction

When estimating an image from its noisy observations, a trade-off between noise
suppression (variance) and smoothing (bias) has to be considered. Common
images are nonstationary, often characterized by localized features. Therefore,
images should be treated adaptively: for example, one would achieve a higher
noise suppression where the original image is smooth, than in the vicinity of
sharp transitions such as edges, where oversmoothing should be avoided.
So, the desired balance between variance and bias depends on the image�s

local features. How to control this balance is a key problem in adaptive signal
processing. A novel and original strategy to achieve such adaptation is the main
subject of this thesis.

The presented approach is based on the Intersection of ConÞdence Inter-
vals (ICI ) rule for pointwise-adaptive estimation. Originally, the method has
been developed for 1D signals [28, 42]. The idea was generalized for 2D image
processing, where adaptive-size quadrant windows have been used [43].
The main intention of these techniques is to obtain � in a data-driven way

� a largest local neighborhood of the estimation point in which the underlying
model Þts the data.
Our main assumption [20, 46] is that this vicinity is a starshaped body

which can be approximated by some sectorial decomposition with, say, K non-
overlapping sectors. Such a sectorial approximation is shown in Figure 1. We
use special directional kernels deÞned on a sectorial support. By endowing these
kernels with a scale parameter, we are able to use the ICI rule for the pointwise
selection of an adaptive scale, which deÞnes the length of the sectorial support.

ix



x INTRODUCTION

Anisotropy is enabled by allowing different adaptive scales for different di-
rections. Thus, the ICI rule is exploited K times, once for each sector. In
this way, we reduce a complex multidimensional shape adaptation problem, to
a number of scalar optimizations.
The directional estimates corresponding to the adaptive-scale sectors are

combined into the Þnal anisotropic estimate. The resulting estimator is truly
anisotropic, and its support can have quite an exotic shape. It is highly sensi-
tive with respect to change-points, and allow to reveal Þne elements of images
from noisy observations, thus showing a remarkable advantage in the proposed
strategy.
Several algorithms are developed, based on this estimator. Denoising is

the main, and most natural application, but also deconvolution, and derivative
estimation are problems where the anisotropic adaptation approach can play a
signiÞcant role in order to achieve an improved restoration performance.



Outline

A necessary compromise

The relevance of the work behind this thesis is twofold: not only a quite general
theoretical framework for a novel estimator has been developed, but also several
algorithmic solutions to concrete problems of applicative interest have been
developed, optimized, and compared against other state-of-the-art techniques.
In many occasions, the proposed new techniques have proven to outperform the
best methods appeared in the literature of our knowledge.
This thesis aims to cover these two rather different aspects, the theoretical

and the algorithmical, in order to provide a complete view on the scope of the
research that was carried out. In order not to overload the reader, it has been de-
cided not to go too deep into the details of neither of these two aspects. Instead,
our motivation was to emphasize the links between the theoretical modeling and
the practical implementations. Consequently, in the theoretical exposition some
topics are here purposely neglected (e.g. the use of a vector scale-parameter and
some convergence analyses that have purely abstract importance), and in the
description of the algorithms some aspects are not discussed (e.g. the proce-
dures for the optimization of the algorithm parameters and some computational
issues). Likewise, non essential remarks have been dropped or relegated to foot-
notes.
Nevertheless, we try to keep the exposition on a general-enough level: for

example, the local polynomial approximation is presented as a very particular
case of the general form of the moving least-squares method, described in the
context of Hilbert-space approximations, and the asymptotic accuracy analyses
are also done in a rather general way. Although, some Þner aspects are eventu-
ally and inevitabily �rounded off�, the resulting formulas are lean, and allow � in
the author�s opinion � a much easier understanding of the general applicability
of the developed methods.
It has been also decided not to follow the standard �deÞnition-theorem-

proof-corollary� formalism, typical of most mathematical texts. Instead, a more
informal and discoursive style is used.

Structure of the thesis

The thesis is structured in two parts. Firstly, we consider the theoretical back-
ground on which the developed technique is based: the LPA, the ICI, and
the anisotropic fusing of the directional LPA-ICI estimates are presented. De-
noising is considered as the underlying basic problem at which the approach
is targeted. A recursive Þltering strategy and an extension of the anisotropic

xi



xii OUTLINE

denoising method for the gradient estimation problem are also discussed. In
the second part we present a number of different algorithms and applications in
which the proposed techniques can be successfully exploited: besides denoising,
also deblurring, inverse-halftoning and other related problems are considered.

Publications

Most of the material presented in this thesis appears in the following publications
(sorted according to the thesis� presentation order):

1. [20]: Foi, A., V. Katkovnik, K. Egiazarian, and J. Astola, �A novel
anisotropic local polynomial estimator based on directional multiscale op-
timizations�, Proc. 6th IMA Int. Conf. Math. in Signal Processing,
Cirencester (UK), pp. 79-82, December 2004.

2. [46]: Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �Directional
varying scale approximations for anisotropic signal processing�, Proc. XII
European Signal Proc. Conf., EUSIPCO 2004, Vienna, pp. 101-104,
September 2004.

3. [22]: Foi, A., R. Bilcu, V. Katkovnik, and K. Egiazarian, �Anisotropic
local approximations for pointwise adaptive signal-dependent noise re-
moval�, (accepted) XIII European Signal Proc. Conf., EUSIPCO 2005,
September 2005.

4. [47]: Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �Anisotropic
local likelihood approximations�, Proc. of Electronic Imaging 2005, 5672-
19, 2005.

5. [23]: Foi, A., S. Alenius, M. Trimeche, V. Katkovnik, and K. Egiazarian,
�A spatially adaptive Poissonian image deblurring�, (accepted) IEEE 2005
Int. Conf. Image Processing, ICIP 2005, September 2005.

6. [21]: Foi, A., V. Katkovnik, K. Egiazarian, and J. Astola, �Inverse halfton-
ing based on the anisotropic LPA-ICI deconvolution�, Proc. Int. TICSP
Workshop Spectral Meth. Multirate Signal Proc., SMMSP 2004, Vienna,
Austria, pp. 49-56, September 2004.

7. [14]: Ercole, C., A. Foi, V. Katkovnik, and K. Egiazarian, �Spatio-temporal
pointwise adaptive denoising of video: 3D non-parametric approach�,
Proc. of the 1st International Workshop on Video Processing and Quality
Metrics for Consumer Electronics, VPQM2005, Scottsdale, AZ, January
2005.

8. [24]: Foi, A., V. Katkovnik, and K. Egiazarian, �Pointwise shape-adaptive
DCT as an overcomplete denoising tool�, (accepted) SMMSP 2005, Riga,
June 2005.

Not everything from these publications is included here. Some topics where
purposely discarded as they were only marginally relevant to the general idea of
the presented approach. Instead, here we expand those aspects that are believed
to be more useful for a clear understanding of the proposed method, and � with
the same intention � add new material and considerations that have not been
published.



Notation and conventions

We tried to use, as much as possible, well-known notational symbology. How-
ever, since � even for the most basic concepts � there exist in the literature
various and equivocal notations, we gradually explain in the text the meaning
of the used notation.

Nevertheless, as a useful reference, we declare here below, some of the most
signiÞcant conventions that we follow.

To avoid ambiguity, we use often � but not always � the symbol , to indicate
the deÞnition of a function, a variable, or a quantity.

The Fourier transform, continuous or discrete, is denoted by F . We always
use a �normalized� Fourier transform so that it realizes an isometry: kfk2 =
kF (f)k2. We usually indicate the Fourier transform of a function with the
corresponding capital letter: F (p) = P.
The symbol ~ denotes the convolution, (g ~ z) (x) =

R
g (x− v) z (v) dv ∀x.

The central dot · indicates a �mute variable�. For example, the above deÞnition
of the convolution can be written also as g~z =

R
g (·− v) z (v) dv (x being the

mute variable).

The conjugate transpose of a matrix or vector is denoted by the superscript T .

Throughout the text, we use the hat decoration b to indicate estimated
values (such as ��y is the estimate of y�). The tilde decoration ∼ is used, usually
in conjunction with a pedix x, to indicate a change of variable like the one used
in convolutions: �fx (v) = f (x− v). The same decoration is used not only for
functions but also for sets: �Ax = {v : (x− v) ∈ A}.
For a function f : X → R, we deÞne its support, supp f ⊆ X, as the subset

on which the function is non-zero, supp f = {x ∈ X : f (x) 6= 0}. The other
way round, for a subset A ⊆ X, we deÞne its characteristic function, χA : X →
{0, 1}, as the binary function that has A as its support: χA (x) = 1 ⇐⇒ x ∈ A,
suppχA = A.

For the images used in the many Þgures and simulations, unless differently
noted, we assume that the data-range is [0, 1], where zero and one correspond,
respectively, to black and white. However, to allow an easier comparison with
the other methods in the literature, we normalize our numerical criteria results
to the range [0, 255]. Therefore, it should not be surprising that � for example
� the mean squared error is usually much larger than 1, even when the restored
image is almost indistinguishable from the original.
Besides the usual 5p norms k·kp from the mathematical analysis, we use also

the following well-known criteria functions to assess the objective quality of an
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xiv NOTATION AND CONVENTIONS

estimate �y of y, obtained from a noisy observation z (where all the signals are
deÞned on a domain X of size |X|):

(signal-to-noise ratio) SNR = 20 log10

µ kyk2
ky − �yk2

¶
,

(improvement in SNR) ISNR = 20 log10

µky − zk2
ky − �yk2

¶
,

(peak SNR) PSNR = 20 log10

Ã
255 ·p|X|
ky − �yk2

!
,

(blurred SNR) BSNR = 20 log10

µky − mean (y)k2
ky − �yk2

¶
.

Let us remind that the other �engineering metrics�, namely the mean squared
error (MSE ), the root MSE (RMSE ), the mean absolute error (MAE ), and the
maximum absolute difference (MAX ), are � respectively � the square of the 52

norm (divided by |X|), the 52 norm (divided by
p|X|), the 51 norm (divided

by |X|), and the 5∞ norm of y − �y.

Finally, we warn the reader that the notation used in this thesis does not
exactly match the different notations that we used in aforementioned publica-
tions.



Part I

Theoretical background and
basic methods
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Chapter 1

Local approximations, the
moving least-squares
method, and the local
polynomial approximation
(LPA)

We introduce the local approximation approach in a very general form, within
the framework of the best approximation in Hilbert spaces with respect to or-
thonormal systems and frames. Only the main ideas of these very general meth-
ods are discussed here. We refer the reader to classical textbooks such as [83]
and [49] (for the functional analysis prerequisites), to [35] or [66] (where the
theory of frames is discussed in connection to wavelets), and to [70] or the pa-
per [16] (where a complete overview of the frame techniques in matrix form
using weights is given). The polynomial and the discrete case � on which the
actual developed algorithms are based � follow as particular instances of these
methods. Although the local polynomial approximation can also be derived
directly from the classical weighted least-squares method, we believe that by
seeing it as a particular case of more general �geometrically ßavoured� tech-
niques may help in better understanding the common points and the differences
with other methods that are based on Hilbert space approximations, such as
wavelets, overcomplete expansions, etc.
To facilitate the reader, we often present formulas for the the non-orthogonal

series expansions accompanied by the corresponding familiar expressions for the
orthonormal expansions.

1.1 Analysis, reconstruction and approximation
in Hilbert spaces

Let H be a Hilbert space. We denote, respectively, by h , iH and k·kH the inner
product and the norm in the space H. The norm is deÞned from the inner

3



4 1. Local approximations, MLS method, and LPA

product as k·k2H = h·, ·iH.
LetM ⊆ H be a closed subspace. The dimension ofM, dim (M), is equal to

the cardinality of the set of its linearly independent generators (in the sense of
Schauder bases). It is possibly inÞnite, however it is at most countable whenever
H is a separable1 space. We will only consider separable spaces.
Given any function f ∈ H, the best approximating element �ϕ ∈M to f ,

�ϕ = argmin
ϕ∈M

kf − ϕkH ,

exists, is unique, and is the orthogonal projection of f ontoM.

1.1.1 Projection onto an orthonormal basis

Let {φn}n be a family of orthonormal functions that generatesM,

hφn, φli = δ (l − n) ∀l, n,

where δ is a Kronecker delta function (δ (x) = 1 if x = 0, δ (x) = 0 ∀x 6= 0).
It is always possible, given a closed subspaceM, to construct an orthornormal
basis for it.
The orthogonal projection of f onto M can be explicitly written, in terms

of the orthonormal basis elements, as

�ϕ =
X
n

hf, φniH φn (x) . (1.1)

If f belongs toM, then obviously �ϕ = f and (1.1) is just a perfect-reconstruction
formula.
If {φn}n is not orthonormal, but just orthogonal, it suffices to divide each

inner product by the squared norm of the corresponding base element, obtaining
essentially a formula like (1.1).

1.1.2 Non-orthogonal case: frames

When the family {φn}n is non-orthogonal, but simply a set of generators forM,
not necessarily linearly-independent, the best approximation is not given in the
simple form (1.1). Of course, one possible approach could be to orthonormalize
{φn}n using the Gram-Schmidt procedure. However, in many applications it
may be of signiÞcant importance to represent signals with respect to speciÞc
generators; the Gram-Schmidt procedure typically mixes the generators, and the
resulting orthonormal system, while achieving a simple reconstruction formula,
might not retain the possibly meaningful structure of the original set of non-
orthogonal generators.
We assume that {φn}n is a frame [35, 16, 66] for M, i.e. that there exists

two constants A and B (usually called the frame bounds), 0 < A ≤ B < ∞,
such that

A kfk2H =
X
n

|hf, φniH|2 ≤ B kfk2H ∀f ∈M.

1A metric space is said to be separable if there exists a countable dense subset.
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A frame constituted by linearly independent functions is called a Riesz basis.
Given a frame, one can deÞne the frame analysis operator T :M→52(# {φn})
(where # denotes the cardinality of a set) by

Tf = {hf, φniH}n
and its adjont T ∗ : 52(# {φn})→M,

hf, T ∗ ({cn}n)iH = hTf, {cn}ni*2(#{φn}) =
X
n

hf, φniH cn =
X
n

hf, cnφniH .

The frame bounds ensure the continuity of T and the existence and continuity
of the adjoint T ∗, in particular kTk = kT ∗k ≤ √B. Continuity implies that

T ∗ ({cn}n) =
X
n

cnφn,

and thus T ∗ is called the frame synthesis (or reconstruction) operator.
Let S = T ∗T . We have

Sf = T ∗Tf =
X
n

hf, φniH φn ∀f ∈M.

The operator S is sometimes called the frame operator. It can be shown that
S is positive and admits an inverse operator S−1 (in M). Both S and S−1

are self-adjoint. This inverse is used to construct another frame, called the dual
frame, {ùφn}n =

©
S−1φn

ª
n
. It is the dual frame that allows to achieve a formula

similar to (1.1) for non-orthogonal systems of generators. First we note that for
every element f inM the following identities hold:

f = SS−1f =
P
n

­
S−1f, φn

®
H φn =

=
P
n

­
f, S−1φn

®
H φn =

P
n hf, ùφniH φn

f = S−1Sf = S−1
P
n hf, φniH φn =

=
P
n hf, φniH S−1φn =

P
n hf, φniH ùφn

∀f ∈M. (1.2)

The above formulas show that, restricted toM, SS−1 is the identity operator
onM, SS−1

¯̄
M = IM. It can also be written in terms of the pseudo-inverse T �

of the operator T as [66]

SS−1 = (T ∗T )−1 T ∗T = T �T

with T � = (T ∗T )−1 T ∗.
It can be shown that if the frame is a Riesz basis, then the frame and the

dual frame are a biorthogonal pair.

The �perfect reconstruction in the subspace� formulas (1.2) lead to the best
approximation formulas (or �partial reconstruction�) for frames.

Let �ϕ ∈M be the best approximation of f ∈ H. Since �ϕ is the orthogonal
projection of f onto M, f can be written as f = �ϕ + f⊥M where f⊥M is the
orthogonal complement of f with respect to the subspaceM. Therefore,­

f⊥M , ϕ
®
H = 0 ∀ϕ ∈M,
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and thus hf, ϕi = ­�ϕ+ f⊥M , ϕ
®
= h�ϕ,ϕi for all ϕ ∈M. In particular, this is

true also for the frame and dual frame, thus

�ϕ =
P
n h�ϕ, ùφniH φn =

P
n hf, ùφniH φn

�ϕ =
P
n h�ϕ, φniH ùφn =

P
n hf, φniH ùφn

∀f ∈ H. (1.3)

These formulas give the best approximation of any element in H as the analysis
and synthesis using a frame {φn}n and its dual {ùφn}n. In fact, they show
that the analysis-synthesis (by the frame and its dual, respectively) operator is
indeed the orthogonal projection operator onto the subspace generated by the
frame: SS−1 = T �T = PM.

1.2 The space L2 with a windowing measure

1.2.1 DeÞnition of the space

It is of particular interest to consider the case where H = L2
¡
Rd, µ

¢
and µ is a

Lebesgue-Stieltjes measure. The space L2
¡
Rd, µ

¢
consists of all the functions2

f : Rd → R such that
R |f (x)|2 dµ <∞, where the inner product is deÞned as

hf, giH =
R
f (x) g (x)dµ and the norm as kfkH =

³R |f (x)|2 dµ´1/2. As usual,
the inner product induces the norm: kfk2H = hf, fiH.
If µ is absolutely continuous and denoting by w its density function, it is

immediate to check that the integration with respect to the measure is nothing
but a weighted/windowed integration (or weighted average) of the function over
the support of w, where w is the weighting/windowing function:Z

f (x) dµ =

Z
f (x)w (x) dx.

This formula is valid also for non absolutely continuous measures, but the corre-
sponding w is not an ordinary function but rather a generalized function and the
integration must be considered in distributional sense. The discrete case can be
thought using directly the Hilbert space 52 of discrete sequences (and its higher-
dimensional counterparts) or, equivalently, by considering L2 endowed with a
piecewise-constant right-continuous discrete measure (with Dirac weights on
the integers), and by restricting the considered functions to piecewise-constant
functions (with discontinuities on the integers)3.

2 In L2, functions are always considered modulo differences in measure-zero sets (otherwise
the integral does not deÞne a norm, but rather a semi-norm, since there might different el-
ements in the space whose �would-be�-norm is zero). Therefore, one should not talk about
functions, but rather about equivalence-classes of functions (where the equivalence relation is
the pointwise equality almost everywhere, i.e. outside of a set of measure zero). Nevertheless,
for the sake of simplicity of language, it is common practice to speak of L2 as a space of func-
tions, tacitly assuming that the above distinction is understood and the equivalence relation
between functions is given for granted. Although usually (e.g. with the ordinary Lebesgue
measure), sets of measure zero are intuitively small or meager, in our considerations they can
be quite large.

3On this aspect, it is worth reminding the following two theorems by Helly (e.g. [58]):
(Helly�s Þrst theorem) given a sequence of bounded variation measures µn on a closed ball U
such that the total variations of µn on U are bounded by a same constant K1, VU (µn) ≤ K1

∀n, and µn → µ pointwise everywhere in U , then the limit measure µ is also of bounded
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For any absolutely continuous measure µ such that w is uniformly bounded,
L2
¡
Rd, x

¢ ⊂ L2 ¡Rd, µ¢, i.e. the usual L2 endowed with the ordinary Lebesgue
measure is a subset of L2

¡
Rd, µ

¢
. If w decays to zero at inÞnity, say rapidly

enough, then it is easy to realize that the inclusion is proper. It is an obvious
fact for a compactly supported w.

1.2.2 Best approximation in L2
¡
Rd, µ

¢
Following the general framework illustrated in Section 1.1, we consider the best
approximation problem for orthonormal systems as well as for frames.
Let {φO Nn }n and {φn}n be, respectively, an orthonormal system and a frame

generating the same closed subspaceM ⊆ H = L2
¡
Rd, µ

¢
. The orthonormality

of {φO Nn }n means that

hφO Nn , φO Nl iH =
Z
φO Nn (x)φ

O N
l (x)dµ =

Z
φO Nn (x)φ

O N
l (x)w (x) dx = δ (l − n) ∀l, n.

Just as in the general case discussed in Section 1.1, given any function f ∈
L2
¡
Rd, µ

¢
, the best approximation �ϕ of f inM,

�ϕ = argmin
ϕ∈M

kf − ϕkH = argmin
ϕ∈M

Z
|f − ϕ|2 dµ =

= argmin
ϕ∈M

Z
|f (x)− ϕ (x)|2w (x) dx, (1.4)

is unique and can be obtained by the orthogonal projection of f ontoM as

�ϕ =
X
n

hf, φO Nn iH φO Nn =
X
n

Z
f (v)φO Nn (v)dµφ

O N
n =

X
n

Z
f (v)φO Nn (v)w(v)dvφ

O N
n ,

by using the analysis and synthesis with the frame {φn}n and its dual {ùφn}n as

�ϕ =
X
n

hf, ùφniH φn =
X
n

Z
f (v) ùφn(v)dµφn =

X
n

Z
f (v) ùφn(v)w (v) dvφn

or, similarly, as

�ϕ =
X
n

hf, φniH ùφn =
X
n

Z
f (v)φn(v)dµ

ùφn =
X
n

Z
f (v)φn(v)w (v) dv

ùφn.

Observe that, because of the homogeneity of the norm, the solution �ϕ of (1.4) is
not affected by a multiplication by a positive constant of the window function
w (or of the measure µ).

There are a number of iterative techniques (e.g. the extrapolated Richardson
and the conjugate gradient iterations [66]) that allow the computation of the

variation and
R
fdµn →

R
fdµ for every continuous f ; (Helly�s second theorem) if a sequence

of measures µn not only satisÞes VU (µn) ≤ K1 ∀n, but there exists also another constant
K2 such that supx∈U,n∈N |µn (x)| ≤ K2, then there exist a subsequence µnk that converges
pointwise everywhere in U (and thus the Þrst theorem can be applied). Since it is possible
to approximate, in measure, a step function as accurately as possible by using continuous
functions, these two theorems can be used to justify and formalize the use of the continuous-
domain analysis for the discrete case.
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dual frame. When the number of generators is Þnite, the dual frame ùφn can
be computed from the Gramian matrix Φ formed by the inner products of the
frame elements one against each other [70, 16],

Φ (i, j) =
­
φi, φj

®
H =

Z
φi (v)φj (v)dµ =

Z
φi (v)φj (v)w (v) dv,

as
ùφn =

X
l

Φ� (l, n)φl, ùφ = φΦ�. (1.5)

The use of the pseudo-inverse, based on the singular-value decomposition, arises
from the fact that the Gramian matrix Φ is in general rank-deÞcient and ill-
conditioned (it is however full-rank when the frame is a basis).

1.3 Pointwise evaluation of the approximation
and its kernel representation

Suppose that we are interested not in the whole expression of the best approxi-
mating element �ϕ but only in its value at a particular point. Without loss of gen-
erality, let us assume that this point is the origin 0 and that w (0) > 0, i.e. that
the origin belongs to the support of the window suppw =

©
v ∈ Rd : w (v) > 0ª.

Formally, we obtain for an orthonormal system {φO Nn }n,

�ϕ (0) =
X
n

hf, φO Nn iH φO Nn (0) =
X
n

Z
f (v)φO Nn (v)w (v) dvφO Nn (0) , (1.6)

or, for a frame {φn}n (which generates the same subspace),

�ϕ (0) =
X
n

hf, ùφniH φn (0) =
X
n

Z
f (v) ùφn (v)w (v) dvφn (0) , (1.7)

�ϕ (0) =
X
n

hf, φniH ùφn (0) =
X
n

Z
f (v)φn (v)w (v) dv

ùφn (0) . (1.8)

However, one should question the meaning of �ϕ (0), φO Nn (0) , φn(0) and ùφn(0).
Since we are in L2, the value of a function at a particular point is not a well-
deÞned quantity. Even more, the convergence in L2 does not imply the pointwise
convergence, whereas the above formulas assume implicitly the pointwise con-
vergence at 0. There are a number of theorems that ensure this convergence
under particular hypotheses, the main of such hypotheses being that 0 is a
Lebegue point for the considered functions. In the case of the classical Fourier
series, it is interesting to point out that the continuity of f is not enough to
ensure pointwise convergence, and in particular4 for every point x there exist
a continuous function such that its Fourier series diverges at x. Nevertheless,
bounded variation of the function guarantees the pointwise convergence of its
Fourier series everywhere (e.g. [49]). A proper setting for this problem lies in
the theory of reproducing kernel Hilbert spaces5 (RKHS) (see [64, 63]). For a

4because of the Banach-Steinhaus unboundedness theorem.
5A Hilbert space of functions is said to be a reproducing kernel Hilbert space (RKHS)

if the evaluation-at-x functional is continuous for every x in the domain of the functions.
In an RKHS, the evaluation-at-x functional can be then expressed, according to the Riesz
representation theorem, as the inner product against a function Kx. The reproducing kernel
K is deÞned as K (x, y) = hKx,Kyi. It has the property that hf,K (x, ·)i = f (x) ∀x.
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generic frame and measure the formulation of such convergence theorems be-
comes rather involved (see e.g. [50], [103]).
To avoid these complications (which go far beyond the scope of this chapter),

and since in practice nobody uses inÞnitely many frame elements, we restrict
our attention to a Þnite set of generators. Moreover, we assume that all the
reconstructing elements are continuous at 0 (or, more weakly, that 0 is a Lebegue
point for all of them). This easily guarantees that the reconstruction of the best
approximating element is well-deÞned in pointwise sense at 0.
Under these additional assumptions, formulas (1.6-1.8) no longer have only

formal meaning, and take the form

�ϕ (0) =
X
n

Z
f (v)φO Nn (v)w (v) dvφO Nn (0) ,

�ϕ (0) =
X
n

Z
f (v)

P
l

Φ� (l, n)φl (v)w (v) dvφn (0) ,

�ϕ (0) =
X
n

Z
f (v)φn (v)w (v) dv

P
l

Φ� (l, n)φl (0) ,

or, equivalently,

�ϕ (0) =

Z
f (v)

µ
w (v)

P
n
φO Nn (v)φO Nn (0)

¶
dv =

Z
f (v) gM (v) dv,

�ϕ (0) =

Z
f (v)

µ
w (v)

P
n

P
l

Φ� (l, n)φl (v)φn (0)
¶
dv =

=

Z
f (v)

Ã
w (v)

P
l,n

φl (v)Φ
� (l, n)φn (0)

!
dv =

Z
f (v) gM (v) dv,

�ϕ (0) =

Z
f (v)

µ
w (v)

P
n
φn (v)

P
l

Φ� (l, n)φl (0)
¶
dv =

=

Z
f (v)

Ã
w (v)

P
l,n

φn (v)Φ
� (l, n)φl (0)

!
dv =

Z
f (v) gM (v) dv.

It is easy to realize that the three kernels gM from the three lines above are
actually exactly identical in H = L2 ¡Rd, µ¢, since they represent three identical
bounded6 linear functionals from the dual space H∗.7

Summarizing, given any function in f ∈ L2 ¡Rd, µ¢, let ϕ ∈M be the best
approximating element to f inM, and

�ϕ (0) =

Z
f (v) gM (v) dv,

6Boundedness can be obtained easily from the frame bound since |hf, φni| ≤qP
l |hf, φli|2 ≤ √

B kfkH and the sums are Þnite: |�ϕ (0)| ≤ P
n hf, φni

¯̄̄
ùφn (0)

¯̄̄
≤

kfkH
√
B
P
n

¯̄̄
ùφn (0)

¯̄̄
= kfkH ·constant. This holds because of the Þnite number of genera-

tors. If they were inÞnitely many, one would need to verify that khf, φik'1 ≤ kfkH ·constant≤
A−

1
2 khf, φik'2 ·constant, which in general does not hold (the opposite inequality holds).
7To be precise, the kernel that represents the functional is not g (v) but g (v)/w (v), since

the inner product in H has always the factor w (v) from the measure µ and the complex
conjugation.



10 1. Local approximations, MLS method, and LPA

where the kernel gM is expressed as

gM (v) = w (v)
X
l,n

φl (v)Φ
� (l, n)φn (0) , (1.9)

using the frame elements {φn}n. Roughly speaking, given a Þnite set of genera-
tors we obtain the value of the best approximation in the origin as the integration
against a particular kernel. A fact of remarkable importance for applications is
that this kernel can be precalculated, since it does not depend on the function
f but only onM (i.e. the span of {φn}n and the measure µ).

1.4 Moving least-squares (MLS) method

Let a function z : Rd → R be such that �zx (·) = z (x− ·) ∈ L2 ¡Rd, µ¢ for all
x ∈ Rd. We can then compute, using the above procedure, the value in the
origin of the best approximation �ϕx of �zx, �ϕx = argminϕ∈M kϕ− �zxkH, as

�ϕx (0) =

Z
�zx (v) gM (v) dv =

Z
z (x− v) gM (v) dv = (z ~ gM) (x) . (1.10)

We immediately get that the convolution against gM yields, for every point
x, the pointwise value (in x) of the best approximation of the function z in
the subspace �Mx= {ϕ : ϕ (x− ·) ∈M}. Here, �best approximation� and the
�subspace� structure are intended with respect to the windowing measure �µx
(�centered� at x) deÞned as �µx (·) = −µ (x− ·), that is implicitly imposed on a
superspace, say �Hx = L2

¡
Rd, �µx

¢
, of �Mx.

By letting x vary in Rd, we obtain

zMLSM = �ϕ(·) (0) = z ~ gM. (1.11)

The approximation approach corresponding to equation (1.11) is called the mov-
ing least-squares (MLS) method, and zMLSM is the MLS-estimate of z (onto the
space M). The term �moving� refers to the fact that, as the point x moves

in Rd, a pointwise-varying space-subspace pair
³
�Hx, �Mx

´
is considered for the

approximation. The kernel gM is sometimes called the moving kernel, and, for
a Þxed x, the coordinates {(x− ·)} are the moving coordinates.

1.4.1 Translation-invariance

According to the previous deÞnitions, we have that z ∈ �Hx ∀x, and, more
generally, that the space-subspace pairs are translation-invariant:

f ∈ �Hx ⇐⇒ f (·+ δ) ∈ �Hx+δ ⇐⇒ f (·− x) ∈ �H0 ⇐⇒ f (x− ·) ∈ H,
kfk �Hx

= kf (·+ δ)k �Hx+δ
= kf (·− x)k �H0

= kf (x− ·)kH ,
f ∈ �Mx ⇐⇒ f (·+ δ) ∈ �Mx+δ ⇐⇒ f (·− x) ∈ �M0 ⇐⇒ f (x− ·) ∈ �M.

This translation-invariance is directly linked with the use of the convolution
operation ~ in (1.11), or, more precisely, with the fact that the kernel gM in
the integral

R
z (x− v) gM (v) dv does not depend on x. Indeed, (1.10) can be
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interpreted � using the signal-processing terminology � as a particular linear
time-invariant Þlter.

One may wish to consider a more ßexible deÞnition of the form

�ϕx (0) =

Z
z (x− v) gMx (v) dv, zMLS = �ϕ(·) (0) , (1.12)

where the kernel gMx
� or, equivalently, the spaceMx � depends on the point

x. Although in (1.12) �ϕx (0) =
R
z (x− v) gMx (v) dv = (z ~ gMx) (x) is indeed

� for any Þxed x � a convolution, zMLS is not obtained from a convolution!8

Estimates of the form (1.12) are discussed in Chapter 2 for a speciÞc family
of subspaces. In Section 2.4, we introduce an algorithm, so-called ICI rule, that
selects a pointwise-adaptive gMx depending on the function z.

For the time being, let us return to the standard convolutional MLS (1.10),
in which the approximation of z is obtained as a convolution against a single �
say �space-invariant� � kernel gM.

1.4.2 Moving least-squares denoising

One of the most relevant applications of the moving least-square method is
denoising.
Let noisy observations be given in the form z = y + η, where y is the true

(typically unknown) signal and η is some noise. The �moving least-squares on
M� estimate �y of y is given by the convolution

�y = z ~ gM =

Z
z (·− v) gM (v) dv,

where the kernel gM corresponds to an appropriate closed subspaceM.
�Appropriate� means that �yx = y (·− x) is well-approximated in M (i.e.

low bias) and that η is concentrated in the orthogonal complementM⊥ ofM
(i.e. low variance).
The above formula has general validity also for the discrete case, as long as

the data grid is equispaced (i.e. uniform sampling) and unbounded9 because
these two facts allow to use the same windowing function w for every point.

8For clarity, from �ϕx(0) = (z ~ gMx)(x) ∀x ∈ Rd, does not follow that zMLS = z ~ gMx ,
because x appears not only as the function�s argument (evaluation of the convolution),
but also as a parameter for the convolution kernel. Mathematically speaking, there is no
such thing as a �convolution against a space-variant kernel�, and the equation zMLS (x) =R
z (x− v) gMx (v) dv=(z ~ gMx)(x) has only pointwise meaning (i.e. for a Þxed x).
9The unboundedness of the discrete domain is a technicality, required in order to enable

the deÞnition of the convolution against gM. However, in practice it is enough to evaluate
the convolution only within the domain of the image (or of the data of interest), which is
typically bounded. To do so, it suffices that, for every x in the image domain, the support
of g �Mx

= gM (x− ·) does not trespass the boundary of an imaginary �operational� domain,
which is added outside the image domain. These are the so-called boundary conditions.
It is common practice to Þctiously deÞne the data outside the image domain as zero, or

according to some periodicization of the image.
Our choice, is to deÞne this Þctious operational data equal to a very large constant, say 1/ε,

so that the estimates that are computed using this data, which does not belong to the actual
observations, are clearly and unmistakably invalidated and discarded. Roughly speaking, we
may say that our data is conÞned by an inÞnitely-high wall.
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1.5 Local polynomial approximation (LPA)

The Local Polynomial Approximation (LPA) is simply the moving least-squares
method10 where the subspaceM is a closed subspace of real polynomials (i.e. a
subspace of real polynomials whose order is bounded). The term �local� refers
to the window function w.

1.5.1 Characterization of an LPA

In the construction of an LPA, only the subspaceM needs to be speciÞed, i.e.
M as a set of functions and the window (or the measure) which deÞnes the
inner product and norm that endow the set with a space structure. These two
items completely characterize an LPA.
As a set, the subspace can be deÞned through a family of linearly independent

polynomials that generates it. This linear independence needs to be checked
on the support of the window: while in the continuous case this is a trivial
requirement (unless the support of w is a Þnite set), in the discrete case one has
to ensure that there are enough samples in the support of w.
The usual choice is to deÞne it by means of a maximum polynomial order

m. For the higher-dimensional case, compact multi-index notation is used:
m = (m1, . . . ,md), v = (v1, . . . , vd), o = (o1, . . . , od), and vo = (vo11 · · · vodd ).
With this notation, as a setM is deÞned as

M =
n
ϕ : ϕ (v) =

Xm

o=0
cov

o, co ∈ R
o
.

It is common practice to impose that |o| = o1+· · ·+od ≤ maxi {mi}. We denote
the class of all admissible orders as Om. With this notation, we can expressM
as

M =
n
ϕ : ϕ (v) =

X
o∈Om

cov
o, co ∈ R

o
. (1.13)

1.5.2 Function and derivative estimation kernels

Clearly, �ϕ does not depend on the frame used to construct M. Since the lin-
ear independence of the system of generators guarantees the invertibility of
the Gramian matrix11 , bases (for M) of linearly independent polynomials are
favourable. Traditionally, orthonormal bases12 have been preferred because the
corresponding reconstruction formula has a simpler form. Nevertheless, it is

10 In the literature the term �moving least-squares method� is often used to denote the
particular case of the LPA. However, in this text we prefer to present the �moving least-
squares method� as a general technique that can also be used for approximations other than
the polynomial one.
11Nevertheless, the use of the pseudoinverse may be required in order to achieve the numer-

ical stability of the solution.
12 Such families of orthonormal polynomials {φn}n can be obtained via the Gram-Schmidt

orthonormalization procedure from the Taylor basis
n
xn

n!

om
n=0

, or from any other collection

of linearly independent polynomials that span all possible orders up to m. Depending on
the measure µ, this procedure yields - starting from the Taylor basis - various families of
well-known orthogonal polynomials. For example, when w (x) = χ[−1,1] (i.e. when µ is any
multiple of the ordinary Lebesgue measure µ (x) = x on the interval [−1, 1] ⊂ R), we obtain
the Legendre polynomials, or, when w (x) = µ0 (x) = 1√

1−x2
, the Chebyshev polynomials.
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very convenient to use a basis whose generators are monomes, and in particular
an ideal choice is to use the standard Taylor basis,

{φn}Nn=1 =
½
vo

o!

¾
o∈Om

, (1.14)

where o! = o1! · · · od!. The previous equality deÞnes the correspondence between
the subindex n ∈ N and the order o = o (n) ∈ Nd of the corresponding monome
φn (v) =

vo(n)

o(n)! . Indeed, since φn (0) = δ (n− 1), the kernel expression is much
simpliÞed:

gM (v) = w (v)
X
l,n

φl (v)Φ
� (l, n)φn (0) = w (v)

X
l

φl (v)Φ
−1 (l, 1) . (1.15)

More importantly, since �ϕ is expressed in terms of the Taylor basis, the coef-
Þcients (i.e. the inner products against the dual frame) are, up to a change of
sign, the values of the (partial) derivatives13 in the origin �ϕ. Precisely,

�ϕ =
X
n

hf, ùφniH φn =
X
n

µZ
f (v)

P
l

Φ−1 (l, n)φl (v)w (v) dv
¶
φn =

=
X
n

³
(−1)|o(n)|

³
D(o(n))�ϕ

´
(0)
´
φn,

where D(o) = ∂|o|
∂vo =

∂o1

∂v
o1
1

· · · ∂od
∂v

o2
d

and |o| = o1 + · · ·+ od. Since the coefficients
for the reconstruction are uniquely deÞned (because �ϕ ∈M and the generators
are a basis forM) it follows thatZ

f (v)
P
l

Φ−1 (l, n)φl (v)w (v) = (−1)|o(n)|
³
D(o(n))�ϕ

´
(0) .

This allows to generalize formula (1.15) to a family of kernels,

g
(o(n))
M (v) , w (v)

X
l

φl (v)Φ
−1 (l, n) , (1.16)

such that the convolution against them yields an estimate for the function and
all its derivatives (up to the order m),

�y(o(n)) = z ~ g(o(n))M =

Z
z (·− v) g(o(n))M (v) dv,

where �y(o) (x) = (−1)|o| ¡D(o)�ϕx
¢
(0) and �ϕx = argminϕ∈M kϕ− �zxkH. Because

of the change of variables inside of the convolution operation,

�y(o) (x) =
³
D(o)f�ϕx´ (x) , (1.17)

with f�ϕx = �ϕx (·− x) being the best approximation of z in the space �Mx (see
Section 1.4). Thus, �y(o) (x) is in fact an estimate of the o-th (partial) derivative
of y. The kernel gM (v) = g

(0)
M (v) is called a function-estimation kernel and the

kernels g(o)M (v), o 6= 0, are called derivative-estimation kernels.
13 Strictly speaking, derivatives have sense only in the continuous domain. In the discrete do-

main they can be deÞned in many different ways, e.g. by Þnite-differencing, or more generally,
by, means of Taylor expansions or approximations (in fact, continuous-domain considerations,
such as those we made above, can be taken as justiÞcations of the deÞnition for the discrete
case). The subject of derivation of discrete functions is discussed more extensively in Chapter
7.
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1.5.3 Vanishing moments

Because of the perfect-reconstruction property for polynomials in M, the fol-
lowing equations, or moments conditions, hold14 ,Z

gM (v) dv = 1, (1.18)Z
vogM (v) dv = 0, o ∈ Om \ {0} . (1.19)

The relations from the last equation are often called vanishing moments condi-
tions.

1.5.4 Zero-order LPA

For the zero-order LPA (i.e. m = 0), the set of generators consists of only
the constant term, {φn}n = {φ1} = {1}, and the function estimation kernel
coincides with the normalized window function,

gM = wφ1

µZ
φ1 (v)φ1 (v)w (v) dv

¶−1
=

wR
w (v) dv

. (1.20)

Obviously, there are no derivative estimation kernels.

1.6 Finite case and matrix notation

In this section we rewrite the formulas for the general weighted least-squares
approximation using vector/matrix notation. This is particularly useful for the
numerical implementation of the moving-least squares method.

Let us consider the case where the number of generators N (elements of the
frame) is Þnite and the data grid has a Þnite number of samples I. The sample
points are denoted by vi, i = 1, . . . , I. The data grid is thus represented as a
vector15 . Each one of the generators φn is written as a column vector

φn =

 φn (v1)
...

φn (vI)

 ,
and the whole frame is then representable as an N × I matrix φ, the frame
matrix 16,

φ = [φ1 · · ·φN ] =

 φ1 (v1) · · · φN (v1)
...

...
φ1 (vI) · · · φN (vI)

 .
14One and zero are, respectively, the values in the origin of the constant function identically

equal to one and of the polynomial vo.
15Although we represent the sample points as a vector, it does not mean that the data is

necessarily one-dimensional, since discrete higher-dimensional data can be �reshaped� into a
1D vector.
16 If {φn}n is an orthonormal system, the corresponding frame matrix is an orthonormal

matrix with respect to the weights w, i.e. φTwφ = I.
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Similarly, a function f ∈ H can be written as the column vector

f =

 f (v1)
...

f (vI)

 .
With this notation, the operators T and T ∗ can be written as

Tf = {hf, φniH}Nn =

 hf, φ1iH
...

hf, φNiH

 = φTwf = c =
 c1

...
cN

 ,
T ∗
³
{cn}Nn=1

´
=
X
n

cnφn = φc,

where w = diag ([w (v1) · · ·w (vI)]) is the diagonal matrix composed by the
weights w. In other words, multiplication of the frame matrix against a coeffi-
cient vector achieves the reconstruction operation, while multiplication against
the conjugate transpose matrix achieves the analysis (i.e. it yields the inner
products between the vector and the frame elements). In this last operation,
the weights must be placed accordingly to the windowing measure which deÞnes
the inner products.
According to this matrix notation and analogously to formula (1.5), the dual

frame {ùφn}Nn=1 can be expressed by the dual frame matrix as

ùφ = φ
³
φTwφ

´�
, (1.21)

The matrix φTwφ = Φ is again the Gramian matrix, formed by the inner prod-
ucts of the frame elements one against each other, and � denotes the pseudo-
inverse.

1.6.1 Best approximation (weighted least-squares solution)

From (1.21) it is straightforward to derive the equivalent matrix form of the
equations (1.3):

�ϕ =
P
n hf, ùφniH φn = φùφ

T
wf = φ(φΦ�)Twf = φΦ�φTwf,

�ϕ =
P
n hf, φniH ùφn = ùφφ

T
wf = φΦ�φTwf.

∀f ∈ H.
(1.22)

1.6.2 Pointwise evalution of the best approximation and
corresponding kernel

If we are interested only in the value of the best approximation at a particular
point, say v1 = 0, then from formula (1.22) we obtain

�ϕ (0) = [φ1 (0) · · ·φN (0)]Φ�φTwf .
Thus, the matrix form of the kernel gM is

gM =
³
[φ1 (0) · · ·φN (0)]Φ�φTw

´T
= wφΦ� [φ1 (0) · · ·φN (0)]T .
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1.6.3 Vector form for LPA function and derivative esti-
mation kernels

For the standard LPA (generated by the Taylor polynomials), the function es-
timation kernel takes the vector form

gM = wφΦ−1 [1 0 · · · 0]T .

Derivative estimation kernels g(o)M are expressed by

g
(o(n))
M = wφΦ−1 [0 · · · 0 1 0 · · · 0]T ,

where the �indicator� vector on the right-hand side has the one in the n-th
place.

1.7 Some examples of LPA kernels
Figure 1.1, 1.2, and 1.3 show some examples of function and derivative es-
timation discrete LPA kernels calculated for various maximum orders m and
windowing functions w. For the case m = (2, 1) � illustrated in Figure 1.1
and Figure 1.2 for two different w � the admissible orders that satisfy o ≤ m,
|o| ≤ maxi {mi} are Om = {(0, 0) , (1, 0) , (0, 1) , (1, 1) , (2, 0)} and the corre-
sponding basis functions φn (v) =

vo(n)

o(n)! used in the generation ofM are

φ1 = 1, φ2 = v1, φ3 = v2, φ4 = v1v2, and φ5 =
v21
2
.

A much larger set of the generators is used when m = (5, 3). To each one of
them corresponds a function or derivative estimation kernel. Figure 1.3 shows
only a few of them.

f ∂x1 ∂x2 ∂2x1x2 ∂2
x21

Figure 1.1: Function and derivative estimation LPA kernels obtained for m = (2, 1)
using the characteristic function of a disk as the window function w.

f ∂x1 ∂x2 ∂2x1x2 ∂2
x21

Figure 1.2: Function and derivative estimation LPA kernels obtained for m = (2, 1)
using a Gaussian window function w.
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f ∂x1 ∂4
x1x32

∂5
x41x2

∂5
x51

Figure 1.3: The function estimation LPA kernel and some of the derivative estimation
LPA kernels obtained for m = (5, 3) using the characteristic function of a disk as the
window function w.
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Chapter 2

Adaptive nonparametric
estimation

2.1 Parametric vs. nonparametric estimation
The most widely used techniques in signal and image processing are based on
transform-domain representations. The Fourier transform, the wavelet decom-
positions, and the discrete cosine transform (DCT), are probably the best known
examples of such techniques.
The most appealing and desired property of any transform-domain repre-

sentation is sparsity. It means that the signal can be well represented in terms
a few signiÞcant transform-domain coefficients. The efficiency of transform-
domain techniques largely depends on this sparsity. Hence, a lot of research has
been done into the design of bases or frames that can represent sparsely the
widest possible range of useful or signiÞcant signals.

Strictly speaking, and using a terminology from statistics, the quest for
sparsity corresponds to trying to describe the data using as few as possible
model parameters. Such model parameters, namely the transform coefficients,
represent the signal on a global level.

The so-called nonparametric approach is radically different. No restriction
is assumed on the number of model parameters, in fact, no global parametric
representation is assumed at all. It offers an original approach to signal pro-
cessing problems (e.g. [40], [15], [41], [65]). It basically results in kernel Þltering
with the kernels designed using some moving window local approximations. The
LPA is probably the most signiÞcant nonparametric method in the literature.
The signal is described only locally, and every point is characterized by its own
local model, which can be independent from the models corresponding to all
other points.
Adaptive versions of these algorithms are able to produce efficient Þltering

with a level of localization (scale, bandwidth) which is pointwise-adaptive (e.g.
[67], [78]). This pointwise-adaptive scale selection is based on the following
idea, known as the Lepski�s approach. The algorithm searches for a largest
local vicinity of the point of estimation where the estimate Þts well to the data.
The estimates �yh(x) are calculated for a set of window sizes (scales) h ∈ H
and compared. The adaptive scale is deÞned as the largest of those for which

19
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estimate does not differ signiÞcantly from the estimators corresponding to the
smaller window sizes.
The intersection of conÞdence intervals (ICI ) rule ([28],[42]) is one of the

versions of this approach, and appeared to be quite efficient for the adaptive
scale image restoration [43, 44, 46, 20, 22, 47, 23, 21, 14, 24].

Curiously, the long-term evolution of the transform-domain techniques for
image restoration shows a distinct trend towards localization (e.g. compactly
supported wavelet decompositions [66]) and an increased number of parameters
(e.g. frames, overcomplete expansions [90], translation invariant Þltering [9, 8]).
This trend not only suggests the inadequateness of conventional models, but �
to some extent � hints that the peculiarities of the nonparametric approach are
of signiÞcant importance for a superior image-restoration Þltering.

2.2 Scale
The �scale� of a kernel will probably be the most frequently encountered concept
in this thesis. Despite its importance, the deÞnition of scale is rather simple.
In the continuous domain, since Taylor monomes are used for the basis ele-

ments for the spaceM, a change of variable in the window w,

wh (·) , w (·/h) , h ∈ R+,

yields, by equation (1.15), a function estimation kernel that can be obtained
also be the direct change of variables

gh (·) = h−dgM (·/h) . (2.1)

The parameter h is called the scale of the kernel1 . This deÞnition of scale is
relative, since it depends on w. To make it absolute, it is usually, often tacitly,
assumed that w has unitary size, length, or diameter. Thus, h corresponds to
the size, length, or diameter of wh (and hence of gh).
Formulas analogous to (2.1) hold for the derivative kernels as well,

g
(o)
h (·) = h−dh−|o|g(o)M (·/h) , (2.2)

and the function and derivative estimates can be obtained as

�yh =

Z
z (·− v) gh (v) dv =

=

Z
z (·− v)h−dgM (v/h) dv =

Z
z (·− hv) gM (v) dv,

�y
(o)
h =

Z
z (·− v) g(o)h (v) dv =

=

Z
z (·− v)h−dh−|o|g(o)M (v/h) dv = h−|o|

Z
z (·− hv) g(o)M (v) dv.

1Although it is possible to consider also a vector scale parameter h = (h1, . . . , hd), hi ∈ R+,
for the sake of simplicity, we will present here only the scalar case h ∈ R+.



2.3. Accuracy analysis of the LPA kernels 21

2.2.1 LPA kernels as smoothers

Equation (2.1) makes rather easy to realize that LPA kernels can be used effec-
tively as smoothers, where the scale h acts as a bandwidth parameter. In fact,
by going into the frequency domain, we have

�Yh = ZGh = ZF
¡
h−dgM (·/h)¢ = Zh−dF (gM (·/h)) = ZGM (h·) ,

where F is used to denote the Fourier transform2. Indeed, the moment conditionR
gM = 1 implies that GM (0) = 1. Since the decay-rate towards inÞnity of the

Fourier transform of a function depends on the smoothness (in the sense of order
of differentiability) of the function itself, and recalling formula (1.15) � which
states that LPA kernels are obtained as a Þnite sum of windowed polynomials �
it is clear that the decay-rate of the LPA kernels depends only on the smoothness
of the window function w. Traditional window functions are designed in such a
way that the desired frequency response of the resulting kernel is achieved. In
practice, GM works as a low-pass Þlter.
Figure 2.1 illustrates the low-pass property of the LPA kernels, showing four

different function-estimation kernels obtained from four different values of the
scale parameter h: as h increases, the band shrinks around the origin, where
the frequency response is one because of the moment condition.

Figure 2.1: Function estimation LPA kernels obtained for m = (2, 1) using the char-
acteristic function of disk as the window function wh. Kernels are shown for four
different values of h, from small (left) to large (right). The absolute value of the ker-
nels� Fourier transforms are shown in the bottom row of the Figure. To improve the
visualization, the vertical scale of the space-domain plots is larger for the kernels of a
larger scale.

2.3 Accuracy analysis of the LPA kernels

To use the LPA as a denoising tool, it is of fundamental importance to under-
stand the statistical properties of the LPA estimates. In this section we discuss
the mean squared error of these estimates, following the standard approach
based on the bias and variance analysis. These two quantities will be expressed
as functions of the scale parameter h, leading to an analytical formulation of
the bias-variance tradeoff for varying-scale LPA estimates. Minimization of the
MSE with respect to h will provide us with an ideal estimate. The bias and

2We always consider a normalized Fourier transform such that it realizes an isometry within
L2.
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variance analysis presented here will play an essential role in the development
of an algorithmic solution capable of achieving an adaptive estimate close to the
ideal one.

2.3.1 Bias and variance

Let the observations be of the form

z = y + ση, (2.3)

where η is an identically distributed Gaussian white noise, η (·) ∼ N (0, 1).
Overall, the original true signal y suffers degradation from an additive noise
term ση with variance σ2.
The bias and variance, i.e. the deterministic and stochastic errors, of the

LPA estimate �yh (x) = (z ~ gh) (x) are, respectively,

bias {�yh (x)} = m�yh(x) = E {y (x)− �yh (x)} = y (x)−E {�yh (x)} =
= y (x)− (E {z}~ gh) (x) = y (x)− (y ~ gh) (x) ,

and

var {�yh (x)} = σ2�yh(x) = E
n
(E {�yh (x)}− �yh (x))2

o
=

= E
n
(((y − z)~ gh) (x))2

o
=
¡
σ2z ~ g2h

¢
(x) = σ2

Z
g2h (v) dv = σ

2 kghk22 .
(2.4)

The above relation can also be easily obtained recalling that �the variance of
the sum of independent variables is the sum of their variances�.
The pointwise mean squared error (MSE), or (quadratic) risk, can be de-

composed in the sum of the squared bias and the variance3,

l�yh(x) = E
n
(y (x)− �yh (x))2

o
= m2

�yh(x)
+ σ2�yh(x).

Our goal is to determine h in such a way that l�yh(x) is minimized.

3The bias-variance decomposition of the MSE can be obtained from the following elemen-
tary manipulation:

E
n
(y − �y)2

o
= E

n
(�y −E {�y}+E {�y}− y)2

o
=

= E
n
(�y −E {�y})2

o
+ 2E {(�y −E {�y}) (E {�y}− y)}+E

n
(E {�y}− y)2

o
.

The middle term has a factor, E {�y −E {�y}} = E {�y} − E {�y}, which is equal to zero, thus
the mean squared error can be written as

E
n
(y − �y)2

o
= E

n
(�y −E {�y})2

o
+E

n
(E {�y}− y)2

o
=

= E
n
(�y −E {�y})2

o
+ (E {�y}− y)2 = var {�y}+ bias2 {�y} .
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2.3.2 Asymptotic error analysis

Let x be a Þxed estimation point. By equation (2.1) we can rewrite the expres-
sion for the variance as an explicit function of the scale parameter,

σ2�yh(x) = σ2 kghk22 = σ2
°°h−dgM (·/h)°°2

2
=

= σ2h−2d
Z
g2M (v/h) dv = σ2h−d

Z
g2M (v) dv = σ2h−d kgMk22 .

Similarly, for the bias, by exploiting a similar change of variable, we obtain

m�yh(x) = y (x)−
Z
y (x− v)h−dgM (v/h) dv = y (x)−

Z
y (x− hv) gM (v) dv.

Let us consider a Taylor-type expansion at x of the function y,

y (x− w) = y (x) +
X

o∈Om\{0}

(−1)|o|
o!

(Doy) (x)wo +R (w) ,

where the remainder term R (w) =
P
o/∈Om

O (wo) and O (wo) denotes a func-
tion such that is asymptotic to wo as w → 0.
Because of the perfect-reconstruction property for polynomials whose monomes

have orders in Om, we conclude that the bias is made only from the contribution
of this remainder:

m�yh(x) = y (x)−
Z
y (x− hv) gM (v) dv =

Z
R (hv) gM (v) dv.

There are many possible representation of the remainder R. However, the stan-
dard choice is to express it in Lagrange form. It means that |R (w)| ≤PLo |wo|
where Lo is some uniform bound on the o-th partial derivative of y. De-
pending on the order m of the LPA, the dimension d, of course, actual the
smoothness of y, various accurate bounds the remainder can be obtained (e.g.
[31],[15],[43],[44]).
Nevertheless, for all the coming considerations, it is enough to consider the

following generic upper bound on the modulus of the asymptotic bias of the
LPA estimate,

m̄�yh(x) = rh
α kgMk1 = ahα, (2.5)

and its variance
σ2�yh(x) = σ

2h−d kgMk22 = b2h−2β. (2.6)

The upper bound of the asymptotic risk is

l̄�yh(x) = m̄
2
�yh(x)

+ σ2�yh(x) = a
2h2α + b2h−2β .

It is a concave function, as shown in Figure 2.2.
Quite obviously b and β depend only on the kernels, since the variance of

the estimate is not affected by the estimated function. On the other hand, the
uniform bound L can affect only a. The coefficient α is inßuenced by the order
m of the LPA and by the polynomial components of the remainder.
Similar asymptotical forms can be obtained also for the derivative estimates.
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Figure 2.2: Asymptotic bias-variance trade-off: the variance σ2�yh(x), the upper bound
for the squared bias m̄2

�yh(x)
and the upper bound for the mean squared error l̄�yh(x).

The ideal scale h∗ minimizes l̄�yh(x).

2.3.3 Ideal scale

The pointwise ideal scale h∗ = h∗ (x) is deÞned as the minimizer of l̄�yh(x),

h∗ = argmin
h

l̄�yh(x),

and can be found by solving
∂h l̄�yh(x) = 0.

It gives
∂h l̄�yh(x) = 2a

2αh2α−1 − 2b2βh−2β−1 = 0,
and the ideal scale h∗ as

h∗ =
µ
βb2

αa2

¶ 1
2α+2β

. (2.7)

Let us use this ideal scale into the bias and variance expressions (2.5) and (2.6).
We obtain, respectively,

m̄2
�yh∗ (x) = a2

³
βb2

αa2

´ 2α
2α+2β

= a2
³
βb2

αa2

´ α
α+β

,

σ2�yh∗ (x) = b2
³
βb2

αa2

´ −2β
2α+2β

= b2
³
βb2

αa2

´ −β
α+β

.

Observe that the ratio between then upper bound of the squared bias and the
variance at the ideal scale h∗,

m̄2
�yh∗ (x)

σ2�yh∗ (x)
= a2

³
βb2

αa2

´ α
α+β

b−2
³
βb2

αa2

´ β
α+β

= a2b−2
βb2

αa2
=
β

α
= γ2, (2.8)

does not depend on a. It means that it does not depend on the local behaviour
of the function at x.
The upper bound of the risk at the ideal scale h∗, so-called ideal risk, has

the following form:
l̄�yh∗ (x) = σ

2
�yh∗ (x)

¡
1 + γ2

¢
. (2.9)
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Since the ratio m̄2
�yh(x)

/σ2�yh(x) is a monotonically increasing function of h, we
have that

m̄2
�yh(x)

(
< γ2σ2�yh(x) ∀h < h∗
> γ2σ2�yh(x) ∀h > h∗ , (2.10)

These inequalities, which turn into an equality only at h = h∗, can be then used
to test the hypothesis h Q h∗.

2.4 Intersection of ConÞdence Intervals (ICI )
rule

The ICI rule [28, 42] is a practical method that, based on the analysis from the
previous section, selects an adaptive scale h+ (x) whose corresponding estimate
�yh+(x) is close to the ideal �yh∗(x). In what follows, we sketch a proof of the
general validity of the method. We refer the reader to [28] or [12] for a more
rigourous proof and for discussions about the convergence rate of this adaptive
estimate.

2.4.1 The idea

Again, let x be a Þxed estimation point and �yh (x) an LPA estimate at x. The
total estimation error |y (x)− �yh (x)| can be bounded by the sum of the moduli
of the bias error m�yh(x) and the random error r�yh(x) = E {�yh (x)}− �yh (x) ,

|y (x)− �yh (x)| ≤
¯̄
m�yh(x)

¯̄
+
¯̄
r�yh(x)

¯̄
.

The random error r�yh(x) is a normal-distributed random variable with variance

σ2�yh(x) and zero mean, r�yh(x) ∼ N
³
0, σ2�yh(x)

´
. The following inequality holds

with probability p = 1− λ, ¯̄
r�yh(x)

¯̄ ≤ χ1−λ/2σ�yh(x),
where χ1−λ/2 is a (1− λ/2)-th quantile of the normal distribution N (0, 1).
Hence, with same probability p,

|y (x)− �yh (x)| ≤
¯̄
m�yh(x)

¯̄
+ χ1−λ/2σ�yh(x).

From the inequalities (2.10) we obtain, for h ≤ h∗ (x),
|y (x)− �yh (x)| ≤ (γ + χ1−λ/2)σ�yh(x) = Γσ�yh(x), Γ = (γ + χ1−λ/2). (2.11)

Equivalently, we can express the above inequality as

�yh (x)− Γσ�yh(x) ≤ y (x) ≤ �yh (x) + Γσ�yh(x), h ≤ h∗ (x) ,
determining a conÞdence interval D (h),

D (h) = £�yh (x)− Γσ�yh(x), �yh (x) + Γσ�yh(x)¤ ,
for the estimate �yh (x): for h ≤ h∗, with probability p, we have y (x) ∈ D (h).
According to (2.6), the width of the conÞdence intervals D (h) is a monotonically
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Figure 2.3: The Intersection of ConÞdence Intervals (ICI ) rule.

decreasing function of h. We may say that the conÞdence intervals �shrink� as
h increases.

Let H = {h1, . . . , hJ} , h1 < · · · < hJ , be an increasing set of scales and the
corresponding estimates

©
�yhj (x)

ªJ
j=1
. Each one of these estimates is a normal-

distributed random variable with variance σ2�yhj (x)
. With some probability p0, all

conÞdence intervals D (hj), hj ≤ h∗ (x) have a point in common, namely, y (x).
Let j+ be the largest of those j for which all D (hi) with i ≤ j have a point

in common. Observe that hj+ ≥ h∗− , max {hj : hj ≤ h∗ (x)}, i.e. all D (hj)
with hj ≤ h∗− have non-empty intersection. This condition, together with the
shrinking of the conÞdence intervals, ensures that the estimate �yh+ (x) is within
a certain range from the true signal y (x).
Indeed, y (x) ∈ T hj≤h∗−D (hj) , hence |y (x)− �yh∗− | ≤ Γσ�yh∗−(x). Similarly,

since D (h∗−) ∩ D (h+) 6= ∅, |�yh∗− − �yh+ | ≤ Γσ�yh∗− (x) + Γσ�yh+(x). Combining
these, we conclude that

|y (x)− �yh+ | ≤ 2Γσ�yh∗− (x) + Γσ�yh+(x) ≤ 3Γσ�yh∗− (x). (2.12)

Provided that the set of scales H is sufficiently rich, one has h∗− ' h∗, and thus
σ�yh∗−(x) ' σ�yh∗(x). It follows that the error of the adaptive estimate �yh+ is at
most 3Γ times the ideal deviation σ�yh∗ (x).

2.4.2 ICI adaptive-scale selection rule

The practical ICI adaptive-scale selection method ([42],[43],[28]) follows directly
from the above considerations.
Given a set of varying scale kernel estimates

©
�yhj (x)

ªJ
j=1

such that σ�yh1 >
· · · > σ�yhJ , we determine a sequence of conÞdence intervals

Dj =
h
�yhj (x)− Γσ�yhj , �yhj (x) + Γσ�yhj

i
where Γ > 0 is a threshold parameter. The ICI rule can be stated as follows:
Consider the intersection of conÞdence intervals Ij =

Tj
i=1Di and let j+ be

the largest of the indexes j for which Ij is non-empty, Ij+ 6= ∅ and Ij++1 = ∅.
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Then the adaptive scale h+ is deÞned as h+ = hj+ and the adaptive-scale kernel
estimate is therefore �yh+ (x).

Roughly speaking ICI selects the coarsest scale estimate that is statistically
compatible with all Þner scales. In practice this means that adaptively, for
every pixel, ICI allows the maximum degree of smoothing, stopping before
oversmoothing begins.
The variance σ2�yhj of the estimate �yhj can be calculated from the kernel ghj by

formula (2.4). Therefore, the ICI rule can be implemented in a straightforward
manner for the selection of the the adaptive-scale kernel estimate �yh+(x) given a
set LPA kernels

©
ghj
ªJ
j=1

and an estimate �σ2 of the variance σ2 of the additive

noise term σ2η in (2.3)4.

2.4.3 ICI algorithm pseudo-code

Table (2.1) shows a pseudo-code of the ICI algorithm. It is assumed that a
set of estimates

©
�yhj
ªJ
j=1

are given together with their standard deviations

{σ�yhj }Jj=1. The estimates and the variances can be matrices, where each entry
in the matrix corresponds, respectively, to a pointwise estimate �yhj (x) and
pointwise variance σ�yhj (x). In this pseudo-code we use the following formalism:

the equality symbol = is used to update the value of a variable5, the �identically
equal� symbol≡ between a matrix and a constant indicates that all entries of the
matrix are deÞned to be identically equal to the constant, the symbol ≥ stands
for a relational operator that returns 1 or 0 if the tested inequality is veriÞed
or not6, not denotes the logical negation (i.e. not(0) = 1 and not(1) = 0),
the products and divisions between matrices are computed as array-operations
(i.e. in pointwise manner), and comments to the code are written after a slash
mark, /.

4The estimate of σ can be obtained using standard techniques. For example, a widely used
and simple-to-implement method is based on the median of the absolute deviation (MAD)[30],
and gives a robust estimate of the standard deviation of the additive white Gaussian noise as

�σ = median(|d|)
0.6745

where d = (di) is a vector formed by normalized differences between adjacent samples of the
noisy observations z,

di =
z(xi)−z(xi+1)√

2
.

This technique can be used also in conjuction with an orthonormal transform (as it preserves
the statistical characterics of the additive white noise). A frequent choice ([11],[66]), is to
apply the above median estimator on some wavelet detail (Þnest scale) coefficients

­
z, ψj

®
rather than on the differences d. Since most of the signal is usually compacted into wavelet
approximation (coarser scales) coefficients, this �wavelet-domain MAD� reduces the impact
of the signal�s features on the estimation, thus avoiding the overestimation of σ. The �classic�
MAD can be interpreted as a particular case of the wavelet-domain MAD, since for the Haar
wavelet

¡­
z, ψj

®¢
j
= d.

5For example, an apparently non-sense equation such as a = a+1, simply means that the
new value for the variable a is equal to its old value plus one: an+1 = an + 1.

6Therefore, the T in the pseudo-code is a matrix composed by one and zeros.
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h+ ≡ h1
�yh+ = �yh1

¾Á
initialization of adaptive scale and of

corresponding estimate and variance

U = �yh1 + Γσ�yh1
L = �yh1 − Γσ�yh1

¾Á
initialization of upper and

lower bounds of intersection

for j = 2, . . . , J
±
loop on j (scale index)

U = min{U, �yhj + Γσ�yhj}
L = max{L, �yhj − Γσ�yhj}

)±
update bounds of intersection

T = U ≥ L ±
test for non-empty intersection

h+ = hjT + h
+
θk
not(T )

�yh+ = �yhjT + �yh+not(T )

¾Á
update adaptive scale and

adaptive-scale estimate

end
±
end loop on j (scale index)

Table 2.1: Pseudo-code of the ICI adaptive-scale selection algorithm.

2.4.4 Choice of Γ

Formula (2.12) reveals the role of the threshold parameter Γ in ensuring the
Þdelity of the adaptive estimate �yh+ . At Þrst glance, it may seem that Γ should
be chosen as small as possible, so to minimize the risk of the adaptive-scale
estimate. However, since the conÞdence intervals are a probalistic device, a too
small Γ, i.e. a too small χ1−λ/2, makes the probabilities p and p0 too small for
the derived analysis to have any practical signiÞcance, and thus (2.12) may fail
to be veriÞed (as y may not belong to the interesection), resulting in a larger-
than-predicted error of the adaptive estimate. This considerations suggest, the
following, say, rule-of-thumb: �choose Γ small, so to increase the sensitivity, but
not too small to avoid too frequent false alarms, i.e. empty intersections due
to the randomness of the data�. The adaptive h+ is a monotonically increasing
function of Γ. Therefore, qualitatively speaking, a smaller Γ produces smaller
adaptive scales, and thus less smoothing, whereas a larger Γ corresponds to
large adaptive scales, and thus more smoothing.
By the deÞnition (2.11), the value of Γ depends on the quantile χ1−λ/2, as

well as on the ideal ratio γ (2.8). Since γ varies together with the LPA design,
we conclude that the choice of Γ is inßuenced by this design.
First we note that a rather detailed study of the convergence rate of the

adaptive estimate is provided in [28] and [12]. There it is shown that, with
respect to an asymptotic randomness of the noise of the order σ2 = O (1/n),
the best possible convergence rate is achieved for Γ = O(√lnn). This sort of
asymptotical convergence-rate analysis, however, tells very little on what should
be done in practice with Γ, as the same rate is achieved up to a constant factor.
Some experimental study and heuristical speculations on the performance

of the ICI are presented in [89], showing that the ICI algorithm is quite stable
with respect to variations of Γ. A similar conclusion was drawn already in [48].
It is shown in [42] and [43], that the statistical common-practice choices for the
conÞdence intervals, with λ = 0.05 or λ = 0.01, result in quite large values of
Γ. It also shown that these choices are not really adequate for signal-processing
applications, and, in the same publications, an approach for the automatic se-
lection of Γ based on cross-validation is proposed. Nevertheless, none of the
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aforementioned theoretical, heuristical, or statistical methods for the choice of
this threshold parameter can be considered conclusive, and experimental sim-
ulation is still the most effective and accurate methodology for the choice of
Γ.

Depending on kernel design parameters such as the order of the LPA and
the smoothness of w, the typical choices for the value of Γ fall between 0.5 and
2. Thanks to the aforementioned stability of the ICI algorithm with respect to
Γ, only little adjustment in its value is needed for the algorithm optimization.
After this adjustment, a Þxed Γ can be used.

2.4.5 Examples with symmetric windows

Figure 2.4 illustrates the effect of the ICI algorithm, and the impact of the
threshold parameter Γ on the choice of the adaptive scales. The observation z
consists of a noisy version of the Cameraman image (degradated by the addition
of Gaussian white noise with standard deviation equal to 0.1). The kernel family©
ghj
ªJ
j=1

is composed by 35 zero-order LPA kernels. They are designed using
as window whj the characteristic function of a disk of radius hj , hj = 1, . . . , 35
pixels, centered in the origin. The smallest-scale kernel is a Dirac delta.
One can see in the Figure that, even with very large values of Γ, the sen-

sibility of the algorithm with respect to the edges and other structures in the
images is quite high. This sensibility is shown by the smaller values of h+ that
are found in the vicinity of these structures7. Qualitatively, adaptive-scale es-
timates with a small Γ are still noisy, whereas a too large value of Γ produces
estimates that are over-smooth. The impact of the Γ parameter on the overall
RMSE is depicted in Figure 2.5, not only for the Cameraman image, but also
for the Lena and Boats images. The plots show that for the three images the
best found values of Γ are all close to 2, and that variations of ±0.2 around
these best found values do not affect the objective quality of reconstruction.
Therefore, with this family of kernels, Γ = 2 can be used for all the images
achieving a performance very close to the one achieved with an �oracle� Γ.
Finally, let us observe that the adaptive scale h+ decreases when approaching

the boundary of the image. This is an automatic feature of the ICI when proper8

boundary conditions are imposed. In this example, the maximum possible value
of h+ (x) is equal to the distance of x from the boundary of the image.

7The white line (larger scales) along the edges is an unavoidable �defect� of kernels that are
symmetric about the origin. It arises from the fact that the symmetric averages centered near
the discontinuity are quite stable with respect to the scale. Essentially, it is a behaviour similar
to that of the Fourier series on jump-discontinuites (they converge to the mid-point of the
jump, which is equal to the limit of integral averages on a symmetric neighborhood collapsing
around the discontinuity, so-called Lebesgue-limit). It is shown in the coming chapters that
this �unpleasant� feature is not encountered when asymmetric kernels are used.

8 See the footnote on the boundary conditions on page 11.
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Γ = 1

Γ = 1.5

Γ = 2

Γ = 3

Figure 2.4: Adaptive scales (left) and adaptive-scale estimates (right) obtained for a
wide range of values of the ICI threshold parameter Γ. From top to bottom, Γ =
1,Γ = 1.5,Γ = 2, and Γ = 3. The adaptive scales are represented using a darker shade
of gray for the smaller scales, black being the smallest scale (which corresponds to a
Dirac-delta estimate), and white being the maximum scale (corresponding to a kernel
whose support is a disc of radius 35 pixels).
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Figure 2.5: �MSE vs. Γ� plots for three different images (σ = 0.1). The same kernels
used for the experiment shown in Figure 2.4 are used.
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Chapter 3

Directional LPA

3.1 Motivation
Points, lines, edges, textures are present in all images. They are locally de-
Þned by position, orientation and scale. Often being of small size these speciÞc
features encode a great proportion of information contained in images. To deal
with these features oriented/directional Þlters are used in many vision and image
processing tasks, such as edge detection, texture and motion analysis, etc.
The key question is, how to design a kernel for a speciÞed direction. A

good initial idea arises from the deÞnition of the directional derivative ∂θ for
the direction deÞned by the angle θ,

∂θy(x) = lim
ρ→0

(y(x1 + ρ cos θ, x2 + ρ sin θ)− y(x1, x2)) /ρ, (3.1)

and more speciÞcally, from that of the right-hand1 directional derivative ∂+θ,

∂+θy(x) = lim
ρ→0+

(y(x1 + ρ cos θ, x2 + ρ sin θ)− y(x1, x2)) /ρ. (3.2)

Whenever y is a differentiable function, elementary calculations give the well
known result

∂+θy(x) = ∂θy(x) = cos θ · ∂x1y(x) + sin θ · ∂x2y(x). (3.3)

Thus, in order to Þnd the derivative for any direction θ it suffices to estimate
the two derivatives on x1 and x2 only. This concept has been exploited and
generalized by the so-called steerable Þlters [25].
Although continuous models of the discrete image intensity are widely used

in image processing, estimates such as (3.3) are too rough in order to be useful
for those applications where the sharpness and details are of Þrst priority. For
discrete images lacking global differentiability or continuity the only reliable
way to obtain an accurate directional anisotropic information is to calculate
variations of y in the desired direction θ and, say, to estimate the directional
derivative by the Þnite difference counterpart of ∂

+θy(x). In more general terms,
this means that the estimation or image analysis should be based on directional

1The left-hand directional derivative ∂−θ is deÞned similarly, by replacing limρ→0+ with
limρ→0− in (3.2).

33
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kernels, templates or atoms which are quite narrow and concentrated in desir-
able directions. Since points, lines, edges and textures can exist at all possible
positions, orientations and scales, one would like to use families of Þlters that
can be tuned to all orientations, scales and positions.
Recent development shows an impressive success of methods for this sort of

directional image/multivariable signal processing. In particular, narrow multi-
directional items are the building blocks of the new ridgelet and curvelet trans-
forms [90].

Conventionally, the LPA estimation kernels have simple-form supports (square,
discs, etc.), symmetric with respect to the origin and/or the coordinate axes. In
order to design narrow, directional kernels suitable for the analysis of oriented
features a �directional� version of the standard LPA is proposed.

3.2 Directional LPA: a general deÞnition

The directional version of the LPA method is simply an LPA where the basis
of polynomials is given in a rotated coordinate system

©
uθi
ªd
i=1

and where the
windowing function, w = wθ, has a characteristic orientation along some direc-
tion θ. We have uθ = Uθv, and Uθ is a rotation matrix. For example, when
d = 2,

¡
uθ1, u

θ
2

¢T
= (v1 cos θ + v2 sin θ, v2 cos θ − v1 sin θ) = Uθv.

For the sake of clarity, we drop the θ symbol from the notation uθ when also
another exponent is present, and assuming implicitly that u = uθ.
The polynomial Taylor basis in the rotated system is given as

{φn}Nn=1 =
½
uo

o!

¾
o∈Om

. (3.4)

According to (3.4), and analogously to (1.13), the setMθ is expressed as

Mθ =

(
ϕ : ϕ (v) =

X
o∈Om

cou
o, co ∈ R

)
. (3.5)

To introduce a space structure onMθ, only the window function wθ needs
to be deÞned. The natural choice is to have the window wθ elongated along
the Þrst axis uθ1 of the rotated coordinate system. Typically, wθ is obtained by
rotating a �basic� window w0 (which is elongated along v1) through an angle
θ, wθ (v) = w0 (Uθv). When also a scale parameter h is exploited, the resulting
windows and kernels are denoted as wh,θ, gh,θ, respectively.

Just as for the standard LPA, also directional-LPA kernels satisfy perfect-
reconstruction and moment conditions, with the only difference that these con-
ditions hold with respect to the rotated coordinate system. In the discrete
domain, the fact that the window is elongated along u1 enables the design of
kernels with m1 À mi, i 6= 1.
Derivative estimation kernels are deÞned exactly in the same way as for

the standard LPA and, since the Taylor basis is expressed with respect to
the coordinates uθ, the kernels g(o)h,θ estimate the directional derivatives

∂|o|
∂uo =

∂o1

∂u
o1
1

· · · ∂od
∂u

od
d

.
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In the continuous domain it is easy to realize that the directional-LPA kernel
gh,θ is simply a rotated copy of the standard LPA kernel gh,0 corresponding to
the basic window w0,

gh,θ (v) = gh,0 (Uθv) .

We call gh,0 the basic kernel. The above formula greatly simpliÞes the con-
struction of narrow well-oriented local polynomial approximation kernels. Re-
grettably, this simpliÞcation has only theoretical signiÞcance, since it cannot be
exploited successfully in the discrete domain.

3.3 Discrete directional-LPA kernel construction
In the discrete domain the rotation itself is not a trivial operation because the
rotated rectangular data grid u does not properly match with its non-rotated
version v. For this very reason, traditional rotation techniques are based on
interpolation methods.
The construction of a directional-LPA kernel in the discrete domain needs

to comprise two independent steps. First, the design of the oriented window
wh,θ is performed. Its support suppwh,θ is Þnite, non-symmetric, elongated
and well-oriented along the direction θ. A good example of such a support can
be a conical sector of length h. Second, the standard LPA procedure is applied
using the polynomials in the rotated variables uθ with the weights wh,θ.
We remark again that the simpler approach where a basic LPA kernel is

rotated along the desired directions, although reasonable (as seen in the contin-
uous domain), fails in the discrete domain. That is because the interpolation,
which is necessary for the rotation, does not in general preserve the normaliza-
tion (1.18) and the vanishing moment conditions (1.19), essential requirements
for the accurate polynomial reproducing properties of LPA kernels. It is worth
to point out that the initial motivitation in the development of the directional
LPA is the design of narrow and sharp oriented kernels. It is a well-known fact
in image processing that interpolation-based rotation (and more generally any
traditional interpolation scheme) is not suitable for preserving the sharpness of
the transformed data.
For example, the nearest-neighbor rotation is quite effective for preserving

the sharpness of the rotated window function, but on the other hand it does not
preserve not even the Þrst vanishing moment condition

R
gh,θ = 1. Contrary

to this, rotation based on linear interpolation preserve this vanishing moment
condition, but is not able to preserve the sharpness (i.e. the discontinuities at
the support�s boundary) of the kernel. Decoupling the directional kernel design
in two independent steps, enables to achieve accurate moment conditions (with
respect to the rotated coordinates) without imposing any restrictions on the
rotated window function. In fact, any rotation method can be used to obtain
the window wh,θ from the basic window wh.

3.4 Peculiarities of the directional-LPA kernel
design

This technique allows to design estimators for smoothing and differentiation
that are important on their own, and that can be used in many applications.
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Indeed, they have a number of valuable beneÞts:

� Unlike many other transforms which start from the continuous domain
and then discretized, this technique works directly in the multidimensional
discrete domain;

� The designed kernels are truly multivariable, non-separable and directional
with arbitrary orientation, width and length;

� The smoothing and the corresponding differentiating directional kernels
can be designed;

� The kernel support can be ßexibly shaped to any desirable geometry in
order to capture geometrical structural and pictorial information. In this
way a special design can be done for complex-form objects and speciÞc
applications;

� These kernels are by deÞnition asymmetric, allowing efficient edge adap-
tation. Traditional symmetric or nearly-symmetric supports tend to pro-
duce either so-called ringing artifacts or oversmoothing in the vicinity of
the edges.

The use of directional-LPA kernels for the estimation of directional (one-
handed) derivatives and the gradient is the subject of Chapter 7.

3.5 Some examples of directional-LPA kernels
In Figure 3.1, Figure 3.2, and Figure 3.3, some discrete LPA kernels are shown,
together with the absolute value of their Fourier transform for three different
values of θ: θ1 = 0, θ2 = π/4, and θ3 = π/2. The kernels are obtained using
the described technique using rotated copies of one basic window w equal to
the characteristic function of a conical sector. Observe that these kernels are
asymmetrical and that the origin is an extreme point of the window�s support.
More examples of directional-LPA kernels are given in the Figures 9.13-9.14
(page 140) and Figure 9.2 (page 127) from the coming chapters.
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Figure 3.1: Function estimation directional LPA kernels, o = (0, 0), obtained for
m = (2, 1) using the characteristic function of a conical sector as the window function
wθ. Kernels are shown for three different direction θ; the absolute value of the kernels�
Fourier transforms are shown in the bottom row of the Figure.

Figure 3.2: Partial-derivative estimation directional LPA kernels, o = (1, 0), obtained
for m = (2, 1) using the characteristic function of a conical sector as the window func-
tion wθ. Kernels are shown for three different direction θ and estimate the derivative
∂u1 = ∂θ; the absolute value of the kernels� Fourier transforms are shown in the bottom
row of the Figure.

Figure 3.3: Partial-derivative estimation directional LPA kernels, o = (0, 1), obtained
for m = (2, 1) using the characteristic function of a conical sector as the window func-
tion wθ. Kernels are shown for three different directions θ and estimate the derivative
∂u2 ; the absolute value of the kernels� Fourier transforms are shown in the bottom row
of the Figure.
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Chapter 4

Anisotropic LPA-ICI

In this chapter we introduce a novel and original anisotropic estimator for image
and multi-dimensional signal restoration. It is the main contribution of the
thesis, and it provides the core of all developed applications that are presented
in the coming chapters.

The proposed approach originates from the geometric idea of a starshaped
estimation neighborhood topology. In this perspective, an optimal adaptation
is achieved by selecting � in a pointwise fashion � an ideal starshaped neighbor-
hood for the estimation point. In practice, this neighborhood is approximated
by a sectorial structure composed by conical sectors of adaptive size. Spe-
cial varying-scale kernels, supported on these sectors, are exploited in order to
bring the original geometrical problem to a practical multiscale optimization.
The directional LPA provides sufficient ßexibility for the design of the required
varying-scale kernels. At the same time, it enables the use of the ICI algorithm
in order to perform the multiscale optimization in an efficient way.

The resulting estimator is truly anisotropic, providing a clean and accurate
edge adaptation and an excellent restoration performance. Its implementation is
fast, as it is based on simple convolutions and scalar optimizations. Although we
focus initially on image processing, the approach is general and can be extended
to higher-dimensional data.

A substantial part of this chapter is based on the publications [20]1 and [46]2.

4.1 Motivation and idea
Let X ⊂ R2 be the image domain. We consider the denoising problem of
restoration of the image intensity y, y : X → R, from the noisy observations

z(x) = y(x) + ση(x), η (x) ∼ N (0, 1) , x ∈ X. (4.1)

1 [20]: Foi, A., V. Katkovnik, K. Egiazarian, and J. Astola, �A novel anisotropic local
polynomial estimator based on directional multiscale optimizations�, Proc. 6th IMA Int.
Conf. Math. in Signal Processing, Cirencester (UK), pp. 79-82, December 2004.

2 [46]: Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �Directional varying scale
approximations for anisotropic signal processing�, Proc. XII European Signal Proc. Conf.,
EUSIPCO 2004, Vienna, pp. 101-104, September 2004.

39
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First, we introduce some basic notation that is used in the following sections.
Notation: We denote by χA the characteristic (or indicator) function of a
set A, i.e. χA = 1 on A, 0 elsewhere; µ (A) stands for the ordinary Lebesgue
measure of the set A. It follows thatZ

χA (v) dv =

Z
A

1dv =

Z
A

dv = µ (A) .

Similarly to the characteristic function χA, we also deÞne the normalized indi-
cator 1A of the set A, 1A , χA/µ (A). Hence,

R
1A (v) dv = 1 and integration of

a function f against the normalized indicator 1A of a set A realizes the average
of f on A, Z

f (v) 1A (v) dv =

Z
A

f (v) dv/µ (A) .

In what follows, we use the term neighborhood (of a point x) in a generic
sense, meaning a simply connected set (containing x). Relations between sets
are always considered up to a null-set.

4.1.1 Estimates with support optimization

Consider a conventional kernel estimator (Þlter) in the form

�y(x) =

Z
z(x− v)1Ux(v)dv =

Z
1Ux(x− v)z(v)dv =

=

Z
1 �Ux(v)z(v)dv =

Z
�Ux

z(v)dv/µ (Ux) , (4.2)

where Ux is a neighborhood of the origin, and the uniform smoothing kernel 1Ux
has support Ux and constant value 1/µ(Ux) on Ux. We use the decoration ∼ to
denote the translated and mirrored neighborhood about the reference point x,
�Ux (·) = Ux (x− ·), distinguishing it from Ux, which is always about the origin.
The bias and the variance of the estimate (4.2) are, respectively,

m�y(x) = y(x)−
Z
1 �Ux(v)y(v)dv and σ2�y (x) = σ

2/µ (Ux) .

The ideal support U∗x , yielding the best mean squared error, can be found by
minimization of the quadratic risk l�y(x):

U∗x = argmin
Ux

l�y(x), l�y(x) = m
2
�y(x) + σ

2
�y(x). (4.3)

Thus,

�y (x) =

Z
1U∗

x
(x− v)z(v)dv =

Z
1 �U∗

x
(v)z(v)dv (4.4)

is the best local mean estimate of y (x). The optimization (4.3) can be quite
difficult to achieve. In order to make it practical, further speciÞcations of the
problem are required.
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Starshaped unbiased estimates and the Ux topology

We discuss here a simpliÞed model, which will serve as a ground for the devel-
opment of a more general approach. Let y be a binary black-and-white image,
i.e. y (x) ∈ {0, 1} ∀x, and let us restrict our attention to starshaped unbiased
estimates. It means that we consider only sets Ux which are starshaped with
respect to the origin3 and such that m�y(x) = 0.
The best estimate is obtained by minimization of the variance only or, equiv-

alently, by maximization (with respect to the set inclusion ⊂) of the set Ux.
Unbiasedness holds if and only if y (v) = y (x) for almost every v ∈ �Ux. Under
mild regularity assumptions on y (e.g. piecewise regular boundary of the level
sets), such equality has to hold for every v ∈ �Ux. Thus, the best unbiased es-
timate corresponds to the largest starshaped Ux such that y( �Ux) ≡ y (x). This
procedure can be formalized nicely in a topological manner.
Let Ux be the topology constituted by all sets Ux such that:

(i) Ux \ {0} is an open set in the Euclidean topology;
(ii) Ux is starshaped with respect to 0;
(iii) y(x− v) = y (x) ∀v ∈ Ux.

The maximum (with respect to ⊂) element in Ux corresponds to the ideal star-
shaped unbiased estimate of y (x),

U∗x = maxUx.

This suggests a risk minimization strategy based on a progressive set enlarge-
ment within this topology. This minimization may be achieved also by �de-
composing� Ux as follows. Let {Si}Ki=1 be a collection of K starshaped neigh-
borhoods of the origin such that ∪Ki=1Si = R2 (e.g. a collection of conical
sectors). Then, USix = {USi

x = Ux ∩ Si : Ux ∈ Ux} are also topologies, and
U∗x = maxUx =

S
K
i=1maxU

Si
x . It means that the optimization can be per-

formed independently on each �subcomponent� USix .

Examples of the ideal �U∗x are given in Figure 4.1 for two images: the char-
acteristic function of an open disc (top row) and the �Cheese� image (bottom
row). In particular, for the Þrst image, depending on the value of x, �U∗x is the
unit disc itself for kxk < 1, the tangent support halfplane to the circle at x for
kxk = 1, and the union of all support halfplanes to the circle containing x for
kxk > 1.
Although different points x0, x00 may have �U∗x0 = �U∗x00 , the corresponding U

∗
x0

and U∗x00 are not equal, and in both examples each point x has its own different
ideal neighborhood U∗x . Adapting perfectly to the edges, they are typically
non-convex and their shape can be rather complex.
Strictly speaking, starshapedness implies a line-of-sight model, in which the

estimation point �cannot see� beyond obstacles. Therefore �U∗x never contains
points that are not �directly visible� from x: this leads to an important aspect
that we exploit in the following sections.

Despite the apparent simplicity of the above speculations, the practical real-
ization of this support-optimization approach can be still hard to achieve, since

3A set A is said to be starshaped with respect to a point x if, for any a ∈ A, the segment
from a to x is contained in A.
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Figure 4.1: Examples of the ideal starshaped neighborhoods �U∗x resulting from U∗x =
maxUx. On each row, the Þrst subimage to the left is the true signal y, followed by the
illustrations of four different ideal neighborhoods �U∗x corresponding to four different
points x ∈ X.

the function y is usually unknown and only its noisy observation z is avail-
able. Concerning the topological formalization, it should be pointed out that
the major difficulty is not the maximization � which is easy, since it suffices to
choose the whole topological space to have a maximal element � but the actual
construction of the topology itself.
Moreover, unless y is known to belong to some very speciÞc class, ensuring

unbiasedness is not possible, and biased estimates have to be considered.

4.1.2 Estimates with kernel-scale optimization

Another way to adapt to the signal�s varying local features, following the ma-
jority of multiscale techniques, is to use kernels equipped with a scale parameter
h (e.g. gh(·)=g(·/h)/h2). This estimate can be presented in the form

�y(x) =

Z
gh(x)(x− v)z(v)dv.

The scale optimization can be formulated, similarly to (4.3), as

h∗(x) = argmin
h

l�y, l�y(x) = m
2
�y(x) + σ

2
�y(x).

The bias and the variance are, respectively, m�y(x) = y(x)−
R
gh(x)(x−v)y(v)dv,

and σ2�y (x) = σ
2
R
g2h(x)(v)dv. This kind of optimization is known to be practical

and can give good results through algorithms of reasonable complexity, such as
thresholding (e.g. [66] and references therein), or the ICI rule.

When the support of the kernel gh is bounded, the scale parameter h (x)
controls the size of the neighborhood for estimation at the point x. Thus, the
support of the ideal scale kernel gh∗(x) can be thought as an approximation of
the ideal U∗x considered in equation (4.3). However, traditional kernels have sup-
ports of simple convex geometry (square, rectangle, circle, oval, etc.), whereas
the ideal neighborhoods can be quite complex, especially near edges or corners.
Thus, this approximation of U∗x can be quite poor.



4.2. Anistropic estimator, directional adaptive-scale 43

Figure 4.2: Piecewise constant approximation of r∗x (θ) and its representation by
adaptive-size sectors.

4.2 Anisotropic estimator based on directional
adaptive-scale

It would be desirable to Þnd a reasonable compromise between the geometrical
approach discussed in Section 4.1.1 and the above kernel-based method.
The previous topological considerations shed some insight on how this sort of

compromise is produced and clarify the geometrical properties of the estimator.
The starshapedness of U∗x allows to describe this set using polar coordinates:

there exists a function r∗x(θ), θ ∈ [0, 2π) (see Figure 4.2a), such that
U∗x = {v ∈ X, v = (v1, v2) = (rv cos θv, rv sin θv) : rv < r∗x(θv)} .

Instinctively, one may assume some sort of continuity of r∗x with respect to its
argument θ. This regularity, however, fails in the vicinity of edges where, as
in the examples shown in Figure 4.1, r∗x(θ) presents sharp transitions. This
irregular behaviour is a direct manifestation of the anisotropy of y or, roughly
speaking, that the function�s properties are different in different directions. The
most natural model, allowing good approximation of such rapid transitions and
also discontinuities, is to assume r∗x(θ) as a piecewise constant function of its
angular argument, i.e. assuming that the ideal neighborhood U∗x has a sectorial
structure, as shown in Figure 4.2(b-c).

4.2.1 Anisotropic LPA-ICI estimator

In our approach we exploit the above sectorial decomposition. A collection
of directional-LPA kernels {ghj ,θk}hj∈H,k=1,...,K supported on such sectors is
designed. Each kernel is characterized by a direction θk and a scale parameter
h. The corresponding estimate of y is given by the convolution

�yhj ,θk = ghj ,θk ~ z. (4.5)

For a Þxed x, we obtain a collection
©
�yhj ,θk (x)

ª
hj∈H,k=1,...,K which is multi-

scale and multi-directional. For each speciÞed direction θk, the ICI rule is
used to select a pointwise-adaptive scale h+ (x, θk) ' r∗x(θk) that approximates
the radius of the ideal neighborhood U∗x . Let �yh+(x,θk),θk be the directional
adaptive-scale estimate,

�yh+(x,θk),θk(x) , (gh+(x,θk),θk ~ z) (x) ∀x (4.6)

and let
σ2k(x) , σ2�yh+(x,θk),θk (x) = var

©
�yh+(x,θk),θk(x)

ª ∀x (4.7)



44 4. Anisotropic LPA-ICI

be its variance4. All these estimates can be fused in the Þnal anisotropic estimate
�y as follows:

�y(x) =
X
k

λ(x, θk)�yh+(x,θk),θk(x),

λ(x, θk) =
σ−2k (x)P
iσ
−2
i (x),

∀x . (4.8)

The weights λ(x, θk) in the above convex5 combination are data-driven adaptive,
as σ−2k (x) depends on the adaptive h

+(x, θk). Formula (4.8) embeds and makes
clear our basic intentions. We introduce the directional estimates �yhj ,θk(x),
optimize the scale parameter for each of the directions (sectors), and fuse the
resulting directional adaptive estimates into the Þnal one �y(x) using the weights
λ (x, θk). We call this approach the anisotropic LPA-ICI technique.

4.2.2 Adaptive anisotropic kernel and adaptive anisotropic
neighborhood

The estimate (4.8) is exactly equivalent to the adaptive kernel estimate

�y (x) =

Z
g+x (x− v) z (v) dv, (4.9)

g+x ,
X

k
λ(x, θk)gh+(x,θk),θk . (4.10)

We call g+x the adaptive anisotropic kernel (for the estimation of x).
Let us remark that, despite the appearence, neither (4.6) nor (4.9) is an

estimate which can be obtained by a convolution: in both equation an adaptive
kernel, which depends on x, is used in the integration against z. A similar issue
has been discussed in a footnote on page 11.
We deÞne the adaptive anisotropic neighborhood U+x as the union of the

supports of the kernels used for estimation,

U+x =
S
k supp gh+(x,θk),θk . (4.11)

Obviously, U+x ⊇ supp g+x .6
With a notation similar to the one introduced in Section 4.1.1, the ∼ deco-

ration is used to denote the translated and mirrored adaptive anisotropic neigh-
borhood, �U+x (·) = U+x (x− ·).
Figure 4.3 and Figure 4.4 show some of the adaptive anisotropic neighbor-

hoods resulting from the proposed anisotropic LPA-ICI approach for noisy im-
ages7. A comparison with the lower row from Figure 4.1 shows the similarity
between the previous ideal example and this concrete case.
A few other examples of such adaptive anisotropic neighborhoods were given

in the Introduction (Figure 1).
4 In the equation (4.7), we treat h+ as a purely deterministic variable. This simpliÞcation

is however quite reasonable, as in practice the adaptive h+ does not exhibit a signiÞcant
variability (see Section 4.9).

5The combination is convex because, by deÞnition,
P
k λ(x, θk) = 1.

6 It may happen, but only using particularly-exotic kernels, that
S
k supp gh+(x,θk),θk %

supp g+x . It means that, during the fusing, adaptive-scale kernels corresponding to different
directions cancel-out on a set whose measure is larger than 0. This can happen only if the
kernels corresponding to different directions overlap. In the coming sections we will consider
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Figure 4.3: Cheese : adaptive anisotropic neighborhoods �U+x obtained through ICI
using sectorial kernels. Compare with the ideal example shown in the bottom row of
Figure 4.1.

Figure 4.4: Cameraman (detail): adaptive anisotropic neighborhoods �U+x obtained
through ICI using sectorial kernels

4.2.3 Anisotropic estimation: formal modelling

In this section we introduce a formal model of the anisotropy. Such a model is,
to some extent, functional to the design of appropriate families of directional-
LPA kernels to be used for the anisotropic LPA-ICI estimator (4.8). Let us Þrst
introduce some notation.

Notation

Given a point x = (x1, . . . , xd) in the d-dimensional Euclidean space Rd, we
denote as u (x, θ) the rotation of x by the spherical angle θ = (θ1, . . . , θd−1)
about the origin. The standard representation of x in spherical coordinates is
written as (ρ, θ)sph. Here, (ρ, θ)sph means the cartesian coordinates of x, given its
radius ρ = kxk and its spherical angular component θ. For example, for d = 2,
x = (ρ, θ)sph = (ρ cos θ, ρ sin θ) = (x1, x2). The rotated cartesian coordinates
are denoted as {ui}i=1,...,d. In this notation the directional derivative ∂θ is
nothing but the partial derivative ∂u1 with respect to the Þrst component u1 of
the rotated cartesian axes. Partial derivatives with respect to ui have the form
∂uiy(x) = limδ→0 (y (x+ u (δei, θ))− y(x)) /δ, where ei = (0, . . . , 0, 1, 0, . . . , 0)
is the i-th standard basis vector. Higher-order derivatives are deÞned as the
iteration of the corresponding Þrst order derivatives, ∂n+1ui = ∂ui

¡
∂nui
¢
.

The kernel design procedure considered later is quite general and will be

the possibility of such overlap. However, even when the kernels overlap, the above strict
inclusion is not the generic situation. Thus U+x = supp g+x might be safely considered, instead
of (4.11), as an equivalent deÞnition for the adaptive anisotropic estimation neighborhood.

7The observations, contaminated by noise with standard deviation σ = 0.1, are whitened
in the Figures for a better visual contrast.
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Figure 4.5: Illustration of the sector S
¡
θ̄, ϑ̄, ρ̄

¢
.

given for d-dimensional signals and speciÞed in the rotated variables ui. It is
then convenient to use a compact multi-index notation, as it was deÞned in
Section 1.5.1.

Sectorial modelling of anisotropy

Let S
¡
θ̄, ϑ̄, ρ̄

¢
=
©
x ∈ Rd : kxk ≤ ρ̄, °°x/ kxk− (1, θ̄)sph°° ≤ 2 sin ¡ϑ̄/4¢ª be the

spherical sector of radius ρ̄ ∈ R+ and aperture angle ϑ̄ ∈ [0, 2π] along the
direction θ̄ ∈ Rd−1 having its vertex in the origin. The function 2 sin

¡
ϑ̄/4

¢
simply returns the length of the chord between two points on the unit sphere
(a and b in Þgure 4.5) given the arc ϑ̄/2 that separates them. It is clear that
any neighborhood of the estimation point can be covered by a collection of such
directional sectors.
For a function to be anisotropic means that the function�s properties are

different in different directions, i.e. in different sectors around the estimation
point. Let us formalize the ideas discussed in the previous section by introducing
the following class of locally anisotropic functions:

FΘα ={y∈L1loc
¡
Rd
¢
: ∀x∈Rd ∃ θ̄∈Θ, ϑ̄>0, ρ̄>0, Lα∈R+d

such that sup
v∈S(θ̄,ϑ̄,ρ̄)

|∂αu y(x− v)| ≤ Lα}, (4.12)

where α is a d-multi-index deÞning the derivative order, Θ ⊆ Rd−1 is a Þxed set
of directions and u are the rotated coordinates by the angle θ̄. At any point x,
functions y ∈ FΘα might have different regularity depending on the direction, but
for every point there is always at least one non-trivial sector S

¡
θ̄, ϑ̄, ρ̄

¢
(directed

along one of the directions speciÞed by the set Θ) in which the function satisÞes
some regularity conditions. Both the sector and the regularity bound depend
on the point x.
Traditional models for anisotropy are formulated in cartesian axes (e.g. [51]).

The proposed class allows more geometrical freedom. First, because Θ is not
restricted to the cartesian directions, and second, because the directionality of
the sector S

¡
θ̄, ϑ̄, ρ̄

¢
, which is asymmetrical with respect to its vertex, tolerates

discontinuities at x. This is of crucial importance since it enables accurate edge
adaptation. The fact that FΘα is a subset of the space of locally absolutely
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Figure 4.6: Example of a Voronoi tiling of the surface of the sphere. Each patch is the
base of a cone which has its vertex at the center of the sphere. These cones constitute
a Voronoi tiling for the whole ball.

integrable functions L1loc is purely technical requirement in order to guarantee
the existence of the kernel estimates.
The above deÞnition of anisotropy (4.12) can be a useful model for many

typical images as the class FΘα includes the local polynomial functions (the poly-
nomial smoothness depends on the multi-index α) as well as the spline functions
and, more generally, the piecewise-smooth functions whose discontinuities are
rectiÞable curves.
It is worth observing that whenever L̄α = L̄α (x) = 0 for α = m + 1,

all derivatives ∂αu y(x − ·) = 0. It means that y(x − ·) is a polynomial of
the degrees m1, . . . ,md with respect to u1, . . . , ud in the area restricted by
v ∈ S ¡θ̄, ϑ̄, ρ̄¢. Note also that polynomials in u (x, θ) coordinates are also poly-
nomials in u (x, 0) = x and, since they are inÞnitely differentiable, relations such
as (3.3) hold for all derivatives.

Keeping this model of anisotropy in mind, we introduce a family of varying-
scale kernels whose directionality and regularity are designed for accurate anisotropic
estimation.

Covering of the sphere and conical sectors

Let {Dθk}k=1,...,K be a covering of the unit sphere ∂Bd =
©
x ∈ Rd : kxk = 1ª

with a Þnite family of non-overlapping8 contractible bodies9 (in the sphere topol-
ogy) Dθk ⊂ ∂Bd whose baricenters have spherical angular components θk. For
any given h ∈ R+, Shθk =

S
0≤α≤h αDθk are then the corresponding positive

cones constituting an alike covering of the ball hBd = {x ∈ Rd : kxk ≤ h} with
angular sectors having their vertex in the origin and oriented as θk. A classical
example of such a family of sectors is the Voronoi tiling of the ball, constructed
given a set of points on the sphere, illustrated in Figure 4.6.

8Given a family of sets {Ck}k, they are said to be non-overlapping if, for any two sets
Ck0 , Ck00 , the intersection of their interiors is empty, ûCk0∩ûCk00 = ∅. However, for our practical
considerations, it is enough to assume that sets are non-overlapping if the measure of their
intersection is zero, µ (Ck0 ∩Ck00 ) = 0.

9A set C is said to be a body if and only if it is equal to the closure of its non-empty

interior, C = ûC 6= ∅.
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The �yh,θk(x) in (4.5) is the estimate of y(x) using the observations from the
sector Shθk . Optimization of h for each of the directions, following Section 4.1.2,
gives the adaptive-scales estimates �yh+(x,θk),θk depending on θk.
It should be noted that the majority of scale-optimization techniques are

based on the thresholding in some orthogonal-transform domain. The design
of multiscale orthogonal (or bi-orthogonal) decompositions on arbitrarly-shaped
regions or with oriented atoms is a rather challenging task. This task becomes
particularly hard if one tries to design a domain where �natural� signals have a
sparse representation. It is well-known, that latter is a necessary condition for
the thresholding to be effective.
On the contrary, narrow and oriented domains, such as the conical sectors

Shθk , pose absolutely no complication for the design of directional-LPA kernels.
Thus, the problem of how to encompass the overall behaviour of the func-
tion y within a sector can be dealt efficiently by means of speciÞcally designed
directional-LPA kernels supported on the sector. Endowing these kernels with
a scale parameter h allows to formulate the originally geometrical problem into
an adaptive-scale selection problem that can be solved by the ICI rule.

Kernel design

Let wh,θk be a compactly supported window such that suppwh,θk = S
h
θk
for all

values of the scale parameter h. For example, a possible � and simplest � choice
for such windows is wh,θk = χShθk .
According to Section 2.3.2 � at least from a theoretical stand-point � depend-

ing on α, one can select an appropriate polynomial order m for the directional-
LPA kernel design. The set of polynomial generators (3.4)

©
φn,θk

ªN
n=1

=©
uoθk/o!

ª
o∈Om

� which is constructed with respect to a rotated coordinate sys-
tem uθk in such a way that u1 coincides with the main axis of the conical sector
Shθk � is used for the local approximation.
Again according to Section 2.3.2, the Lipschitz bound Lα determines a non-

zero ideal-scale, which may be approximated by using the ICI rule.
Finally, when the sectors Shθi are all equal up to a rotation, then the windows

wh,θi can simply be obtained as rotated
10 copies of one basic window wh = wh,0.

The directional-LPA in the rotated variables is then applied independently, for
each of the rotated windows, as described in Section 3.3.

Anisotropic estimator

The union U+x of the supports of gh+(x,θk),θk , U
+
x =

S
k supp gh+(x,θk),θk , can be

regarded as an approximation of the best local vicinity of x in which the esti-
mation model corresponding to the class FΘα Þts the data. Figure 4.7 illustrates
this concept and shows sequentially: a local best estimation neighborhood U∗x ,
a sectorial segmentation of the unit ball, and the sectorial approximation of
U∗x using the adaptive scales h

+(x, θk) deÞning the length of the corresponding

10 In the discrete domain, the rotation method should be chosen accordingly with the
smoothness of wh,0. If wh,0 = χSh0

, then the use of linear or higher-order interpolation

to perform the rotation is � in practice � not recommendable, as it produces rotated windows
wh,θ that are not characteristic functions. In the majority of our implementations, the simpler
nearest-neighbor interpolation has been used to compute the rotated windows.



4.3. Anisotropic LPA-ICI pseudo-code 49

Figure 4.7: a) an ideal estimation neighborhood U∗x , b) the unit ball segmentation, c)
sectorial approximation of U∗x .

sectors. Varying-scale sectors enable one to get a good approximation of any
neighborhood provided that it is starshaped body.

Two points are of importance here.

First, the method is composed by a number of independent scale-optimizations,
thus the overall complexity is proportional to the number of sectors, K.

Second, we are able to Þnd good approximations of estimation supports
which can be of a complex form; the accuracy of these approximations largely
depends on the �directional resolution� K. It would be advisable that the sup-
ports Shθk closely match the sectors S

¡
θ̄, c̄, ρ̄

¢
where the Lipschitz bounds Lα

hold, the ideal case being {θi}Ki=1 = Θ. However, the sectors S
¡
θ̄, c̄, ρ̄

¢
, as well

as the corresponding Lipschitz bounds are to be considered as unknown, and
in practice the choice of the directional resolution K depends more on imple-
mentation issues (computational and memory limitations, cost-beneÞt analysis,
etc.), rather than on a precise modelling of the function space FΘα .

For the overall algorithm to be effective, we do not even need a covering
of the whole sphere, and the considered partition can be restricted to a few
narrow cones pointing at different directions and covering only a part of the
ideal neighborhood.

The presented construction allows to obtain, through simple-to-implement
scalar optimizations, application speciÞc anisotropic kernels that adapt to the
local image features.

4.3 Anisotropic LPA-ICI pseudo-code

What follows is a conventional pseudo-code that describes in detail the different
steps that are present in a practical implementation of the anisotropic LPA-ICI
denoising algorithm.

Some noisy data z is given, and a collection of directional-LPA varying-scale
kernels

©
ghj ,θk

ª
j=1,...,J
k=1,...,K

is provided. It is assumed that z is affected by additive

white Gaussian noise of unknown variance. Table 4.1 shows the pseudo-code,
following the same notational formalism used in Section 2.4.3 (page 27) for the
pseudo-code of the ICI algorithm (Table 2.1).
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σ =MAD (z)

Á
estimate noise standard deviation

(e.g using robust MAD estimator)±
begin anisotropic LPA-ICI algorithm

�y ≡ 0 ±
initialize fused estimate buffer

ς ≡ 0 ±
initialize fusing weights buffer

for θk = θ1, . . . , θK
±
loop on θ (directions)

varying-scale
LPA Þltering


for hj = h1, . . . , hJ

±
loop on h (scales)

�yhj ,θk = z ~ ghj ,θk
σ�yhj,θk = σ

°°ghj ,θk°°2
¾ Á

compute dir.-LPA estimate

and its standard deviation

end
±
end loop on h

ICI



h+θk ≡ h1
�yh+θk

= �yh1,θk

σ2�y
h+
θk

= σ2�yh1,θk


Á

initialization of adaptive scale and of

corresponding estimate and variance

U = �yh1,θk + Γσ�yh1,θk
L = �yh1,θk − Γσ�yh1,θk

¾Á
initialization of upper and

lower bounds of intersection

for j = 2, . . . , J
±
loop on j (scale index)

U = min{U, �yhj ,θk + Γσ�yhj,θk }
L = max{L, �yhj ,θk − Γσ�yhj,θk }

)Á
update bounds

of intersection

T = U ≥ L ±
test for non-empty intersection

h+θk = hjT + h
+
θk
not(T )

�yh+θk
= �yhj ,θkT + �yh+θk

not(T )

σ2�y
h+
θk

= σ2�yhj,θk
T + σ2�y

h+
θk

not(T )


Á
update adaptive scale,

estimate and variance

end
±
end loop on j (scale index)

Fusing


�y = �y + σ−2�y

h+
θk

�yh+θk

Á
fuse adaptive estimates using

inverse variances as weights

ς = ς + σ−2�y
h+
θk

±
sum the fusing weights

end
±
end of loop on θ

�y =
�y

ς

Á
normalization of fused estimate

(to achieve convex fusing)±
end of anisotropic LPA-ICI algorithm

Table 4.1: Pseudo-code of the basic version of the anisotropic LPA-ICI denoising
algorithm.
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4.4 Illustrations

The Þgures and tables in this section present the results of a denoising experi-
ment.
The true signal y is the Cameraman grayscale image, and the observation z

is given as z = y+ση, where η is a zero-mean Gaussian noise of unitary variance
and σ = 0.1. Figure 8.1, on page 110, shows this noisy observation.
The discrete kernels

©
ghj ,θk

ª
j=1,...,J, k=1,...,K

used for the experiment are
uniform zero-order kernels, m = (0, 0), designed on a conical sector of radius hj ,
thus they are rather simple. The set of scales is H = {1, 2, 3, 5, 7, 11}, where the
scale value corresponds to the length � in pixels �of the conical sector, and K=8
directions {θk}Kk=1 = {(k − 1)π/4 : k = 1, 2, 3, 4, 5, 6, 7, 8}. Figure 4.9 shows the
sectorial support of the kernels

©
ghj ,π/2

ªJ
j=1
.

Figure 4.8 shows the noisy observation and the adaptive scales h+ (·, θk) that
have been selected by the ICI algorithm, with a threshold parameter Γ = 1.
The corresponding adaptive-scale estimates �yh+(·,θk),θk are shown, together with
the Þnal anisotropic estimate �y, in Figure 4.10. Numerical results, with respect
to some standard criteria, are given in Table 4.211.
A comparison between the directional adaptive scales {h+ (·, θk)}Kk=1 of Fig-

ure 4.8 with the non-directional h+ Figure 2.4 (page 30) highlights the improved
efficiency of the directional approach. The most signiÞcant difference consists
in being able to have, at least for some direction θk, an adaptive scale h+ (x, θk)
that is large enough, exactly as in the deÞnition (4.12) of the class FΘα . In-
stead, in the non-directional approach, when approaching an edge, the scale
gets inevitably smaller.
Observe also that, when approaching the boundary of the image, the direc-

tional adaptive scales decrease only in the corresponding direction. Thus, also
for the pixels at the boundary, we are able to Þnd large adaptive scales.

4.5 Fusing: why σ−2?

Indeed, there can be many choices for the deÞnition of the adaptive fusing
weights λ(x, θk) used in the convex combination (4.8). In this section we justify
the choice to use, up to a convexiÞcation factor, the inverse of the variances of
the adaptive estimates as fusing coefficients λ (x, θk). Curiously, this particular
convex combination of adaptive estimates has been proposed originally in [28]
for averaging any collection of different estimates one-dimensional estimates of

11Results analogous to those of Table 4.2, but obtained using with only four sectors (with
a wider aperture) and Γ = 1.2 are given in the table below:

θk π/4 3π/4 5π/4 7π/4 �y
ISNR (dB) 4.55 4.58 4.55 4.47 7.25
SNR (dB) 18.94 18.97 18.94 18.86 21.64
MAE (H1) 9.49 9.42 9.44 9.52 6.66
RMSE (H2) 15.14 15.10 15.14 15.29 11.10
MAX (H∞) 133.0 120.6 119.7 112.3 98.9

Although, compared to Table 4.2, the criteria values for the directional adaptive-scale esti-
mates are better, the anisotropic fused estimate achieves a lower quality of reconstruction.
This shows the advantage of the fusing of a larger number of estimates obtained using �nar-
rower� sectors. Further comments on this results are given in Section 4.6.
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Figure 4.8: Clockwise from top-left, the adaptive scales h+ (·, θk) , θk =
7π
4 ,

3π
2 ,

5π
4 , π,

3π
4 ,

π
2 ,

π
4 , 0 , and, in the center, the noisy observation z (σ = 0.1). Smaller

scales are represented using a darker shade of gray. Observe how the adaptive scales
reveal the structures in the image.

Figure 4.9: The supports of the discrete kernels ghj ,π/2 , hj = 1, 2, 3, 5, 7, 11. The origin
pixel is marked with a circle.
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Figure 4.10: Clockwise from top-left, the adaptive-scale estimates �yh+(x,θk) (x) ∀x,
θk =

7π
4
, 3π
2
, 5π
4
, π, 3π

4
, π
2
, π
4
, 0 , and, in the center, the fused anisotropic estimate �y.

θk 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 �y
ISNR (dB) 4.13 3.57 4.08 3.56 4.11 3.44 4.07 3.55 8.07
SNR (dB) 18.52 17.96 18.47 17.95 18.50 17.83 18.46 17.95 22.46
MAE (51) 10.67 11.55 10.80 11.59 10.69 11.70 10.82 11.58 6.44
RMSE (52) 15.90 16.95 16.00 16.98 15.93 17.21 16.01 16.98 10.10
MAX (5∞) 131.6 114.7 124.2 117.0 112.6 142.5 114.4 125.9 85.3

Table 4.2: Criteria values for the denoising of the Cameraman image using 8 directional
adaptive estimates.
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different order. We propose two different considerations, the Þrst of statistical
ßavour, the second more geometrical. In particular, we show:

1. (Section 4.5.1) assuming that the directional adaptive estimates are inde-
pendent and unbiased, such fusing is the maximum-likelihood estimate of
y (x) given

©
�yh+(x,θk),θk (x)

ªK
k=1
;

2. (Section 4.5.2) for the simplest choice of kernels, the fused estimate (4.8)
is exactly the average of the signal over the anisotropic adaptive neighbor-
hood �U+x , and, in this sense, the anisotropic estimator is just an estimator
of the form (4.4), where the ideal neighborhood U∗x is substituted by its
approximation U+x .

4.5.1 Fusing unbiased estimates

Let us assume that the directional adaptive estimates �yh+(x,θk),θk (x), k =
1, . . . ,K, are independent and unbiased. This latter condition is generally never
satisÞed12, nevertheless, some analysis from the coming Section 4.6.3 (in par-
ticular a footnote on page 59) shows that in practice they are much less biased
than one would expect and that, compared to their overall MSE, the compo-
nent due to systematic error is negligible. To achieve independency it is enough
to assume that the kernels

©
gh+(x,θk)

ªK
k=1

are non-overlapping13, so that the
estimates are obtained using observations from non-overlapping subsets. When
suppwh,θk = S

h
θk
the condition is clearly satisÞed.

Under these two assumptions, we have that the estimates are independent,
normally-distributed random variables with mean y (x) and variance σ2�yh+(x,θk),θk (x)

,

�yh+(x,θk),θk (x) ∼ N
³
y (x) , σ2�yh+(x,θk),θk (x)

´
.

The corresponding log-likelihood, is

L = ln
Y
k

¡
2πσ2k

¢− 1
2 e

− 1

2σ2
k

³
�yh+(x,θk),θk

(x)−y(x)
´2
=

=
X
k

−1
2
σ−2k

¡
�yh+(x,θk),θk (x)− y (x)

¢2
+ ln

³
(2π)

−1/2
σ−1k

´
where σ2k(x) , σ2�yh+(x,θk),θk (x). Differentiating with respect to y, we obtain

∂L

∂y
=
X
k

σ−2k
¡
�yh+(x,θk),θk (x)− y (x)

¢
.

By solving ∂L
∂y = 0, we come to the fusing formula (4.8),

y (x)
X
k

σ−2k =
X
k

σ−2k �yh+(x,θk),θk (x) ,

y (x) =

P
k σ

−2
k �yh+(x,θk),θk (x)P

k σ
−2
k

=
X
k

σ−2kP
j σ

−2
j

�yh+(x,θk),θk (x) .

12According to Section 2.3, unless y is accurately polynomial, or the adaptive kernel is a
Dirac-delta, the adaptive estimates are always biased estimates.
13By �non-overlapping kernels� we mean that the intersection of the supports of any two

kernels has measure equal to zero.
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4.5.2 Uniform kernels for a uniform anisotropic kernel

In what follows, we revisit the support-optimization approach of Section 4.1.1 in
terms of adaptive fusing of directional uniform-kernel estimators. By �uniform�
we mean that the kernels are the normalized indicators of their support. For
the LPA, this is achieved using a uniform14 window and zero-order polynomials,
m = (0, 0).

Let us consider the simplest case, where gh,θk = 1Shθk
≡ 1/ R

Shθk
= 1/µ

¡
Shθk
¢
,

i.e. where all kernels are constant on their non-overlapping sectorial support.
Then, according to Section 4.1.1, σ2�yh,θk (x) = σ

2/
R
Shθk

dv.

According to (4.8), with σ−2k (x) , σ−2�yh+(x,θk),θk (x)
,

λ (x, θk) = σ
−2
k (x)/

X
j

σ−2j (x) =

= σ−2µ
³
S
h+(x,θk)
θk

´
/
X
j

σ−2µ
³
S
h+(x,θj)
θj

´
=

= µ
³
S
h+(x,θi)
θi

´
/
X
j

µ
³
S
h+(x,θj)
θj

´
= µ

³
S
h+(x,θk)
θk

´
/µ
¡
U+x
¢

(the last equality holds because the sectors Sh
+(x,θj)
θj

are non-overlapping), then

�y(x) =
X

k
λ(x, θi)�yh+(x,θk),θk(x) =

X
k

µ

µ
S
h+(x,θk)
θk

¶
µ(U+

x )

R
S
h+(x,θi)
θk

z(x−v)dv

µ

µ
S
h+(x,θk)
θk

¶ =

=
1

µ
¡
U+x
¢X

k

Z
S
h+(x,θk)
θk

z(x− v)dv = 1

µ
¡
U+x
¢ Z

∪kSh
+(x,θk)

θk

z(x− v)dv =

=

R
U+
x
z(x− v)dv
µ
¡
U+x
¢ =

Z
1U+

x
(x− v) z(v)dv ≈

Z
1U∗

x
(x− v) z(v)dv.

Therefore, under these hypotheses, the fused anisotropic estimate �y (4.8) is
exactly identical to the estimate that would have been obtained by using the
normalized indicator of the adaptive anisotropic neighborhood U+x as the esti-
mation kernel in formula (4.4)15 . Figure 4.11 illustrates the described feature
of the fusing (4.8), in the case of four sectorial adaptive estimates.

14For the window function it is enough to assume that it is constant on its support, because
� as it is pointed out in Sections 1.2.2 and 1.3 � the resulting kernel is not affected by the
multiplication of the window function by a constant factor.
15The difference between the ideal estimate (4.4) and the adaptive estimate (4.8) isZ

1
U+x
(x− v) z(v)dv −

Z
1U∗x (x− v) z(v)dv =

Z ³
1 �U+x

(v)− 1 �U∗x (v)
´
z(v)dv =

=

Z
�U+x ∩ �U∗x

Ã
1

µ
³
U+x

´ − 1
µ(U∗x)

!
z (v) dv +

Z
�U+x \ �U∗x

z(v)

µ
³
U+x

´ dv − Z
�U∗x\ �U+x

z(v)

µ( �U∗x)
dv

and can be bounded as follows,¯̄̄̄Z ³
1 �U+x

(v)−1 �U∗x (v)́ z(v)dv
¯̄̄̄
≤
Ã
µ( �U+x ∩ �U∗x)|µ(U∗x)−µ(U+x )|

µ
³
U+x

´
µ(U∗x)

+
µ( �U+x \ �U∗x)
µ
³
U+x

´ +
µ( �U∗x\ �U+x )
µ( �U∗x)

!
esssup
�U+x ∪ �U∗x

|z| .
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Figure 4.11: Fusing procedure in the case of uniform, non-overlapping kernels. Four
sectorial kernels gh+(x,θk),θk are fused together. The resulting anisotropic kernel g

+
x

(4.10) is exactly the normalized indicator 1
U+x

of the adaptive anisotropic neighbor-
hood, which, for non-overlapping kernels, is always equal to the union of the sup-
ports of Sh

+

θk
of the individual kernels. Observe that the normalization of the kernels,R

gh+(x,θk),θk =
R
g+x = 1, means that the volume of each cylinder in the Þgure is

equal to one.

4.6 Ideal scale h∗ and the use of ICI for fused
estimates

The derivation of the ICI rule presented in Section 2.4 is based on the accuracy
analysis from Section 2.3. That analysis considered a single estimator. Yet, in
the previous sections, we proposed the use of the ICI for the optimization of
a number of estimates, that we then fuse together. It is quite natural to ask
ourselves to which extent the analysis from Section 2.3 can be considered valid
for the optimization of multiple estimates, what can be the meaning of �ideal
scale� in the multi-directional context, and how the two main aspects of the
anisotropic estimator, namely the scale-adaptation and the fusing, interact.

In this section we address these issues by means of analytical derivations
based on asymptotics. The result of this analysis shed some insight on the
statistical characteristics of the adaptive directional estimates, and � more im-
portantly � highlight the dependancy between the dimension d and Γ. Because
of its asymptotical nature, this analysis is subject to the same criticism that
was pointed out in Section 2.4.4. It is therefore important to anticipate that
the results of this analysis are found experimentally to be not only qualitatively
exact, but also quantitatively quite accurate. Thus, they serve as a useful pilot
in the algorithm�s practical design and optimization.

If the considerations of Section 4.5 can be described as �a look into the fusing
from the ICI -rule�s point-of-view�, then this section is sort of �a look into the
ICI rule from the fusing�s point-of-view�.

4.6.1 Practical impact of the Γ parameter

The ICI algorithm is actually an optimization for the bias-variance tradeoff of
varying scale kernel estimates. The ideal scale h∗ that minimizes the risk l̄ is
found, according to the analysis from Section 2.3.3, as the one for which the
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ratio between bias and standard deviation reaches a certain value γ (equation
(2.8) and (2.10)).
The threshold parameter of the ICI algorithm Γ = γ + χ1−λ/2 plays a

relevant role in the selection of the adaptive scale. In Section 2.4.4 we observed
that a too large Γ makes the intersection of the conÞdence intervals more likely
to be non-empty, and that as a consequence the chosen adaptive scale may be
rather large. Analogously, with a small Γ, the empty intersection is likely to
happen at a smaller scale. From a purely theoretical point of view, the correct
tuning of the Γ parameter consists of choosing the quantile χ1−λ/2 in such a way
that the adaptive scale h+ satisÞes, with a small margin of error, an equation
like (2.8):

m̄�yh+(x)

σ�yh+(x)
' γ.

Let us assume that such a tuning of Γ has been performed, and that an
�algorithmically� correct value of χ1−λ/2 has been found.

4.6.2 MSE of the anisotropic �fused� estimate

If, instead of one individual estimate, we consider a fused estimate such as
�y (x) =

P
k λ (x, θk) �yh+(x,θk),θk (x), then the mean squared error that one should

try to minimize is not E
n¡
y − �yh(x,θk),θk (x)

¢2o
, but rather

E

½³
y −

X
k
λ (x, θk) �yh+(x,θk),θk (x)

´2¾
.

Let us assume that the adaptive scales h+ (x, θk) have already been se-
lected. Given the variances σ2k(x) = σ2�yh+(x,θk),θk (x)

and bias terms m̄k(x) =

m̄�yh+(x,θk),θk
(x) of the individual directional adaptive estimates �yh+(x,θk),θk (x),

the variance of the fused estimate �y (x) (4.8) is (assuming the independence
of the directional estimates, i.e. assuming that the kernels gh+(x,θk),θk don�t
overlap)

σ2�y(x) =
X
k

λ2(x, θk)σ
2
k(x), (4.13)

and an upper bound of the bias is 16

m̄�y(x) =
X
k

λ(x, θk)m̄k(x). (4.14)

An upper bound of the anisotropic estimate�s mean squared error is thus given
by l̄�y(x) = σ2�y(x) + m̄

2
�y(x).

16The upper bound (4.14) follows easily from¯̄
(
P
k λk�yk)− y

¯̄
=
¯̄P

k λk(�yk − y)
¯̄ ≤Pk λk |�yk − y| ,

where the equality between the Þrst and the second term is a consequence of
P
k λk = 1.

This upper bound can be interpreted as the �worst case� where all the systematic errors have
the same sign, preventing thus any compensation between the bias terms to take place while
fusing.
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4.6.3 A simpliÞed analysis

For convenience, in what follows we assume an even simplier model of the
anisotropic neighborhood. We require that, depending on θk, h+ (x, θk) is either
0 or some constant h+. It means that the anisotropic neighborhood is made of
a number, say, ÿK ≤ K, of sectors and each one of them has the same length h+.
Despite its simplicity, such a model can be still quite reasonable in the vicinity
of edges. It also means that λ(x, θk) is either 0 or some constant λ

+. The con-
vexity constraint

P
k λ(x, θk) = 1 becomes ÿKλ

+ = 1, i.e. λ+ = ÿK−1. Without
loss of generality, we can further assume that h+ (x, θk) > 0 ⇐⇒ k ≤ ùK.
Therefore, the fused estimate, its variance, the upper bound of its bias, and the
upper bound of its MSE, have the form

�y (x) =
X ùK

k=1
λ+�yh+,θk (x) ,

σ2�y(x) =
X ùK

k=1

¡
λ+
¢2
σ2�yh+,θk (x)

= ÿK−1σ2�yh+,θ1 (x)
,

m̄�y(x) =
X ùK

k=1

¡
λ+
¢
m̄�yh+,θk

(x) = m̄�yh+,θ1
(x),

l̄�y(x) = σ2�y(x) + m̄
2
�y(x) =

ÿK−1σ2�yh+,θ1 (x)
+ m̄2

�yh+,θ1
(x). (4.15)

Let us now look for the ideal value of the constant h+. By recalling the
asymptotic expressions (2.5)-(2.6) from Section 2.3.2, and mimicking the anal-
ysis of Section 2.3.3, we derive

∂h+ l̄�y = 0 ⇐⇒ 2a2αh2α−1 − 2 ÿK−1b2βh−2β−1 = 0

and thus this ideal scale h∗ùK is found as

h∗ùK =
µ
ÿK−1 βb

2

αa2

¶ 1
2α+2β

= ÿK
−1

2α+2β h∗1, (4.16)

where h∗1 = h
∗ is the ideal scale found by minimizing the ideal risk of an indi-

vidual estimate (exactly as in equation (2.7) of Section 2.3.3).

By replacing h∗ùK into the bias and variance expressions (2.5) and (2.6) and
by considering the ratio between these ideal values of the bias squared and the
variance we obtain

m̄2
�yh∗

ùK
,θ1
(x) = a

2
³
ÿK−1 βb2

αa2

´ α
α+β

, σ2�yh∗
ùK
,θ1
(x) = b

2
³
ÿK−1 βb2

αa2

´ −β
α+β

,

m̄2
�yh∗

ùK
,θ1
(x)

σ2�yh∗
ùK
,θ1
(x)

= ÿK−1 β
α = γ

2
ÿK
= ÿK−1γ21 = ÿK−1γ2. (4.17)

Directly from (4.16), but also indirectly from the inequalities (2.10), we
conclude that h∗ùK ≤ h∗1 = h∗, with the strict inequality when ùK > 1. The risk
l̄�yh∗

ùK
,θ1
(x) is then inevitably larger than the ideal risk (2.9) l̄�yh∗,θ1 (x) whenever

ùK > 1. In this sense, we say that �yh∗ùK ,θk (x), k = 1, . . . , ùK, are sub-optimal
estimates.
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Such a result is of fundamental importance. Roughly speaking, it suggests
two facts:

(a) the optimal fused anisotropic estimate should be composed
by a number of sub-optimal directional estimates;

(b) the fusing of optimal directional estimates
produces a sub-optimal anisotropic estimate.

In (a) the sub-optimality of the directional estimates is due to a bias-variance
ratio unbalanced towards the variance, whereas in (b) the sub-optimality of the
anisotropic estimate is due to a ratio unbalanced towards the bias.
The nature of (a) can be intuited by observing Figure 4.10, where it can

be seen that the directional adaptive estimates are rather noisy. The numerical
results from Table 4.2, in which the directional estimates present � compared to
the fused estimate � surprisingly low values for the objective criteria, conÞrm
the suboptimality of the individual estimates17. This suboptimality is necessary
to achieve an optimal fused estimate: if the criteria values of the individual
estimates were higher (and they could have been higher if a larger value of Γ
would have been used), then the results for the Þnal fused estimate would have
been lower (too large bias).

4.6.4 Speculations and results on the value of Γ

From equations (4.17) and (2.11), and under the same assumption given at the
end of Section 4.6.1, we can derive the following relations between the ideal
value of the ICI threshold parameter Γ and the number of fused estimates ùK:

Γ1 = Γ = γ + χ1−λ/2,

Γ ùK = γ ùK + χ1−λ/2 = ùK− 1
2 γ + χ1−λ/2. (4.18)

It means that the �ideal� (according to the above much simpliÞed analysis) value
of the threshold parameter Γ should be adjusted depending on the number
of fused sectors and � more generally � depending on the shape of the ideal
neighborhood. Qualitatively, the more isotropic the shape, the lower the Γ.
In practice however, one does not know in advance the shape of this neigh-

borhood and unless a costly, iterative procedure � in which the values of Γ are
updated recursevely as the shape of the neighborhood is estimated � is imple-
mented, the only practical choice, which we follow in all our programs, is to
assume some sort of isotropy (the most natural initial guess on the shape of the
neighborhood) in order to use the ICI rule. Extensive simulations, as well as
the examples provided in this thesis, show that this choice is actually efficient,
and that, without turning to the use of further iterations, an accurate enough

17From the same table, it is possible, to roughly extrapolate quantitatively the bias-variance
ratio for the directional estimates and the fused one. Let us use the approximation (4.15) with
an average MSE value among directions,' 280, and the MSE of the fused estimate, ' 100.

We can derive 280 −m2 ' ¡
100−m2

¢
ùK, which gives m2 ' 100 ùK−280

ùK−1 . For ùK = 8, 7, 6, 5,

it gives, respectively, m2 ' 74, 70, 64, 55. This suggests that the estimation error for the
anisotropic fused estimate is � in terms of bias and variance � quite balanced, whereas the
bias component of the adaptive directional estimates is nearly negligible when compared to
the stochastic error. Thus, one might regard the adaptive directional estimates as �practically
unbiased�.
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estimate of the shape of the ideal neighborhood is obtained even when this ideal
shape is substantially anisotropic.

In connection with this observations, it is important to point out that the
optimal value of Γ depends � even assuming isotropy � on the total number of
directions K.
In the video-denoising simulations presented in the coming Section 10.1, a

value of Γ = 0.7 is used for the 3D denoising (with a total number of directions
K = 26), whereas the 2D frame-by-frame denoising (K = 8) is performed using
a larger Γ = 0.9. Analogously, the image denoising examples of Section 4.4, also
obtained for K = 8 sectors, use about the same18 threshold, Γ = 1, while those
corresponding to 4 sectors (given in the footnote of page 51) use Γ = 1.2. All
these results are obtained using uniform zero-order kernels, therefore γ can be
assumed to be the same for all experiments.
The fact that the preferred value of Γ gets smaller asK increases conÞrms the

qualitative correctness of the above analysis. On the other hand, the mentioned
empirical relations between K and Γ can be used to assess quantitatively its
precision.
To do so, let us consider Þrst the extreme cases for K = 4 and K = 26.

They give, by solving a linear system based on (4.18),(
1.2 = 4−

1
2 γ + χ1−λ/2

0.7 = 26−
1
2 γ + χ1−λ/2

=⇒ γ = 1.645
χ = 0.377 .

Some basic validation can be obtained by inserting these numbers again in (4.18)
for K = 8. It yields Γ8 = 8−

1
2 × 1.645 + 0.377 = 0.959, indeed very close to

both values of Γ used in the other two experiments.
This accuracy can be veriÞed also for the single estimate (K = 1) from

the preliminary examples of Section 2.4.5. The best-found �oracle� value for Γ
corresponding to Figure 2.5, Γ = 2, is nearly identical to the value that can be
�predicted� by the above analytical formula, Γ1 = γ + χ1−λ/2 = 2.022.
All these results show how (4.18) can be used to predict � quite accurately

� the value of Γ for a different number of dimensions d, or for a different �di-
rectional resolution� K.

4.7 Uniform fusing for overlapping discrete ker-
nels

Let us consider again the simplest case of zero-order kernels designed on uniform
window functions. The resulting directional-LPA kernels are simple averaging
kernels on their support. If the underlying signal y is a piecewise constant
function, then the ideal adaptive kernel for estimation is a uniform averaging
kernel. It means that the anisotropic kernel g+x (4.10) should be a uniform kernel.
It is shown in Section 4.5.2 that, if the kernels are uniform and non-overlapping,
then g+x is also uniform, and in particular

g+x = 1U+
x
, and �y (x) =

1

µ
¡
U+x
¢ Z

�U+
x

z (v) dv. (4.19)

18The 0.1 difference between the choices of Γ is negligible, as shown in Section 2.4.5.
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If the kernels are overlapping, then g+x , as obtained using the fusing formula
(4.8), is not necessarily constant on U∗x .
In the discrete case, the directional kernels are inevitably overlapping, since

the origin � which belongs to the support of each one of them � is a set of
measure one.
However, by exploiting a different fusing formula, it is possible to obtain,

using the same directional estimates �yh+(x,θk),θk (x), a Þnal estimate �y (x) that
exactly coincides with the average of the observation z on the adaptive neigh-
borhood U+x of x.
Let Λ (x) =

P
j σ

−2
j (x). Clearly, λ(x, θk) = σ−2k (x)/Λ (x). Then, recalling

that for uniform kernels σ−2k (x) = σ
−2µ

¡
supp gh+(x,θk),θk

¢
, we obtain

σ−2k (x)�yh+(x,θk),θk (x) =

= σ−2µ
¡
supp gh+(x,θk),θk

¢ Z
gh+(x,θk),θk (x− v) z(v)dv =

=

Z
supp gh+(x,θk),θk

σ−2z(x− v)dv.

That is, normalization of the sectorial estimates by their corresponding variances
is equivalent to the integration on the adaptive sectorial kernel support against
the constant weight σ−2. This is true for any (continuous or discrete) uniform
kernel.
Consider now the discrete case, and assume that the kernels are all overlap-

ping in and only in the origin. Such a conÞguration is typical when dealing with
discrete data19. The fused estimate deÞned as

�y(x)=
σ−2z(x) +

P
k

¡
σ−2k (x)�yh+(x,θk),θk (x)− σ−2z(x)

¢
Λ (x) + σ−2 (1−K) (4.20)

is thus exactly equal to
R
U+
x
σ−2z (x− v) dv/ R

U+
x
σ−2dv, which is obviously

equal to (4.19). Formula (4.20) allows to obtain a Þnal estimate in the form
(4.10) where the anisotropic kernel g+x is uniform over the adaptive anisotropic
neighborhood U+x .
Let us remark that the above formula makes sense only in the discrete case,

where the origin (one pixel, in the case of images) is a set of measure one; in
the continuous case the origin is a set of measure zero and is therefore negligible
with respect to the Lebesgue integration. Observe also that the denominator
of (4.20) is indeed always positive: in fact, since we consider the discrete case,
µ
¡
supp gh+(x,θk),θk

¢ ≥ 1, hence Λ (x) ≥ σ−2K.
Example

Figure 4.12 illustrates the different Þltering ability resulting from the use of
the different fusing formula (4.20) compared to the standard fusing (4.8). The
surface used in this example is taken from [80]. Observe that the underlying
original signal, with the exception of a large step discontinuity, is very smooth

19For images, when K ≤ 8 it is always possible to design the directional window supports
in such a way that they don�t overlap in pixels other than the origin. For three-dimensional
data (e.g. video), such a conÞguration can be achieved with K ≤ 26.
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Figure 4.12: The original surface (top left), its noisy observation (top right) and the
anisotropic LPA-ICI estimates obtained using two different fusing rules, according to
formula (4.8) (bottom left) and (4.20) (bottom right).

and it is locally nearly ßat, thus enabling (with very good approximation) the
assumption that signal is constant on the anisotropic adaptive neighborhood.
Unless the signal presents this type of uniformity, there is no clear advantage

in using the more involved formula (4.20), and for the Þltering of natural images
we always use the much simpler (4.8).

4.8 Variance of the fused estimate

In this section we compute the variance of the Þnal fused estimate �y (x). It
plays an important role for the practical implementation (Section 8.2) of the
recursive LPA-ICI Þltering algorithm (Chapter 6).
The general form of the variance of the Þnal estimate �y (x) is

σ2�y(x) = σ
2
°°g+x °°22 . (4.21)

Depending whether the kernels gh+(x,θk),θk , k = 1, . . .K, are overlapping
or not, and depending on the fusing formula (4.8) or (4.20) which is used to
combine these kernels, the actual explicit form of (4.21) is obviously different.
To simplify the notation, we omit here the letter x, and deÞne λk = λ(x, θk),

and σ2k = σ
2
�yh+(x,θk),θk

(x).
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4.8.1 Non-overlapping kernels

In the case of non-overlapping kernel supports, formula (4.21) can be easily
rewritten in terms of the variances of the individual directional estimates or,
equivalently, in term of the individual directional kernels. Indeed, since the
supports are non-overlapping, the estimates �yh+(x,θk),θk are independent random
variables (as k varies). Thus, the variance of �y (x) has the simple form

σ2�y(x) =
X
k

λ2kσ
2
k

and from the expression of the coefficients λk = λ(x, θk) (4.8), follows that

σ2�y(x) =
X
k

Ã
σ−2kP
j σ

−2
j

!2
σ2k =

X
k

σ−2k³P
j σ

−2
j

´2 =
=

³X
k
σ−2k

´−1
= σ2

³X
k
1/
°°gh+(x,θk),θk°°22´−1 . (4.22)

Thus the variance of the fused estimate (4.8) is equal to the inverse of the sum
of the variances of the directional estimates.

4.8.2 Origin-overlapping kernels

If the kernels gh+(x,θk),θk are overlapping, then the directional estimates are
no longer independent, and their respective overlap areas should be taken into
account. We consider the situation where the directional kernels always have
the origin as the only common point. In this case the variance of the fused
estimate becomes

σ2�y(x) = σ
2
X

k
λ2k

°°°gh+(x,θk),θk ¯̄x6=0°°°22 + σ2 ³Xk
λkgh+(x,θk),θk (0)

´2
=

= σ2
X

k

³
λ2k
°°gh+(x,θk),θk°°22 − λ2kg2h+(x,θk),θk (0)´+σ2 ³Xk

λkgh+(x,θk),θk (0)
´2
.

By substituting the coefficients λk with their expressions in terms of the vari-
ance of the directional estimates, we obtain λk = σ−2k /

P
j σ

−2
j = σ−2k /Λ,

where Λ =
P
j σ

−2
j . More precisely, λk = Λ−1σ−2/

°°gh+(x,θk),θk°°22 , and Λ =P
j 1/σ

2
°°gh+(x,θj),θj°°22.

σ2�y(x) =
X
k

 Λ−2σ−2°°°gh+(x,θk),θk°°°22 −
Λ−2σ−2g2

h+(x,θk),θk
(0)µ°°°gh+(x,θk),θk°°°22
¶2
+σ−2

Λ2

ÃX
k

gh+(x,θk),θk
(0)°°°gh+(x,θk),θk°°°22
!2

=

= Λ−2
X
k

σ−2k − σ2

Λ2

X
k

g2
h+(x,θk),θk

(0)

(σ2k)
2 + σ2

Λ2

ÃX
k

gh+(x,θk),θk
(0)

σ2k

!2
=

=

P
k σ

−2
k − σ2Pk

µ
gh+(x,θk),θk

(0)

σ2k

¶2
+

µ
σ
P
k

gh+(x,θk),θk
(0)

σ2k

¶2
³P

j σ
−2
j

´2 . (4.23)

Observe that when only one kernel is non-zero in the origin, i.e. gh+(x,θk),θk (0) =
0 ∀k 6= k̄, the last formula reduces exactly to equation (4.22).
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4.8.3 Uniform fusing

The unelegant (4.23) reßects the �non-uniformity� of the fusing (4.8) for kernels
that are overlapping in the origin.
For such kernels, the variance of the fused estimate takes a much simpler

expression if the corresponding adaptive estimates are fused according to the
uniform fusing (4.20).
Using this formula the resulting anisotropic kernel g+x is uniform on the

anisotropic neighborhood U+x , where it is equal to 1/µ (U
+
x ). In particular, it is

rather easy to realize that

µ
¡
U+x
¢
=
XK

k=1
µ
¡
supp gh+(x,θk),θk

¢−K + 1 = σ2Λ (x)−K + 1.

Hence, we can calculate the variance of �y (x) as,

σ2�y(x) = σ
2
°°g+x °°22 = σ2 µ (U+x )¡

µ
¡
U+x
¢¢2 = σ2

σ2Λ (x)−K + 1
. (4.24)

4.9 Robust ICI for anisotropic estimation

We propose a special type of weighted order-statistics (WOS) Þlters to be used
within the ICI algorithm, so to reduce the impact of the randomness of the noise
on the adaptive scales, and thus to improve the efficiency of the ICI rule. The
action of this nonlinear Þlter is to correct some of the mistakes in the selection
of the adaptive scale. These mistakes are a kind of �false alarm� triggered by
the detection of the empty intersection of conÞdence intervals.
They are clearly visible in the adaptive-scales diagram for the Cheese image,

shown in the Þrst two subimages to the left in Figure 4.13. From these images,
it is easy to recognize the impulsive nature of the errors20 . On the right part of
the same Þgure are shown the �corrected� adaptive scales obtained exploiting
the proposed directionally-weighted WOS Þlters.
This Þltering has an obvious beneÞcial impact on the quality of the corre-

sponding adaptive-scale estimate yh+ , and since its computational cost is � com-
pared to the entire anisotropic LPA-ICI algorithm � marginal, it is exploited in
most of the restoration experiments presented in this thesis. Moreover, since the
proposed Þlters are based explicitly on the directional nature of the directional-
LPA kernels, they can be rightly considered as an intrinsic part of the overall
anisotropic LPA-ICI approach.
Before describing how this Þltering is performed, let us make a few remarks.

Preliminaries

It should be clear by now, that choosing a higher threshold parameter Γ effec-
tively helps to reduce the number of these false alarms21. However � as it has
been discussed in the previous sections � this also leads to oversmoothing of

20A rather complete statistical and experimental study of the adaptive-scale selection errors
of the ICI algorithm is presented in [89].
21Also for this reason, in the convergence-rate analysis in [28], it is proposed to use an

increasing Γ = O(√lnn)→∞.
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Figure 4.13: Adaptive scales h+ (·, 0) for the Cheese image resulting from standard
ICI (left) and from the proposed directionally WOS-Þltered ICI (right). Smaller scales
are pictured with a darker shade of gray. For both cases an enlarged portion is also
shown.

details and small features in the signal since the algorithm would allow more
bias to �leak� into the estimate.
In order to suppress the impulsive noise present in the adaptive scales, it has

been originally suggested in [44] to take advantage of the correlation between
the ideal scales relative to nearby pixels by using median Þlters. Such Þltering,
which is performed on the adaptive scales h+ after the ICI algorithm, has
however the drawback of suppressing not only the outliers originated from an
undesired empty intersection of conÞdence intervals, but also some small scales
that are related to actual details in the picture.

Let us say that such a median Þltering is too simple as it does not take into
account the structure of the ICI rule, which is based on a recursive intersection
of conÞdence intervals. More precisely, the simple Þltering attempts to correct
the erroneous adaptive-scales, and not the cause of the error. The cause lies in
an �unwanted� empty intersection of conÞdence intervals at some point during
the algorithm recursions.

Our Þrst claim is that the Þltering should not be done after the ICI algo-
rithm, but rather within the algorithm. The intersection tests (denoted by T in
the algorithm pseudo-code) need to be Þltered.
Second, if we are using a directional kernel � which has an asymmetric

support � it is quite unnatural to use a symmetric median Þlter to perform the
Þltering. Instead, the nonlinear Þlter to be used for correcting the impulsive
errors should also be directional.

From these two observations follows the proposed Þltering strategy: to use
oriented (weighted) non-linear Þlters to clean the intersection of conÞdence in-
tervals at each iteration of the ICI algorithm.

4.9.1 WOS Þlters

Weighted order statistics Þlters (WOS) [101] are a generalization of the weighted
median Þlters (and thus also of the classical median Þlter). For a given mask of
weightsW = [W1, . . . ,WN ], Wn ∈ N, and an offset constant22 O ∈ N, 1 ≤ O ≤P
WN , the output of the WOS Þlter on a set of observations Z = [Z1, . . . , ZN ]

22O is often called the threshold of the WOS Þlter.
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is

WOSW,O (Z) = O-th smallest of {W1♦Z1, . . . ,WN♦ZN} ,
where Wi♦Zi = Zi, . . . , Zi| {z }

i times

The Þltering of the whole signal is performed by applying the WOSW,O opera-
tion in a sliding fashion.
The classical 3×3 median, maximum and minimum Þlters correspond to

W =

1 1 1
1 1 1
1 1 1

 and, respectively, O = 5, O = 9, and O = 1.
4.9.2 Anisotropic LPA-ICI WOS Þlters

We restrict our attention to the case where K = 8 and

{θk}Kk=1 = {(k − 1)π/4 : k = 1, 2, 3, 4, 5, 6, 7, 8} .
It is the most frequently used directional decomposition in our implementations
of the anistropic LPA-ICI technique.
After experimental optimization, the following set of WOS masksWθk and

have been found to give good results with an offset Oθk = 5, k = 1, . . . , 8:

W0 =

1 1 0
2 2 1
1 1 0

 , Wπ/4 =

1 0 1
1 2 0
2 1 1

 , Wπ/2 =

0 1 0
1 2 1
1 2 1

 ,
Wθk , k = 4, . . . , 8 are obtained by counter-clockwise rotation of these masks.

These WOS are in fact weighted medians, since
P
iWi = 9 and the offset is

equal to 5.
The masks Wθ rotate counter-clockwise, with a phase difference of π with

respect to the kernels gh,θ. The weights W are actually matching the supports
of the kernels �gh,θ, andWθ and �gh,θ rotate in phase.
Such WOS Þlters operate on the test of intersections, thus in the pseudo-code

of Table 2.1 (Section 4.3) the following modiÞcation could be made:

T = U ≥ L Ã T =WOSWθk
,O (U ≥ L) .

They are enabled in the algorithm starting from the second iteration (i.e. when
testing the intersection of three conÞdence intervals), leaving unÞltered the Þrst
intersection test, which is very delicate and should not be compromised. On the
other hand, when the scales are large enough, the WOS Þltering can be applied
more than once, in order to exploit the correlation on a wider support23 .
We apply the same Þltering strategy also on the resulting adaptive scales

h+ (·, θk), using the same offset and masks W0
θk
with larger weights for the

central pixel and for the two pixels on its side24:

W0
0 =

1 2 0
2 4 1
1 2 0

 , W0
π/4
=

2 0 1
1 4 0
2 1 2

 , W0
π/2
=

0 1 0
2 4 2
1 2 1

,
23Repeating twice a WOS Þlter with a mask of size 3×3 can be interpreted as a special

WOS Þlter with a mask of size 5×5.
24 Since

P
W 0
i = 13 and O = 5 6= (13 + 1)/2 = 7, WOSW0

θk
,O is not a weighted median

but really a general WOS Þlter.
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Figure 4.14: Weighted order-statistics Þltering within the ICI algorithm. First row is
standard (unÞltered) ICI. Single steps of the standard algorithm are Þltered, then the
combined adaptive scales are Þltered again, yielding the Þnal h+ (·, 0).

W0
θk
, k = 4, . . . , 8 are again obtained by obvious rotations.

Figure 4.14 illustrates this procedure for the adaptive scales of a detail of
the Cheese image.

4.9.3 Binary WOS as thresholding of a linear Þlter

The action of a WOS Þlter on a binary 0-1 image is equivalent to a much faster
operation, based on linear Þltering. It makes the WOS-Þltering of the tests of
intersection a computationally attractive approach for the improvement of the
ICI algorithm.

Let us use the same notation that was used for the deÞnition of WOSW,O.
It is evident that, since Zi ∈ {0, 1} ∀i, WOSW,O (Z) ∈ {0, 1}. In particular,
after sorting from smallest to largest, the set {W1♦Z1, . . . ,WN♦ZN} is a vector
Zwsort = [0, . . . , 0, 1, . . . , 1] of length

P
iWi. The vector Zwsort contains S0 =P

i:Zi=0
Wi zeros and S1 =

P
i:Zi=1

Wi =
P

iWiZi. Obviously S0 =
P
iWi −

S1. The O-th smallest element of {W1♦Z1, . . . ,WN♦ZN} is the O-th element
of Zsort. So WOSW,O (Z) = 1 if and only if S0 < O, i.e. if and only if
S1 >

P
iWi −O.

Thus, the result of the WOSW,O-Þltering of a binary image B can be ob-
tained as follows: Þrst, Þlter B usingW as a linear Þlter mask, e.g. by convolu-
tion against a π-rotated copy ofW, sayWrotπ, and second, check the condition
B~Wrotπ >

P
iWi−O. Where this condition is true, then WOSW,O (B) = 1,

otherwise it is 0.
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4.10 Algorithm complexity and implementation
issues

4.10.1 Complexity

We brießy discuss the computational complexity of the anisotropic LPA-ICI
algorithm.

First, let us consider the cost of an individual direction θk.
The computational cost of calculating an entire estimate yhj ,θk (·) depends

on the size of the observations25, M , and on the size of the kernel, Nhj . Ob-
serve that Nhj ∝ hdj . If convolutions are performed in the space domain, the
complexity is O ¡MNhj¢. If Nhj is particularly large (for example if Nhj ∼M),
then discrete convolution in the frequency domain based on the FFT can be
used, and the cost of computing the estimate is O (M logM).
Since we need to compute sets of varying-scale estimates, the overall cost

for a single direction can be bounded by O (MJNhJ ), where J is the number of
scales and NhJ is the size of the largest kernel. As the image size M increases,
one should consider whether it is appropriate to use larger scales or not. If the
noise level is assumed constant with respect to M , then NhJ can be considered
as Þxed, thus the complexity is O (M). If, on the contrary, the randomness of
the noise increases withM26, then NhJ should also increase, say, proportionally
to M . There are two possibilities, either J is Þxed, and the complexity is
O (M logM), or the number of scales is allowed to increase together with hJ .
The typical choice is to have J ∼ log hJ ∼ log d

p
NhJ =

1
d logNhJ ∝ logM , thus

the complexity is O ¡M log2M
¢
. The ICI, even when the WOS Þlters are used,

has a complexity O (MJ), thus the adaptive scale selection does not affect the
complexity of the algorithm.

Since it is rather unlikely that the number of directions K would need to be
increased together with M , and since we can certainly assume that all direc-
tions have a similar computational cost, the total complexity of the anisotropic
LPA-ICI algorithm can be estimated as O (M), O (M logM), or O ¡M log2M

¢
,

depending on the progression of H with respect to M , and depending on the
restrictions we are ready to impose.

4.10.2 Implementation aspects

Although it may not be completely transparent from the theoretical description,
not only the directional estimates �yhj ,θk (·) are computed �globally� as a con-
volution, but also the ICI is performed globally, simultaneously for the whole
image, and the presented pseudo-codes are both written in matrix/array form.
This enables a rather fast implementation also in environments with a higher
level of abstraction, such as Matlab.
To our knowledge, all other non-parametric estimation techniques that ex-

hibit some sort of anisotropic adaptation (e.g. [81],[78]), are based on costly
iterative procedures repeated in a pointwise manner.

25For example, for a 128× 128 image (d = 2), M = 16384.
26This is the typical behaviour that arises when the pixel-density of digital imaging sensors

(CCD, CMOS) is increased.
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The directional estimations are performed independently for each θk, and
can thus be implemented as parallel processes. Also the varying-scale Þltering
can be parallelized, therefore, in a fully-parallel implementation, the total time
required for the overall algorithm does not exceed the time of computing an
estimate for the largest scale, plus the time required for one ICI algorithm
execution.
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Chapter 5

LPA-ICI for
signal-dependant or
space-variant noise

The standard LPA-ICI Þltering algorithm, as it was proposed in [28], assumes
that the observations z (x) follow the additive white Gaussian noise (AWGN)
model,

z (x) = y (x) + ση (x) ,

where σ is a positive constant and η is standard Gaussian white noise, η (x) ∼
N (0, 1). In spite of its simplicity, this model can be adequate for many appli-
cations. However, there are a number of cases where more general noise models
need to be considered.
The use of the LPA-ICI approach, for observations that do not follow the

above model, is a rather delicate issue, which needs at least some basic analysis.
Let us Þrst introduce two classical observation models: the signal-dependant
noise, and the space-variant noise; the required analysis will be then presented
within the framework of the models.

5.1 Signal-dependant noise
In many applications the observed signal is corrupted by a signal-dependent
noise. The most widely encountered models are Poisson, Þlm-grain, multiplica-
tive and speckle noise. Their common feature is that the variance of the noise
is directly related to the signal. There are a number of adaptive approaches to
this sort of observations based on local-statistics� calculation. In particular the
Þlters by Lee [61, 62] and Kuan [60] are well known in the Þeld.

Let us consider the observations z(x), x ∈ Rd, with the expectations
E{z(x)} = y(x),

where the errors η (x) = z (x)− y (x) are independent and the variance of these
observations is modeled as

σ2z (x) = var{z(x)} = var{η(x)} = ρ(y(x)), (5.1)

71
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ρ being a given positive function of y called the variance function. For example,
we have ρ(y) = (1 − y)y and ρ(y) = y for the Bernoulli and Poisson models
respectively. As usual, the problem is to reconstruct the signal y from the noisy
observations z.
The above observation model can be written also in the following, additive

form:
z (x) = y (x) + ρ1/2 (y (x))n (x) , (5.2)

where ρ is a function that controls the gain of the noise component and n is
some independent noise with variance equal to one and mean equal to zero.
This noise is not necessarily Gaussian and, generally, n (x) can have different
distributions for different points x.
Observe that, in principle, with the exclusion of certain particular cases (for

example when ρ is a constant), estimating σ2z (x) is equivalent to estimating
y (x) itself, since if y (x) is unknown also ρ (y (x)) is.

As an example of the above model, we consider, in the next section, the
Poisson observations. However, the model (5.1) is more general. In particular,
it is especially useful for those problems where the probability distribution of
the observation error is unknown1.

5.1.1 Poisson observations

A traditional example of signal dependant noise is the (direct) Poisson obser-
vations model. It is most frequently used for applications based on photon-
counting. Many biomedical imaging techniques (x-ray scan, PET, etc.), but
also the widespread and mass-produced digital imaging sensors (CCD, CMOS)
are thus often modeled as Poisson observations.
Given a true signal y, its Poissonian observations are given as

z (x) ∼ P (y (x)) , ∀x,
where P (λ) denotes the Poisson distribution of parameter λ. Here, z (x) is the
measured integer number (count) of received/detected photons at the location
x. Its mean value E {z (x)} is usually denoted in the literature as λ (x) and
it represents the signal/object mean intensity at the location x, with brighter
objects emitting a higher number of photons during the observation period
(exposure time). The (discrete) probability function, the mean and the variance
of Poisson random variables z (x) are, respectively,

P (z (x) = k) = e−λ
λk

k!
, k ∈ N,

E {z (x)} = λ (x) ,

var {z (x)} = σ2z (x) = λ (x) .

Equation (5.2) takes then the form

z (x) = λ (x) +
p
λ (x)η (x) .

1These problems are usually solved in the context of the quasi-likelihood [94]. In [22], we
show how the recursive LPA-ICI Þlters can be interpreted as a special kind of quasi-likelihood
estimates.
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Figure 5.1: Probability densities (top) and distributions (bottom) for Poisson and
Gaussian (N (λ, λ)) models, λ = 2, 10, 20, 40. Since the Poisson distribution is discrete,
in the top chart are shown scaled Dirac-impulses (discrete weights) and not the density
itself (which is not deÞned as an ordinary function).

5.2 Space-variant noise

For the signal-dependant noise, the variances σ2z (x) depend only on the expected
value of the observations, i.e. on the underlying signal y (x). However, in
general, one may allow σ2z (x) to be just a (known or unknown) generic function,
independent of y.
Formula (5.2) is, thus, generalized to the following space-variant observation

model,
z (x) = y (x) + σz (x) η (x) . (5.3)

Such stochastic processes are commonly called, especially in the Þnancial
literature, heteroskedastic, meaning that the standard deviation σz (x) is not
constant with respect to the spatial (or temporal) variable x.
Usually the actual distribution of η (x) is unknown and only some of its

moments are known with sufficient accuracy. In what follows, we assume that
η is an independent zero-mean noise with variance equal to one. None of the
higher moments is assumed to be known, and η may also be non-identically
distributed.
Such generality may result in the potential sub-optimality not only of the

linear LPA Þlters, but also of any linear Þlters (typically if the distributions
are heavy-tailed). One way to improve the performance of kernel estimators is
by reweighting using the inverse variance of the integrated samples. However,
such a procedure sensibly increases the computational complexity, since Þltering
cannot be performed by convolutions (the resulting reweighted kernels become
space-variant)2.
Nevertheless, to some extent, such sub-optimality can be effectively ignored

2This particular type of estimators are also discussed in [22], in connection with the quasi-
likelihood.
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if the adaptive-scale selection is carefully managed. The extensive experiments
presented in the second part of this thesis strongly support such a claim.

Two issues should be addressed before considering the use of the ICI rule
with an observation model such as (5.3): the Þrst concerns with the calculation
of the variances σ2�yh of the varying-scale estimates �yh, the second � more subtle
� deals with the distribution of �yh (as a random variable with variance σ2�yh).
The Þrst issue is rather simple and it results in a generalization of equation

(2.4).

5.2.1 Variance for heteroskedastic observations

Since the noise is independent, the variance σ2�yh(x) of the estimate �yh (x) ,

�yh (x) =

Z
z (v) gh (x− v) dv = (z ~ gh) (x) ,

can be calculated as the convolution of σ2z against g
2
h,

σ2�yh(x) =

Z
σ2z (v) g

2
h (x− v) dv =

¡
σ2z ~ g2h

¢
(x) . (5.4)

Remark: If σ2z is constant, or nearly constant, within the support of gh, the
approximation

σ2�yh(x) =

Z
σ2z (v) g

2
h (x− v) dv ≈

Z
σ2z (x) g

2
h (x− v) dv = σ2z (x)

Z
g2h (v) dv

(5.5)
can be used to avoid the computation of the convolution (5.4), and thus contain
the algorithm�s computational complexity.

5.2.2 Variance�s asymptotics

If we assume that σ2z is continuous at x, and that it is uniformly bounded, from
above and from below, by two positive constants, 0 < c ≤ σ2z (x) ≤ C < ∞,
then the asymptotic expression for the variance (2.6) is essentially unchanged.
Because of the bounds, the exponent β remains the same. From the continuity
of σ2z follows that the factor b

2 is proportional to σ2z (x).

Let us now consider the distribution of �yh (x).

5.2.3 ConÞdence intervals for non-Gaussian distributed
estimates

The conÞdence intervals that are intersected in the ICI algorithm traditionally
have the form

Dj =
h
�yhj (x)− Γσ�yhj , �yhj (x) + Γσ�yhj

i
as they are constructed assuming that the estimates �yhj (x) have a Gaussian
distribution. When the observations z have a distribution that is not Gaussian
the conÞdence intervals may have, in general, a different expression.
However, unless also higher moments of the distribution are accurately known,

it is anyway reasonable to use the Gaussian conÞdence intervals. This choice is
justiÞed by the following fact.
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Regardless of the true distribution of z (x), as h increases, the estimates
�yh (x) are constructed by averaging an increasing number of observations z (v)
from a neighborhood of x. A central limit theorem argument can thus take place,
and thus the probability distribution of �yh (x) gets progressively �Gaussianised�.

In the particular case of the Poisson observations, when y (x) = λ (x) is
sufficiently large, the Poisson distribution are already well approximated by the
corresponding Gaussian distribution with mean and variance equal to λ (x), as
shown in Figure 5.1.

5.2.4 Conclusions

We then come to the conclusion that the standard ICI algorithm (for Gaussian
observations) may be used also for estimates coming from non-Gaussian dis-
tributed observations (e.g. Poisson photon counting, speckle, Þlm-grain noise,
etc.) in order to obtain a quite accurate selection of the adaptive scale h+ (x).
This conclusion is conÞrmed by many simulation results obtained for a wide
range of non-Gaussian and heteroskedastic observations. These results are pre-
sented in the second part of the thesis.
However, we should remark that the variance of the estimates should be

really calculated according to (5.4). The use of the formula (2.4), which is correct
for the AWGN case, would obviously fail in taking into consideration the factor
σ2z that multiplies b

2 in the asymptotic expression (2.6). Observe that (5.4) and
(5.5) are to be considered equivalent with respect to the asymptotic analysis.
Nevertheless, we don�t recommend, in general, to use the latter approximated
formula in the algorithm implementations, unless σ2z is really known to be quite
regular.

Finally, let us note that all common types of signal-dependent noise models
involve inÞnitely smooth variance functions. Therefore, the corresponding σ2z is
as smooth as y itself.
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Chapter 6

Recursive anisotropic
LPA-ICI

It was proposed in [20]1 to use the anisotropic LPA-ICI estimator iteratively.
This recursion results in the anisotropic enlargement of the estimation neigh-
borhood U+x , an effect that can be interpreted as a special diffusion process.

In this chapter we discuss mainly the theoretical aspects of this recursive
procedure. We leave the implementation aspects for the second part of the
thesis, in Section 8.2. Let us anticipate however, that the improvement in the
restoration performance achieved by the recursive application of the anisotropic
LPA-ICI is signiÞcant. Therefore, most of the denoising algorithms presented
in Part II are actually based on the method that we are about to describe.

6.1 An iterative system

The idea behind the proposed procedure is to apply recursively the anisotropic
LPA-ICI algorithm, Þltering the Þnal output �y (4.8) once or many times over
again.

Denoting by LI the overall anisotropic LPA-ICI Þlter, this recursion is ex-
pressed as follows:


z[1] = z,
�y[l] = LI(z[l]),
z[l+1] = �y[l],

l = 1, 2, . . . . (6.1)

The square brackets [ ] indicate the iteration number.

Expanding (6.1), in order to explicitly write �y[l] with respect to the initial

1 [20]: Foi, A., V. Katkovnik, K. Egiazarian, and J. Astola, �A novel anisotropic local
polynomial estimator based on directional multiscale optimizations�, Proc. 6th IMA Int.
Conf. Math. in Signal Processing, Cirencester (UK), pp. 79-82, December 2004.
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Figure 6.1: Some ideal starshaped neighborhoods �U∗v (a) corresponding to points v
belonging to the ideal neighborhood �U∗x of the estimation point x (b) and the resulting
fattened neighborhood of x,

S
v∈ �U∗x

�U∗v (c), obtained by the second iteration of the
adaptive algorithm.

observations z, we obtain

�y(l)(x) =

Z
g+[l]x (x− v)�y[l−1](v)dv =

=

Z
g+[l]x (x− v)

µZ
g+[l−1]v (v − w)�y[l−2](w)dw

¶
dv =

=

Z µZ
g+[l]x (x− v)g+[l−1]v (v − w)dv

¶
�y[l−2](w)dw = · · · =

=

Z µZ
···
Z³
�g+[l]x (v[1])�g

+[l−1]
v{1} (v[2])···�g+[1]

v{l−1}(v
{l})́ dv{1}...dv{l−1}

¶
z(v{l})dv{l} (6.2)

where g+[l]x denotes the anisotropic kernel at the l-th iteration, �g+[l]x (·) = g+[l]x (x− ·),
and v{i} are auxiliary variables.

6.2 Estimation neighborhood�s enlargement
Let us consider the simple settings discussed in Section 4.1.1, where the true
image is binary and the ideal estimation neighborhood U∗x corresponds to the
best unbiased estimate. As it was observed, the shape and size of U∗x do not
depend on the observed signal z, but rather only on the (unknown) signal y.
When a second iteration is performed in (6.1), the ideal neighborhood used for
estimating y (x) from z[2] = �y[1] is again the same U∗x from the Þrst iteration.
Since this applies to all iterations, the whole process is described by replacing
all kernels �g+[·]t with 1 �U∗

t
in (6.2). Despite the ideal neighborhood U∗x is always

the same for all l, the support of the resulting kernel that is used for integration
against z(v{l}) in the right hand side of (6.2) may grow at every iteration. For
example, at the second iteration, the estimation support with respect to the ini-
tial observations z is supp

R
1 �U∗

x
(v)1 �U∗

v
(·)dv = S v∈ �U∗

x

�U∗v . This is illustrated in
Figure 6.2(left), with (a) some ideal starshaped neighborhoods �U∗v correspond-
ing to points v belonging to, (b) the ideal neighborhood �U∗x of the estimation
point x, and (c) the resulting enlarged neighborhood of x,

S
v∈ �U∗

x

�U∗v , obtained
by the second iteration of the adaptive algorithm. Such sets are not necessarily
starshaped with respect to x.
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If the ideal neighborhoods were translation-invariant, U∗x = U∗ ∀x, then (6.2)
would take the simple convolutional form �y[l] (x) = (1U∗ ~ · · · ~ 1U∗ ~ z) (x),
where convolution between kernels is repeated l-1 times. This resembles other
iterative constructions, such as the Gaussian/Laplacian pyramids or wavelet-
type projections (e.g. [66]), where multiscale Þltering is obtained by recursively
convolving the observations against the same Þlter.
In general, however, formula (6.2) cannot be written in a simple convolu-

tional form, because the adaptive kernels are not translation-invariant. Never-
theless, the considerations previously given about the enlargement of ideal neigh-
borhoods hold similarly for the supports of the fused kernels. This anisotropic
propagation of the estimation neighborhoods realizes a diffusion ßow similar to
the non-linear anisotropic diffusion ([77]), but intrinsically robust to noise be-
cause of the ICI -based adaptive scale. Regardless of their linear appearance,
(6.2), as well as (4.8), are also non-linear estimators. The non-linearity is intro-
duced by the adaptive selection of the directional scale h+(x, θk).

6.3 Variance of l-th iteration�s directional esti-
mates

Let G[l]x,h,θk(·) =
R···R (gh,θk(x−v{1})�g+[l−1]v{1} (v{2})···�g+[1]

v{l−1}(·))dv{1}...dv{l−1}, then,
the standard deviation of the estimate �y[l]h,θk (x), which is needed in order to use
the ICI rule to select the adaptive scale h+(x, θk) at the l-th iteration, according
to (6.2) and (5.4), is

σ
�y
[l]
h,θk

(x)
=

µZ
σ2z (v)

³
G
[l]
x,h,θk

´2
dv

¶1/2
= σ

°°°G[l]x,h,θk°°°2 , (6.3)

where the equality to the right holds in the case of homoskedastic observations,
i.e. when σ2z ≡ σ2.
Unlike the standard (non-recursive) LPA-ICI, even in the homoskedastic

case, the variance of the recursive directional varying-scale estimate is space-
variant (note the �x� in the right-hand side terms of (6.3)).
The calculation of the standard deviation (6.3) is computationally quite com-

plex, requiring also a good deal of computer memory. These technical reasons
limit the direct and accurate implementation of the recursive system (6.1). It
would be appealing to use a simpler construction, where each step is performed
without keeping track of the previous iterations, i.e. using the LI operator as a
�black box�, with a pair of inputs (observations and their standard deviations)
and a pair of outputs (estimates and their standard deviations), as shown in
Figure 6.2.
Would it be possible to use the variance of the previous fused estimate σ2

�y[l−1] ,

directly as an estimate of the variance for the next observation �σ2z[l−1]?
The answer to this question is negative, because, in general, the residual

noise in the fused estimate �y is correlated. This is because the anisotropic
estimation neighborhoods may overlap with each other.

In Section 8.2, we present a way to implement efficiently the recursive
anisotropic LPA-ICI. However, this efficiency is achieved at the cost of a quite
approximate computation of the variance. Nevertheless, it appeared that in
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Figure 6.2: Layout of the recursive LPA-ICI procedure. At each iteration LPA Þl-
tering, ICI adaptive scale selection (for each direction independently) and fusing are
performed. Input data are the pair formed by an observation and its variance map.
Output is the pair formed by the estimate and its variance map. Recursion is obtained
by feeding the next iteration using the previous estimate as an observation.

spite of the rough estimate of the variance, the ICI algorithm is able to perform
the adaptive-scale selection.



Chapter 7

Directional derivative
estimation and anisotropic
gradient

7.1 Derivative estimation
In a number of applications one is interested not in the function itself but
rather in the function�s derivative. When the data is discrete, the classical way
to compute the derivative is by Þnite differencing.
We recall three basic types of incremental ratios:

forward difference
∂
Þ n it e

ϕ

∂+x
(x) = ϕ (x+ 1)− ϕ (x) ; (7.1)

backward difference
∂
Þ n it e

ϕ

∂−x
(x) = ϕ (x)− ϕ (x− 1) ; (7.2)

central difference
∂
Þ n it e

ϕ

∂cx
(x) =

1

2
ϕ (x+ 1)− ϕ (x− 1) . (7.3)

These Þnite differences can be computed also by means of the convolution of
ϕ against a derivative-estimation Þltering kernel g. In particular, g is equal to
[1,−1, 0], [0, 1,−1], and [12 , 0,−1

2 ], for the central, forward, and backward dif-
ference, respectively. This is similar to the distributional approach, where the
derivative operator is obtained as the convolution with the �derivative of the
Dirac delta�, that is, as the limit of the convolutions against the derivatives of a
sequence of delta-approximating smooth fundamental kernels, so-called Delta-
sequences. This interpretation allows a more general approach to the problem of
derivative estimation, because it suggests that, in principle, an approximation
of the derivative can be obtained by convolution against the derivative of any
approximation of a Dirac delta. Gaussian approximating functions (as in the
steerable Þlters [25]) are typically used; however, many other options are possi-
ble. For instance, one could restrict his attention to a speciÞc function space,
and develop derivative-estimation kernels that are accurate within this speciÞc
class of functions. The LPA technique allows to design convolutional kernels
for an accurate estimation of the derivative for polynomials of any desirable

81
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order m. In particular, as discussed in Section 1.5.2, convolution against such
kernels yields the coefficients of the higher-order terms −1

k

k! x
k of the windowed-

least-square best Þtting polynomial p (x). These coefficients are, similarly as in
Taylor expansions, equal to the k-th derivatives p(k) (0) of p evaluated at the
center of the LPA window.
The forward, backward, and central Þnite difference kernels are a special

case of the more general LPA derivative estimation kernels. They are produced
for m = 1 and a support window with characteristic function [1, 1, 0], [0, 1, 1],
and [1, 1, 1], respectively.

7.1.1 Derivative estimation LPA kernels

Standard LPA

In the one-dimensional case, although there may be many ways to compute or
estimate it, there is in fact only one Þrst-order derivative, namely the derivative
with respect to the function�s argument x, ∂

∂x . When the dimension is higher,
d > 1, also other derivatives can be computed. As a direct extension of the 1D
case, the partial derivatives with respect to the cartesian coordinates x1, . . . , xd,
∂
∂xi
, i = 1, . . . , d, can be deÞned. The gradient ∇, which is the vector composed

by all these partial derivatives, is the main subject of Section 7.2.
In the standard � non-directional � LPA, the partial derivatives ∂

∂xi
are

estimated with kernels obtained for some mi ≥ 1. The estimated value is the
coefficient of the xi term of the best Þtting polynomial. Note that, in the discrete
domain, the length of the window along the xi-axis hi has to be greater than 1,
to allow the design of these kernels.
Only partial derivatives with respect to the cartesian variables can be di-

rectly estimated using the standard-LPA kernels; the directional derivative along
a non-cartesian direction is then computed, indirectly, as a linear combination
of the partial derivatives. However, such estimated value is questionable un-
less the underlying unknown signal is differentiable in a large enough circular
neighborhood (ball) of the estimation point.

Directional LPA

The directional LPA offers a different approach to the derivative estimation
problem. Since we are concerned mostly in imaging, d = 2 is assumed for the
sake of simplicity throughout the following sections. However, a generalization
to higher dimensions is straightforward.
If m ≥ (1, 0) and o = (1, 0) then g(o)h,θ are kernels that estimate the par-

tial derivative with respect to the Þrst cartesian coordinate u1 of the rotated
(moving) axes. The rotation is through an angle θ. It means that g(1,0)h,θ esti-
mates the directional derivative ∂θ with respect to the direction θ. By varying
θ, directional derivatives can be estimated for any direction, provided that the
corresponding kernels are constructed. In the presence of noise, even when the
underlying signal is differentiable, the estimated directional derivative may differ
from the usual combination of the partial derivatives,

�∂θ 6= cos θ�∂0 + sin θ�∂π2 = cos θ
�∂

∂x1
+ sin θ

�∂

∂x2
.
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This difference goes to zero as h → ∞ if the underlying signal is differentiable
at the estimation point and is accurately polynomial with the required order on
the support window wh,θ for all θ. In practice, this condition is never satisÞed.
Instead, to different directions θ correspond different largest scales for which
the polynomial assumption is valid within some tolerance factor of the variance.
This justiÞes both the use of the adaptive scales h+ = h+ (·, θ), and the inde-
pendent estimation of the directional derivatives using kernels g(1,0)h,θ instead of

the pair
n
g
(1,0)
h,0 , g

(1,0)
h,π2

o
. Indeed, to design Þrst derivative estimation kernels it

is enough to have a support of two pixels. However, just as for function estima-
tion kernels, there is a number of reasons why larger supports may be needed.
The variance/bias tradeoff plays again a central role. Also the directionality
of the support window is an important factor when directional derivatives are
estimated.

Illustration

As an illustration of the effect of directional derivative Þlters, we show the
horizontal (θ = 0), diagonal (θ = π

4 ), and vertical (θ =
π
2 ) derivatives estimated

for two different images using two different sets of kernels.
The Þrst set is formed by symmetric-window kernels of length 3 and width 1.

For the horizontal direction they are equivalent to the central Þnite difference.
The second set is constructed with a larger support of length 11 and width 3.
The weights of the supporting windows are uniform for both sets.
Their behaviour can be consider as characteristic of small-scale and large-

scale kernels, respectively. In particular, it can be seen clearly from the pictures
that much of the detail information is lost when large kernels are used.

One-handed derivatives

Typically, the windows that are used for the directional-LPA kernel design are
asymmetric with respect to the estimation point. More precisely, they are elon-
gated along the positive semiaxis of direction θ. However, due to the rotation of
the kernel support in the convolution, the kernels g(1,0)h,θ estimate the directional
left-hand derivative ∂−θ, accordingly to the deÞnition (3.2). Roughly speaking,
they are a generalization of the backward Þnite difference.
Once more, we stress that the use of asymmetric supports is important since

it allows to achieve a good edge adaptation. This is consistent with the contin-
uous case, where one-sided derivatives may exist also at points of discontinuity,
such as edges.
Right-hand derivatives ∂+θ are obtained, after a change of sign, from the

kernel g(1,0)h,θ+π, which is specular to g
(1,0)
h,θ .

Let us consider again the Þnite differences (7.1-7.3). It is easy to see that the
central Þnite difference can be obtained as the average of forward and backward
Þnite differences:

∂
Þ n it e

ϕ

∂cx
(x) =

∂
Þ n it e

ϕ

∂+x
(x) +

∂
Þ n i t e

ϕ

∂−x
(x) .

When the more general, adaptive-scale directional-LPA derivative estimates
are exploited, a more robust, weighted average can be used. To be precise, we
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∂0

−→

∂π
4

%

∂π
2

↑

Figure 7.1: Filtering with directional derivative kernels: horizontal, diagonal and ver-
tical derivatives are estimated using kernels of small scale (Þrst and third columns)
and large scale (second and fourth columns).

construct an estimate of the directional derivative �∂θ using the convex combi-
nation of one-handed derivatives

�∂θ , λ+ �∂+θ + λ− �∂−θ, (7.4)

where �∂+θ = −�∂−(θ+π), and the weights λ+ and λ− are deÞned � similarly to
(4.8) � as the normalized (so that λ+ + λ− = 1) inverses of the variances of the
corresponding estimates,

λ− =
σ−2θ

σ−2θ + σ−2θ+π
, λ+ =

σ−2θ+π
σ−2θ + σ−2θ+π

.

Fusing of adaptive one-handed derivative estimates: an example

Figures 7.2-7.5 illustrate the clear advantage arising by the combined use of
adaptive-scale asymmetrical derivative estimators. A two-dimensional �pyra-
midal� signal is given (see Figure 7.2 top-left) and some Gaussian white noise
of relatively low variance is added to it (top-right). Despite the weakness of
the noise, the estimate of the signal�s partial derivative ∂

∂x1
obtained by a kernel

of Þxed-length equal to 3 (i.e. central differencing) is visibly compromised. In-
creasing the kernel length helps in the reduction of the inßuence of the noise but
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Figure 7.2: Non-adaptive derivative estimation. The original pyramidal signal (top
left) is contaminated by some weak additive noise (top right). If a short derivative
estimation kernel of length 3 is used to compute the horizontal partial derivative ∂

∂x1
the result is extremely noisy (bottom left). A larger kernel support helps reduce the
noise, however it signiÞcatly blurs the sharp transitions in derivative values (bottom
right).

at the same time the estimate loses its sharpness. In other words, the variance
of the estimate is decreased but the estimate became sensibly biased. These two
Þxed-length estimates are shown in the bottom row of Figure 7.2.
Figure 7.3 shows the one-handed derivative estimates (top row) obtained

using adaptive-length kernels and the corresponding adaptive lenghts (bottom
row). Adaptivity is achieved by the ICI rule. The adaptive scales are quite
noisy, nevertheless their qualitative behaviour is clearly showing: large scales
(up to a Þxed maximum value) are adaptively selected far from the change-
points of the derivative, and the scale decreases when moving � in the direction
of estimation � towards the change point. The qualitative behaviour of the
adaptive scales that correspond to the left-hand derivative is specular to the
one of those corresponding to the right-hand derivative. It is interesting to
observe that the two estimates of the one-handed derivatives are still rather
noisy, and their quality degradates towards the change-points of the derivative
value.
The fused estimate of the derivative, according to formula (7.4), is shown

in Figure 7.4. It is quite clean from noise, and present sharp, well-deÞned
transitions at the change-points. The cross-sections in Figure 7.5 provide a
visibly-clear comparison of the quality of the estimates.

In this example, one-dimensional �line-wise� kernels have been used, for the
Þxed-length (non-adaptive) as well as for the adaptive method. It means that
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Figure 7.3: Adaptive one-handed derivative estimation: ∂

∂x−1
and ∂

∂x+1
(top); the cor-

responding adaptive scales h+ are shown in the bottom.

the correlation of the underlying data across the orientation of estimation has
not been exploited. The widely-used 3× 3 Prewitt and Sobel kernels (e.g. [37])
and the steerable Þlters [25] use this possible correlation as the key element to
achieve an improved estimate. However, in the vicinity of change-points, such
correlation may fail.
In what follows, we propose a novel approach where a robust estimate of any

directional derivative is obtained exploiting the data-correlation only when it is
present. The estimation of the derivatives, and the estimation of the region of
estimation are performed simultaneously.

7.2 Anisotropic gradient estimation

Although the adaptivity of the asymmetric estimates and the fusing allow to
achieve a remarkable improvement, one should observe that so far, no specula-
tions of geometrical kind (i.e. anisotropic neighborhood) have been exploited.
Indeed, without any differentiability assumption, the directional derivatives are,
in general, unrelated on to the other.
Traditionally, such differentiability assumption is used to allow a represen-

tation of the generic directional derivative ∂θ in the form

∂θ = cos θ∂x1 + sin θ∂x2 ,

where only the two partial derivatives, i.e. the gradient ∇ = (∂x1 , ∂x2) =¡
∂0, ∂π/2

¢
, are actually estimated from convolution against the data.
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Figure 7.4: Estimate of the derivative obtained by fusing, with adaptive weights, the
left- and right-hand estimates shown in Figure 7.3.

Figure 7.5: Cross-section of one line of the horizontal derivative ∂
∂x

estimated by
convolution with non-adaptive (small scale and large scale) and adaptive (single and
fused) kernels.
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In this section we introduce a generalization of the concept of differentiability.
In contrast with the above formula, where the estimated gradient is used in
order to obtain, by projection, any directional derivative, we will exploit many
independently-estimated directional derivatives to achieve a more robust and
more general estimate of the gradient itself.

7.2.1 Motivation

In the continuous domain, a function f is said to be differentiable at a point x
if there exist a linear functional Lx such that

f (x+ v)− f (x)− Lx (v) = o (|v|) . (7.5)

If such functional Lx exists, then it has the following expression
Lx (v) = ∇f (x) vT , (7.6)

where ∇f =
³
∂f
∂x1
, ∂f∂x2

´
is the gradient vector of the function f .

When the function is differentiable, a lot of information about its local be-
haviour in a vicinity of x is expressed by this approximating linear functional
Lx. Most notably the direction of steepest ascent for f at x is equal the direc-
tion of the gradient vector ∇f (x) and the rate of ascent is given by the modulus
|∇f (x)|. If the graph of the function f is thought as a surface in the 3D space,
then νf (x) =

³
− ∂f
∂x1

(x) ,− ∂f
∂x2

(x) , 1
´
is the normal vector to the surface (i.e.

the normal vector to the tangent plane).
Such information is often of critical importance in many theoretical prob-

lems (ordinary and partial differential equations, optimization theory, algorithm
convergence) and practical applications (geophysics, imaging, computer graph-
ics). The aforementioned properties of the gradient do not hold, in general,
when the function is not differentiable and no functional Lx satisfying (7.5) ex-
ists. Indeed, checking the differentiability hypothesis can be itself an extremely
difficult - if not impossible - task, especially when the function f is known
only partially (sampling) or with limited precision (quantization, noise). Nev-
ertheless in practical applications the differentiability hypothesis is often given
implicitly for granted and formula (7.6) is used to derive a functional that may
not satisfy (7.5). Although in some applications this incongruence can be the
key to successful results (the most striking example is probably is the edge de-
tection problem: the gradient is used to detect edges, which are clearly points
of non-differentiability), in others it can be a limitation since the information
obtained from the partial derivatives ∂f

∂x1
, ∂f
∂x2

can be not representative at all
of the local behaviour of f . An example of such applications is the Z-buffer
shading, in which the angle between the normal vector ν and the illuminant
vector is used to evaluate the correct intensity value for realistic 3D rendering.
A few simulation results relative to this shading application are presented in
Section 10.2.
Traditional approaches for the estimation of the gradient are based on some

surface-Þtting of the observation. After the estimated surface is Þtted, its nor-
mal vector at x is taken from the analytic expression of the surface. Although
this technique produces very good results when the underlying data is smooth,
particular care must be taken in the vicinity of edges, where surface Þtting may
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be unsuitable. More soÞsticated approaches (such as [100]) Þrst segment the
image into regions of smoothness, and then evaluate the normal within these re-
gions using conventional surface-Þtting or kernel-estimates. Other authors (e.g.
[5], [85]) estimate the gradient by using both forward and backward differences.
Edges are treated in a similar spirit as for edge detection, exploiting thresholding
schemes on the magnitude of the gradient and/or on the discrepancy between
forward and backward estimates. Based on this thresholding, edges or change-
points are identiÞed, and are then excluded from the further calculations. Such
schemes are quite complicated and their robustness to noise is not clear.

In the present section we propose a different notion of gradient. We call it
the anisotropic gradient.
A key aspect of the proposed approach is that the differentiability hypothesis

is not assumed. This novel gradient can be deÞned, even in its analytical form,
even at points where the function is not differentiable or discontinuous.
Nevertheless, it can be thought as an extension of the concept of gradient,

in the sense of equation (7.6). That is because the traditional gradient and the
proposed anisotropic gradient coincide whenever the function is differentiable.
However, when the function is not differentiable the anisotropic gradient pro-
vides information which is more faithful to the local behaviour of the function
in the sense of equation (7.5), where local means that the function is considered
as restricted to an anisotropic neighborhood of regularity. The method is also
instrinsically multiscale, since for different directions an ideal scale is selected.
In practice this will be accomplished by means of the ICI rule.
It allows unlimited directional and scale resolution, as well as any order of

polynomial approximation.

To facilitate the reader in understanding the main ideas, we begin from an
illustratory example, which is followed in detail throughout the section, so to
highlight the various peculiarities of the proposed method.

The exposition is organized as follows:

� an example is given and discussed, Þrst in its analytical form in the con-
tinuous domain, and then in the discrete domain in the presence of noise;

� the anisotropic gradient is deÞned in the continuous domain;
� the anisotropic function estimation based on the directional LPA-ICI ap-
proach is reviewed, and then generalized, leading to the notion of discrete
anisotropic gradient;

� further examples of anisotropic gradient estimation are shown.

7.2.2 An illustrative example in the continuous domain

Let us consider the real function ϕ :
£−1

2 ,
1
2

¤× £−1
2 ,

1
2

¤→ R, deÞned as

ϕ (x1, x2) =

½
0 for r ≤ 1

10
angle (x1 + ix2) for r > 1

10

, (7.7)

where, i is the imaginary unity, �angle� is the function returning the angular
component of a complex number, (i.e. angle

¡
ρeiθ

¢
= θ for θ ∈ (−π, π], ρ > 0),
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Figure 7.6: The function ϕ (x1, x2).

and r = r (x1, x2) =
p
x21 + x

2
2. An illustration of this function is given in

Figure 7.6.
The function ϕ is smooth at and only at all points (x1, x2) such that r < 1

10
or r > 1

10 and x2 6= 0. Hence, the set of non-differentiability is
E =

©
(x1, x2) : r =

1
10

ª ∪ ©(x1, 0) : x1 < − 1
10

ª
.

E, shown in Figure 7.7(left), is a nowhere dense set of zero Lebesgue measure
and its complementary (the set where the function is smooth) is a dense subset
of
£−1

2 ,
1
2

¤ × £−1
2 ,

1
2

¤
. The point

¡
1
10 , 0

¢
is somehow special, since although it

belongs to E, the function is there nevertheless continuous and both partial
derivatives, ∂ϕ

∂x1
and ∂ϕ

∂x2
, exist.

Let us consider now the gradient ∇ϕ =
³
∂ϕ
∂x1
, ∂ϕ∂x2

´
. It has the form

∇ϕ=
(
( 0 , 0 ) for r< 1

10 ,³
− x2
x21+x

2
2
, x1
x21+x

2
2

´
for r> 1

10 and x2 6= 0, or x2 = 0 and x1≥ 1
10 .

(7.8)

The gradient is not deÞned on most of the set of non-differentiability E.
Nevertheless, for every point x = (x1, x2) ∈ E there exist an anisotropic neigh-
borhood Ux such that ϕ|Ux is smooth at x. In other words, by restricting to a
particular neighborhood of the point x, we are able to Þnd an approximating
plane to the surface of the (restricted) function. We can deÞne an �extended
gradient� ∇ϕ deÞned on the whole domain of ϕ. Such gradient ∇ϕ, which we
call the anisotropic gradient of ϕ, has the form

∇ϕ =
(
( 0 , 0 ) for r ≤ 1

10³
− x2
x21+x

2
2
, x1
x21+x

2
2

´
for r > 1

10

. (7.9)

The precise deÞnition of ∇ is given later on. However, we anticipate that its
main property is that ∇ϕ (x) vT = LUx (v), where LUx (v) is a linear functional
that, similarly to the one in equation (7.5), approximates ϕ|Ux (i.e. ϕ restricted
to Ux) with o (|v|) precision.
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Figure 7.7: The set of non-differentiability E (left) and the function ϕ sampled on a
discrete 200× 200 grid (right).

For this particular example, it is interesting to note that the original gradient
∇ϕ itself can be smoothly extended to a smooth vector function g∇ϕ, deÞned
for r 6= 1

10 , which satisÞesg∇ϕ = ∇ϕ for all (x1, x2) such that r 6= 1
10 .

This vector functiong∇ϕ can be found in most mathematical analysis textbooks
as ω =g∇ϕ (dx1, dx2)T . It is the classical example of a closed differential form
that it is not exact, i.e. that does not admit a potential. In fact, the function
ϕ can be interpreted as some real counterpart of a complex Riemann surface of
logarithmic type (whose domain is not a simply connected set).
Note that ∇ϕ is not deÞned univocally, since different choices of U(x1,x2)

may lead to a different ∇ϕ (x1, x2).
However, as shown in the following sections, ∇ϕ is uniquely deÞned for all

points but
¡
1
10 , 0

¢
. The value indicated in (7.9) for this point is not uniquely

determined.

Although there are some differences between the �gradients� ∇ϕ, ∇ϕ, andg∇ϕ, these differences are not too essential because E is a nowhere dense set
of measure zero. Nevertheless, when we move our attention to the discrete
case, differences get more evident. In particular, we will see that the discrete
anisotropic gradient will be much closer to the analytical (continuous domain)
gradients than the traditional gradient estimated with standard derivative esti-
mation kernels.

7.2.3 The same example in the discrete domain

We consider now the discrete version of the above example, where function ϕ
is sampled on a 200 × 200 grid (see Figure 7.7(right)). As we consider the
sampling rate to be equal to one, all derivative values (shown in the Þgures)
should be multiplied by 200 to obtain results comparable to the above continuous
domain example. A weak Gaussian additive noise (σ = 0.01) was added to the
observations.
Figure 7.8 shows the true ideal gradient ∇ϕ obtained analytically from the

analytical expression of ϕ, as in formula (7.8) of the previous section, sampled on
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Figure 7.8: True ideal gradient: ∂ϕ
∂x1
, ∂ϕ
∂x2

(above), |∇ϕ| and angle
³
∇ϕ (1, i)T

´
(bot-

tom). Note that the latter is not deÞned when |∇ϕ| = 0.

the same discrete grid. The top two subimages show, respectively, ∂ϕ
∂x1

and ∂ϕ
∂x2
,

whereas the two bottom subimages show |∇ϕ| , and angle
³
∇ϕ (1, i)T

´
. Note

that the angular component of gradient cannot be deÞned where |∇ϕ| = 0.
In Figure 7.9 and 7.10 we present the gradient estimated by standard convo-

lution against derivative kernels. For this standard approach two separate sets of
kernels were respectively used: Þne scale (length=3) and large scale (length=7).
It can be seen clearly that the discontinuities in the image affect sensibly the
estimated gradient, in particular, as the scale increases, such unwanted features
become more marked.

The gradient estimated by the proposed discrete anisotropic gradient method
is shown in Figure 7.11. An adaptive-scale varying between 2 and 6 is used. The
similarity between the discrete anisotropic gradient and the (sampled) analyti-
cally computed ideal gradient is evident.

Symmetric derivative kernels of length 3 and 7 were used for the small-scale,
and for the large-scale �traditional� gradient estimation examples, respectively.
For the anisotropic case we used asymmetric kernels of length varying between
2 and 6. Figure 7.12 shows the largest scale kernels used for the estimation of
∂ϕ
∂x1

and ∂ϕ
∂+x1

in the standard, and anisotropic approach, respectively. Because
the central value of symmetric kernels is always zero, the number of non-zero
taps in the two kernels is the same.
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Figure 7.9: Gradient estimated using standard derivative estimation kernels of lenght

3: ∂ϕ
∂x1
, ∂ϕ
∂x2

(above), |∇ϕ| and angle
³
∇ϕ (1, i)T

´
(bottom).

Comments

People from the signal processing community could Þnd this example quite
unusual and maybe surprising. In fact, we present a technique for gradi-
ent/derivative estimation that is, in some way, not sensible to the edges in the
image. This � at least from an heuristic point of view � contradicts the common
practice of using derivatives to actually Þnd the edges. Two facts should be
clariÞed.
First, the very notion of derivative across an edge is objectable. We refuse

it, as the edge introduces a discontinuity which prevents the derivability of
the function. We choose instead one-handed derivatives, which are intrinsically
compatible with edges.
Second, within our approach, edges are implicitly detected by the ICI algo-

rithm. Similarly to standard techniques, LPA-derivative values across them are
large, as shown in Figure 7.13. However, these values are not considered for the
estimation of the overall gradient, because at that particular point the function
is identiÞed as non-derivable in any direction, along which the edge is crossed.
We stress that the method is not based on a threshold on the derivative magni-
tude, but instead on a notion of coherence of varying-scale derivative estimates.
This aspect is closely connected with the analytical continuous-domain notion
of derivability.

No prior knowledge of the signal structure is assumed, as the method im-
plicitly performs a local analysis of the neighborhood of the estimation point,
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Figure 7.10: Gradient estimated using standard derivative estimation kernels of length

7: ∂ϕ
∂x1

, ∂ϕ
∂x2

(above), |∇ϕ| and angle
³
∇ϕ (1, i)T

´
(bottom).

selecting the directions where the differentiability assumptions can hold1. Con-
sequently, the estimation is naturally robust to noise.

7.2.4 Continuous domain anisotropic gradient

Let f be a bivariate real function, Θ = {θk}k ⊂ S1 a family of versors and h a
positive scalar. For every θk, we can approximate f along the direction θk with
a Þrst order expression and write

f (x+ hθk) = f (x) + hLθk + eθk (h) h ≥ 0
where Lθk ∈ R is a constant, and eθi is the approximation error. Note that

eθk (h) = o (h) ⇐⇒ ∃∂+θkf (x) = Lθk .
If ∃ ∂f

∂+θk
(x) and ∂f

∂+θk
(x) 6= Lθk , then eθk (h) ∼ h. In the following, we

always assume that Lθk =
∂f
∂+θk

(x) whenever the right-hand directional deriva-
tive ∂

+θkf (x) exists. We remark that if f is differentiable at x, then ∂+θkf (x)
exists for all θk, coincides with ∂θkf (x) , and

∇f (x)
µ
cos (θk)
sin (θk)

¶
= cos (θk)

∂f
∂xk

(x)+sin (θk)
∂f
∂x2

(x) = ∂θkf (x) (= Lθk) .

1Observe that, more visibly when the scale gets larger, the traditional derivatives present
signiÞcant artifacts close to the border of the image. This is due to the imposed boundary
conditions, set to −1

ε
(compare with the footnote on page 11).

The discrete anisotropic gradient does not show any artifacts, thanks to its anisotropic
adaptation.
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Figure 7.11: Estimated discrete anisotropic gradient: ∂ϕ
∂x1

, ∂ϕ
∂x2

(above), |∇ϕ| and
angle

³
∇ϕ (1, i)T

´
(bottom).

Let w be a continuous increasing function, w (0) = 0, and hmax a positive
constant. For the sake of simplicity one may take w the identity function and
hmax = 1.
For any given ε > 0 let hθk (ε) be deÞned as

hθk (ε) ,
½
min (hmax, sup {h : |eθk | < ε}) if ∃∂+θkf (x)
0 if @ ∂f

∂+θk
(x)

. (7.10)

By deÞnition, hθk is a bounded increasing function and, if ∃ ∂f
∂+θk

(x), deÞnitevely
as ε→ 0, hθk (ε) > min (h

max, ε) > 0.
We deÞne the Þxed-scale anisotropic gradient of f as

∇εf , argmin
(M,N)

X
k

w (hθk (ε))
³

∂f
∂+θk

(x)− cos (θk)M − sin (θk)N
´2
. (7.11)

This solution is well-posed if ∂f
∂+θk

exists for at least two linearly independent
θk.
In other words, ∇εf is the solution of a weighted least-square minimization

problem where the residuals are the differences between the projections of a
�candidate gradient� along the direction θk and the corresponding directional
derivative.
Observe that if f is differentiable at x, then these residuals can be all put

to zero by choosing (M,N) =
³
∂f
∂x1

(x) , ∂f∂x2 (x)
´
= ∇f (x), and since all hθk (ε)
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Figure 7.12: �Standard� symmetric derivative kernel of length 7 (left) and
�anisotropic� asymmetric right-hand derivative kernel of length 6 (right).

Figure 7.13: Edges of the function ϕ (left) and the sum
P

i

¯̄̄
∂

∂+θi,h+
ϕ
¯̄̄
, where these

edges are detected (right).

are strictly positive and bounded, it follows that

∇εf (x) = ∇f (x) . (7.12)

Provided that the following limit exists, we deÞne the (asymptotic) anisotropic
gradient of f as

∇f (x) , lim
ε→0

∇εf (x) . (7.13)

It follows from (7.12) that, if f is differentiable at x, then ∇f (x) = ∇f (x).
In other words, differentiability implies that the usual gradient, the Þxed-scale
anisotropic gradient, and the (asymptotic) anisotropic gradient, coincide.
When f is not differentiable, then the anisotropic gradient may be not

uniquely deÞned, and its value depends on the set Θ.
However it is uniquely deÞned in the following case.

Proposition: Let Ux be an (anisotropic) sectorial neighborhood of x and let
f |Ux be differentiable at x. Assume that the following two conditions are satis-
Þed:

� at least two2 linearly independent versors θk ∈ Θ, k ∈
©
k̄i
ª
i=1,2,...

, lie in

2For d > 2, at least d linearly independent versors.
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the positive linear span of Ux;

� f in not derivable along all other versors θk ∈ Θ, k /∈
©
k̄i
ª
i=1,2,...

.

Then the anisotropic gradient ∇f (x) of f at x is well (uniquely) deÞned and
coincides with the standard gradient ∇ f |Ux (x) of f restricted to the sectorial
neighborhood Ux.
The proof is straightforward. First, we observe that the differentiability in

Ux implies that
∂f
∂+θk

(x) exist for all k ∈ ©
k̄i
ª
i=1,2,...

. Moreover, it implies
also that these directional derivatives are �coplanar�, i.e. there exists a pair
M,N ∈ R such that they all can be obtained as

∂f
∂+θk

(x) = cos (θk)M + sin (θk)N ∀k ∈ ©k̄iªi=1,2,... .
Such M and N are the x1 and x2 coefficients of the approximating linear func-
tional Lx from (7.5). They are uniquely deÞned, because linear independence
of the versors implies that the rank of the cosine-sine projection matrix is
greater or equal than two. Since f is derivable with respect to θi if and only if
i ∈ {ı̄k}k=1,2,... the weights w (hθi (ε)) are non-zero only for i ∈ {ı̄k}k=1,2,.... As
a consequence M and N are solutions of (7.11), and since they are constant as
ε varies, the limit in equation (7.13) exists and (M,N) = ∇f (x).
The typical case when the above proposition plays a role is when f is piece-

wise smooth function.

7.2.5 Discrete domain anisotropic gradient

Another look at the anisotropic LPA-ICI estimation strategy

Let us summarize again, quite informally, the key ideas behind our function
estimation strategy. We try to recover (from its noisy observations) a function
that lacks traditional regularity hypotheses. However, we assume that there
exists a neighborhood �U∗x where the function has some degree of regularity. This
regularity can be used to estimate the true value of y (x) using a kernel supported
on U∗x = {v ∈ Rd : x− v ∈ �U∗x}. We Þnd an approximation of the set U∗x (which
is generally unknown) by using a Þnite number of directional families of varying
scale kernels. The ICI algorithm is used to choose from them an adaptive-scale
estimate �yh+(x,θk),θk (x) for each direction. Such scales h+ (x, θk) deÞne the
boundary of U+x . The set U

+
x itself is deÞned as the union of the supports of the

adaptive-scale kernels gh+(x,θk),θk . At this point, one could design a kernel g
×
x

supported on U+x and estimate again the value of y (x) as
R
U+
x
g×x (v) z (x− v) dv.

However, this is not computationally efficient as it requires one independent
integration for each estimation point. We follow a more efficient approach,
and instead use the already computed estimates �yh+(x,θk),θk (x) and a simple
fusing procedure (4.8) to obtain the Þnal anisotropic estimate �y (x). This is
equivalent to performing the integration

R
U+
x
g+x (v) z (x− v) dv, where g+x =P

k λkgh+(x,θk),θk is a kernel supported on U
+
x .

We offer another �less geometrical� interpretation of this approach, substan-
tially similar to the considerations of Section 4.5.1.
The adaptive estimates �yh+(x,θk),θk (x) are different estimates of the same

(unknown) value y (x). Each one of them has its own variance σ2k. It is quite
natural to try �Þtting� one estimate �y (x) of y (x) in such a way that its residual
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differences with the already known estimates �yh+(x,θk),θk (x) are minimized. A
popular way to do such Þtting, is to minimize the following weighted sum of
squares,

�y (x) = argmin
ξ

X
k
σ−2k

¡
ξ − �yh+(x,θk),θk (x)

¢2
. (7.14)

The fused estimate (4.8) �y (x) =
P
k σ

−2
k

¡
�y (x)− �yh+(x,θk),θk (x)

¢
/
P
j σ

−2
j is in

fact exactly the minimizer of (7.14).

Discrete domain anisotropic gradient: a least-squares Þtting

For a given direction θk let �∂θk be the directional (left-hand) derivative estimated
with the adaptive scale h+ (x, θk) selected by the ICI rule. If the estimation
is correct and the function is differentiable, then this directional derivative is
also obtained from the gradient as �∂θk = (cos θk∂x1 , sin θk∂x2). We use these
different directional derivatives to estimate the gradient by looking for the pair
(∂x1 , ∂x2) that minimizes the differences between the found �∂θk and the com-
puted (cos θk∂x1 , sin θk∂x2). Since �∂θk (x) have different variance depending on
h+ (x, θk), we perform the minimization in a weighted fashion, we introduce
weights λk that depend on the variance σ2k(x) of �∂θk (x)

�∇T =
³
�∂x1 ,

�∂x2

´T
= argmin

∂x1 ,∂x2

X
k

λk

³
�∂θk − (cos θk, sin θk) (∂x1 , ∂x2)T

´2
.

(7.15)
Using the weighted least squares method, such solution is obtained as

�∇ = £DTΛD
¤−1

DTΛ �D, (7.16)

where D = [(cos θk, sin θk)], �D =
h
�∂θk

i
and Λ = diag (λk) are respectively a

2 × K matrix, a column vector of length K and a diagonal K × K diagonal
weight matrix.
How exactly λk should depend on σ2k(x) is the central issue in the deÞnition

of the discrete anisotropic gradient.

Enforcing a derivability condition in the discrete domain

Just as in the convex fusing (4.8), we may set λk = σ−2k (x). If this is done,
(7.16) is exactly a two-dimensional generalization of (4.8), as the latter is also
the solution of the analogous minimization (7.14) of the weighted squared-error
between the Þnal function estimate �y(x) and the adaptive directional estimates
�yh+(x,θk),θk .
Recall from the deÞnition of the continuous domain anisotropic gradient

that the weight function w (hθk) was zero whenever the directional derivative
∂f
∂θk

didn�t exist. Since derivation is a limit process, requiring inÞnitely many
samples, the concept of derivability cannot be found in the discrete domain as
a straightforward modiÞcation of the original continuous domain deÞnition.
Derivability can be interpreted as coherence across the Þnest scales h of the

incremental ratio (by deÞnition, an approximation which in its limiting form
converge to the derivative), precisely, this coherence means that when h → 0
the limit exists.
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We reformulate this concept in the discrete domain as follows: f is derivable3

if the varying-scale estimates of the derivative �y(1,0)h,θk
(x) are coherent across the

Þnest scales. The ICI rule checks such a coherence. Therefore we say that f
is derivable if and only if h+ > minH. Observe that if H is a continuous set
of scales including 0, then the inverse of the variance σ−2k (x) of non-derivable
estimates would be 0, since � as a limit � σ2

�y
(1,0)
h,θk

= +∞ when h = 0. For the

discrete case, if m = 1 the smallest scale minH can be considered to be equal
to 2. If higher-order polynomial smoothness is used, minH ≥ m1 + 1.
We enforce the derivability condition by deÞning λk = 0 for all k such that

h+ (x, θk) = minH. If h+ (x, θk) > minH, then λk = σ−2k (x). It means that
(7.16) is not inßuenced by the estimates corresponding to directions where the
derivability condition has not been satisÞed4. This enforcement is exactly as
the condition (7.10), used in the deÞnition of the continuous-domain anisotropic
gradient.

7.2.6 More examples

Figure 7.14 shows the anisotropic gradient �∇ of the pyramidal function from
Figure 7.2 (page 85). It is represented by the two partial derivatives found by
solving (7.16). The sum of the squared-residuals of the minimization (7.15)
are shown in Figure 7.15. The residuals are large in correspondence of points
where the anisotropic gradient is not-well deÞned. In practice this �ill-deÞned-
ness� consists in the existence of two (or more) anisotropic neighborhoods whose
corresponding anisotropic gradients cannot be matched together. These facts
are well related to the Proposition on page 96.
Quite evidently, the anisotropic gradient can be used to synthesize any di-

rectional derivative as ∂f
∂θ (x) =

³
�∇f
´
(cos θk, sin θk)

T . These derivatives are

automatically left-hand, right-hand, or bilateral depending on the anisotropy of
U+x , as shown in Figure 7.16.
Some additional illustrations of the anisotropic gradient for natural images

are found in Figures 7.17, 7.18, 7.20, and 7.21. The adaptive scales h+ (·, θk)
clarify the adaptivity of the method. Figure 7.19 and 7.21 present, for com-
parison, also some gradient estimation results obtained using the classical Sobel
Þlters.
An application example of the anisotropic gradient is presented in Section

10.2.

3 at x, along θ, and � if the support is directional � from the left-hand side.
4To allow the deÞnition of the anisotropic gradient for all points (even those that are not

strictly considered of differentiability by the above rule) we impose λk = 1 for all k, whenever
λk is found to be zero for all k. However, a more reÞned approach would be to regularize all
weights for those directions whose non-orthogonal λk are also zero.
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Figure 7.14: Anisotropic gradient: ∂f
∂x1

(left) and ∂f
∂x2

(right).

Figure 7.15: Sum of squared residuals, indicating points were the anisotropic gradient
is not well-deÞned. Logarithmic scale is used on the right.

Figure 7.16: Other directional derivatives obtained as linear combination of ∂f
∂x1

and
∂f
∂x2
.
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Figure 7.17: A detail of the Lena image (top left), adaptive scales for the horizontal
(middle) and vertical (bottom) left derivative (left) and right derivative (right). The
mean value of the adaptive scales computed among all directions is shown in the top
right subimage. Observe how the adaptive scales reveal the edges and contours of the
image.
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Figure 7.18: Anisotropic gradient: ∂f
∂x1

(left column) and ∂f
∂x2

(right column). Same
results are shown in different rows with different contrast to enhance visualization.
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Figure 7.19: Sobel derivative Þlters: ∂f
∂x1

(left column) and ∂f
∂x2

(right column). Same
results are shown in different rows with different contrast to enhance visualization.
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Figure 7.20: Peppers image (top left), adaptive scales for the horizontal (middle) and
vertical (bottom) left derivative (left) and right derivative (right). The mean value of
the adaptive scales computed among all directions is shown in the top right subimage.
Observe how the adaptive scales reveal the edges and contours of the image.
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Figure 7.21: Anisotropic gradient: ∂f
∂x1

(top left) and ∂f
∂x2

(top right). The same
derivatives estimated by the Sobel derivative Þlters are shown in the bottom row.
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Chapter 8

Denoising

8.1 Additive white Gaussian noise

The anisotropic LPA-ICI algorithm for the additive Gaussian white noise model
has been described in full detail in Chapter 4. In this section we only add a few
more experimental results, and some comparison with other techniques.
Figure 8.1 shows the noisy observation of the Cameraman image, (σ = 0.1).

Figure 8.2 presents fragments of the original (for comparison) and of three re-
stored images. One is obtained using the anisotropic LPA-ICI, the other two are
the results of translation-invariant wavelet thresholding [9]. Wavelet threshold-
ing is performed using the best-found (oracle) value of the threshold parameter.
Although the ISNR values are not too different, the image reconstructed by
the anisotropic algorithm is visually much better, presenting well deÞned edges,
faithfully reconstructed details, and no noticeable artifacts (such as the unpleas-
ant ringing visible in the Daubechies-wavelets estimate).

8.2 Recursive LPA-ICI implementation

In this section we present an efficient, although not exact, implementation of
the recursive LPA-ICI algorithm.

The residual noise in the anisotropic estimate �y is no longer uncorrelated
(estimation neighborhoods may overlap one with each other) nor its standard
deviation is a constant (estimation neighborhoods are adaptive), as shown in
Figure 6.2 on page 80. The expression for the variance of the anisotropic es-
timate is given, depending on the formula which is used for the fusing, by the
corresponding formula from Section 4.8: (4.22), (4.23)1, or (4.24).

1 In the general case the variance of the noise is not constant. The expression of formula
(4.23) for heteroskedastic observations is

σ2�y(x) =

P
k σ

−2
k −Pk

µ
σz(x)gh+(x,θk),θk

(0)

σ2
k

¶2
+

µP
k

σz(x)gh+(x,θk),θk
(0)

σ2
k

¶2
³P

j σ
−2
j

´2 .
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Figure 8.1: The noisy observation of the Cameraman image, σ = 0.1. SNR=14.39dB,
PSNR=19.97dB, RMSE=25.57, MAE=20.38, MAX=106.73.
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Figure 8.2: Denoising of the Cameraman image, σ = 0.1. Clockwise from top-
left: original image, anisotropic LPA-ICI estimate, ISNR=8.1dB, translation-invariant
Daubechies wavelets (DB4), ISNR=7.4dB, and translation-invariant Haar wavelets,
ISNR=7.8dB.

If we assume that this residual noise is uncorrelated, the standard deviation
of the directional estimates �y[2]h,θk (x) for the second stage of the recursive algo-
rithm would be simply calculated as the convolution (g2h,θk~ �σ

2
�y[1])

1/2, avoiding

the use of the complicated kernel G[2]x,h,θk . This reasoning may be extended to
further iterations, assuming that the noise in �y[l] is always uncorrelated. How-
ever, as this assumption does not hold, the quality of estimation deteriorates,
and typically results in oversmoothing of details in the image. It turns out, for
low-order kernels, that a simple compensating factor for the standard deviation
can effectively reduce this degeneration. This modiÞcation of the calculation
of the variance may be interpreted as an attempt to Þlter out only the white
component of the residual noise.
After setting the initial conditions y[0] = z and �σ[0]y ≡ σ, the l-th recursive

step of the modiÞed recursive algorithm is 2

�y[l] = LI(�y[l−1]), �σ�y[l] =

µX
k

³
�σ
[l]
k

´−2¶−1/2
, l = 1, 2, . . . ,

where �σ[l]k = �σ
�y
[l]

h+(x,θk),θk

, �σ
�y
[l]
h,θk

= α(g2h,θk ~ �σ
2
�y[l−1])

1/2, and α < 1 being the

Þxed correcting factor.
2This expression is based on the variance (4.22). In the actual algorithms, however, we use

the fusing formula given in the preceding footnote. This is because the kernels overlap in the
origin pixel.
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In spite of the striking simplicity of the modiÞcation, simulation results show
that it enables ICI to properly select the adaptive scale. Moreover, convergence
of the above recursive system is easily guaranteed, since �σ[l]�y = O(αl)→ 0. More
precisely, since ||g+x ||2≤1, there exist a constant c such that |�y[l](x)−�y[l+1](x) | <
c�σ
[l]
�y (x) ≤ cαlσ. This implies that �y[l](x) is a Cauchy sequence. Qualitatively,

the actual convergence rate of the algorithm depends on µ(U+x ) ≈ ||g+x ||−12 ,
and usually the algorithm reaches a numerical steady-state already after three
iterations. The proposed recursive method can be used for accurate detail-
preserving image denoising, segmentation and edge detection applications.

8.2.1 Simulations

Table 8.1 shows the ISNR and MAE (51-distance) results for the restoration of
the Cameraman image, corrupted by additive Gaussian white noise, σ = 0.1.
This noisy observation is shown in Figure 8.1). Zero-order uniform kernels for
a total of eight directions and four scales, h ∈ {1, 2, 3, 5}, were used with Þxed
α = 2/3. These results are illustrated (for a fragment of the image) in Figure
8.3. The table shows a fast convergence of the iterations and criteria values
attesting the high quality of the Þltering.

iteration # noisy 1 2 3 4 5 6
ISNR (dB) 0 7.361 8.098 8.119 8.120 8.120 8.120
MAE (51) 20.38 7.894 6.597 6.538 6.535 6.535 6.535

Table 8.1: ISNR and MAE results for the Cameraman image denoising experiment
(σ=0.1, SNR=14.39dB).

By using polynomial-order kernel mixtures3 and a larger set of scales, it is
possible to achieve, for the same experiment, an ISNR of 7.50, 8.23 and 8.47dB
at the Þrst, second and third iteration (shown in Figure 8.5), respectively. A
similar performance cannot be achieved by the non-recursive algorithm.
Figure 8.4 shows another recursive anisotropic denoising example for the

Cheese image.

Recursions with a different fusing

Figure 8.6 show the second iterations corresponding to the example shown in
Figure 4.12 of Section 4.7. In the example, besides the standard fusing formula
(4.8), also the different formula (4.20) has been used. To calculate the variance
of the fused estimate from the initial iteration (needed in the second iteration
in order to compute the standard deviations of the directional estimates), the
two corresponding formulas (4.23) and (4.24)4 are used.

3An explanation of the polynomial-mixture kernels [7] will be given in the following section.
4Observe that formula (4.24) assumes constant variance. Therefore it can be used to

compute the variance after the Þrst iteration, but not after the second. For this reason, we
do not perform a third iteration.
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Figure 8.3: A fragment of the Cameraman image, Þltered by the recursive anisotropic
LPA-ICI algorithm. After the third iteration, the recursive procedure yields essentially
identical estimates, conÞrming the fast convergence of the algorithm.

8.3 Signal-dependant noise

Each successive iteration of the recursive anisotropic LPA-ICI algorithm, which
we presented in the previous section, can be interpreted as anisotropic LPA-ICI
Þltering in the presence of some heteroskedastic noise with variance α�σ2�y[l−1](x).
In this sense, this recursive algorithm can be considered as a solution for a very
general class of noisy observations. However, every step of the algorithm � and
in particular the Þrst one � assumes that such space-variant variance is known.
Such variance is not estimated, it is calculated.
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Figure 8.4: Recursive anisotropic LPA-ICI denoising of the Cheese image. Clockwise,
from top-left, the noisy image and the estimates from the Þrst, second and third
iteration.

8.3.1 Recursive variance update

The algorithm that we propose for the Þltering of signal-dependant noise is
based on the above recursive LPA-ICI algorithm. However, to deal with the
unknown σ2z, we introduce an initial recursive procedure, in which the fused
estimate �y is used to update the estimate �σ2z of σ

2
z through the variance function:

�σ2z = ρ (�y). This procedure is iterated a few times before the beginning of the
actual recursive algorithm, and is schematized here below:

�y[0] = z

compute �y[1] = LI (z) with �σ2
�y
[1]
h,θ

= g2h,θ ~ ρ
¡
�y[0]
¢

compute �y[2] = LI (z) with �σ2
�y
[2]
h,θ

= g2h,θ ~ ρ
¡
�y[1]
¢

...
...

RECURSIVE
VARIANCE
UPDATE

Observe that, contrary to the recursive LPA-ICI Þltering, in the above recursion
the Þltered image is always z. The estimates of y are used only in order to update
the estimate of σ2z which is then used to calculate the variance of the directional
estimates. The value of this variance not only has an impact on the ICI, but
also on the adaptive weights used in the fusing.
In practice, it is enough to perform only a few (say, two or three) of the

above recursions in order to obtain a satisfactory estimate of σ2z. Once such �σ
2
z

is available, the recursive anisotropic LPA-ICI may start.
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Figure 8.5: Restored Cameraman image after three iteration of the recursive
anisotropic algorithm, using polynomial-mixture kernels, 8 directions, and H =
{1, 2, 3, 4, 6, 8, 10, 12}: ISNR=8.47dB, SNR=22.86dB, PSNR=28.44dB, MAE=6.12,
MAX=111.10.
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Figure 8.6: Second iterations of the recursive LPA-ICI procedure following the initial
results (Þrst iteration) shown in Figure 4.12. Standard fusing (4.8) and modiÞed fusing
(4.20) are used, respectively, for the left and the right image.

Figure 8.7: General layout of the recursive anisotropic LPA-ICI Þltering (solid line),
and of the recursive variance update (dashed line).

Figure 8.7 show the general layout of the two iterative procedures. We
describe various modiÞcations of these recursions in [22].

8.3.2 Poisson denoising experiments

We begin by showing some experimental results taken from [47]5, where we focus
on the Poisson observation model. We compare the performance of the recur-
sive LPA-ICI (with recursive variance update) against state-of-the-art wavelet-
based methods, which exploit quite soÞsticated statistical modeling � in wavelet
domain � of the Poissonian nature of the observations.

Poisson observations

In our simulations for the Poissonian case, in order to achieve different level of
randomness (i.e. different SNR) in the noisy observations, we Þrst multiply the
true signal yT RU E (which has range [0,1]) by a scaling factor χ:

y = χ · yT RU E , z ∼ P(y).
5 [47]: Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �Anisotropic local likelihood

approximations�, Proc. of Electronic Imaging 2005, 5672-19, 2005.



8.3. Signal-dependant noise 117

True image Noisy image, χ=120 Noisy image, χ=30 Cross-section

Figure 8.8: Cameraman fragment: true and Poisson noisy images, with different level
of randomness.

Thus, E{z} = var{z} = y = χ · yTRU E , and y/std{z} = √χ√yT RU E , i.e. better
SNR corresponds to larger χ.
This modelling of Poisson data allows to produce a comparison with the

similar simulation scenarios appeared in a number of publications [91, 76, 96, 68].
We make a comparison with the wavelet-based methods recently developed for
the Poisson data and demonstrating a good performance.
Only to visualise the data we divide back by the factor χ, so that the expected

range of the signal intensity is again [0, 1]. Figure 8.8 illustrates the effect of
this scaling factor in modelling Poisson observations. Comparing the images
in this Þgure, we can see that the noise level for χ=120 is much lower than it
is for χ=30. From the cross-section we can note that the level of this random
disturbance is clearly signal-dependent. Large value of the signal means larger
level of the noise.

Optimization of the algorithm

Some work has been done in order to optimize the design parameters of the
above algorithm. After this optimization, the algorithm with these parameter
values was used for multiple experiments, part of which is presented in what
follows.
Similarly as it is proposed in [7], we use polynomial mixtures. The directional

kernels gh,θ are deÞned as a linear combination of zero and Þrst order kernels:

gh,θ = α�gh,θ|m=(0,0) + (1− α)�gh,θ|m=(1,0). (8.1)

These �gh,θ|m=(0,0) and �gh,θ|m=(1,0) are directional-LPA kernels designed from a
set of uniform window functions wh constant on their sectorial support. The
scale parameters h, which deÞne the length of the support, were taken from the
following set:

H = {1, 2, 3, 4, 6, 8, 10, 12}.

The ICI rule is applied for the selection of the length h of the kernel gh,θ.
The parameter α in the combined kernel gh,θ (8.1) is taken with different

values for the different steps of the algorithm, starting from α = 1 (zero order),
and increasing then the importance of the Þrst order component as the algorithm
progress. We set Γ = 0.7 for all iterations.
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Figure 8.9: Filtering a fragment of the Cameraman image: (clockwise from top-left)
noisy data, χ=60 (MSE=23.9), estimate from the Þrst iteration of the LPA-ICI-AV al-
gorithm (MSE=7.90, ISNR=4.81dB), estimate after the fourth iteration (MSE=4.36,
ISNR=7.40dB), and original image.

8.3.3 Simulation results

Images shown in Figures 8.9 and 8.10 show the noisy and original images and
the estimates obtained at the Þrst (initialization) and the last (fourth) iteration.
The MSE values demonstrate a fast performance improvement in the successive
iterations. The quality of the Þnal estimates is quite good visually and nu-
merically. In particular, for Cameraman we achieve: ISNR=9.34dB for χ=30,
ISNR=8.05dB for χ=60, ISNR=7.45dB for χ=90, ISNR=6.82dB for χ=120.
Some numerical results and comparison with other methods for the Camera-

man and Lena images are presented in Table 8.2 and Table 8.3. The results in
the tables are the values of the MSE, calculated as the mean value of |�y − y|2.
This table includes and extends the results shown in [68].
Comparing the MSE values obtained for the successive steps we can note

that the main improvement is achieved in Þrst three steps. Starting from the
second step of the recursive procedure, the LPA-ICI shows superior results
which are essentially better than those from the other methods[91, 68].
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Figure 8.10: Filtering the Lena image: top row, left - noisy data χ=60 (MSE=29.0,
SNR=15.3 dB); top row, right - Þrst iteration of the LPA-ICI-AV algorithm
(MSE=7.07, ISNR=6.13 dB); second row, left - fourth iteration (MSE=2.62,
ISNR=10.4 dB); second row, right - original image.
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Noisy image
TN method [91]
Improved TN method [68]
LPA-ICI , 1st step
LPA-ICI , 2nd step
LPA-ICI , 3rd step
LPA-ICI , 4th step

Cameraman
χ=30 χ=60 χ=90 χ=120
13.9 27.5 42.1 56.0
2.76 7.73 14.11 21.59
2.13 5.37 9.22 13.59
3.75 8.04 13.4 18.8
2.28 5.30 8.96 13.2
1.79 4.50 7.79 11.8
1.62 4.30 7.58 11.6

Table 8.2: MSE for the Cameraman image for different algorithms and different levels
of noise.

Noisy image
TN method [91]
Improved TN method [68]
LPA-ICI , 1st step
LPA-ICI , 2nd step
LPA-ICI , 3rd step
LPA-ICI , 4th step

Lena
χ=30 χ=60 χ=90 χ=120
14.5 29.0 43.6 58.0
2.33 6.46 11.62 17.89
1.98 5.32 9.35 14.03
3.29 7.07 11.3 15.9
1.76 4.07 6.80 9.84
1.20 3.05 5.33 7.99
0.99 2.62 4.72 7.19

Table 8.3: MSE for the Lena image for different algorithms and different levels of
noise.

8.3.4 Other types of noise

This section is based on the experimental part of [22]6. We consider a wider
class of signal-dependant noises, and we compare our results with other state-
of-the-art adaptive algorithms.
These simulations are, in a sense, more interesting than those presented in

the previous section: here, exactly the same algorithm parameters are used for
the restoration from three different kinds of noise. It means that speciÞc as-
pects of the noise distributions cannot be exploited. These experimental results
conÞrm the generality, and the robustness of the ICI algorithm with respect to
various non-Gaussian-distributed estimates.

Three common types of signal-dependant noise are considered: the �scaled�
Poisson noise, χz ∼ P (χy) , χ∈ R+, the Þlm-grain noise, z = y +Kyαη, K,α ∈
R+ and η ∼ N (0,1), and the �multiple-look� speckle noise, z = L−1PL

i=1 yoi,
oi ∼ E (β), β ∈ R+. The calligraphic letters P, N , and E denote, respectively,
the Poisson, Gaussian, and exponential distributions. For the above observation
models, the variance functions ρ (y) = σ2z are ρ (y) = y/χ, ρ (y) = K

2y2α, and
ρ (y) = y2β/L, respectively.
To enable an objective comparison with the many simulations presented in

[81], we set χ = 0.1, K = 3.3, α = 0.5, L = 4, and β = 1. The true signal y

6 [22]: Foi, A., R. Bilcu, V. Katkovnik, and K. Egiazarian, �Anisotropic local approxima-
tions for pointwise adaptive signal-dependent noise removal�, (accepted) XIII European Signal
Proc. Conf., EUSIPCO 2005, September 2005.
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test image noisy Lee NURW ANF LPA-ICI

Lena 512×512 1240 � � � 82 (11.8)
Peppers 512×512 1197 � � � 79 (11.8)
Lena 256×256 1239 200 177 151 120 (10.1)
Peppers 256×256 1206 184 160 145 120 (10.0)
Aerial 256×256 766 231 252 179 179 (6.3)

Lena 512×512 1343 � � � 83 (12.1)
Peppers 512×512 1304 � � � 80 (12.1)
Lena 256×256 1346 206 185 160 125 (10.3)
Peppers 256×256 1311 199 169 150 120 (10.4)
Aerial 256×256 828 242 267 188 185 (6.5)

Lena 512×512 4375 � � � 196 (13.5)
Peppers 512×512 4303 � � � 182 (13.7)
Lena 256×256 4349 365 371 381 269 (12.1)
Peppers 256×256 4304 370 372 378 269 (12.0)
Aerial 256×256 1707 348 387 318 329 (7.1)

Table 8.4: MSE values for different images, noise models, and methods. In the last
column, the value in parentheses is the ISNR (dB).

is assumed to have range [0,255]. Note in term of their variance function, the
Poissonian and the Þlm-grain observations with α = 0.5 are treated identically
(up to a multiplicative factor). Nevertheless, even when K2 = 1/χ (i.e. when
their corresponding variance functions coincide), their corresponding observa-
tions are quite different, because of the different distributions. In particular,
Poissonian observations are always integer and positive, i.e. z ∈ N/λ, whereas
Gaussian distributed observations can take any real value.
In [81], where the main focus is on the adaptive-neighborhood Þlter (ANF )

(a technique which - like ours - is based on anisotropic adaptation), are also
considered the �reÞned� Lee Þlter (Lee) [62] and the noise-updating repeated
Wiener Þlter (NURW ) [39]. Table 8.4 includes the results from [81] and extends
them with those obtained by recursive anisotropic LPA-ICI method. Comparing
the MSE values given in Table 8.4, we may note that for the Lena and Pepper
images the developed algorithm gives essentially better results for all types of
noise. For the Aerial image we obtain Þgures which are very close to the best,
given by ANF algorithm. An illustration of some of these results, attesting the
advanced Þltering performance of our method, is given in Figure 8.11.

Real data from cameraphone�s CMOS sensor

We also show some results obtained using real data acquired using the CMOS
sensor of a Nokia cameraphone. The statistical characteristics of the sensor�s
raw-data have been studied, and were found to follow very accurately the ob-
servation model (5.1). The corresponding variance function ρ (y) has been es-
timated and used in the algorithm. In extreme low-light conditions, or for
extremely short exposure-times, the signal-to-noise ratio can be dramatically
low. Figures 8.12(left) and 8.13(top) show, respectively, the raw data captured
in dim light with an exposure time of 1ms, and the recontructed color-image
using the full image-processing chain (which includes white-balance, color cor-
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Figure 8.11: Fragments of the noisy images before (top row) and after (bottom row)
the anisotropic LPA-ICI restoration: (from left to right) Poisson Lena, Þlm-grain
Aerial, and speckle Peppers 256×256.

rection, some denoising and the color-array interpolation). Figures 8.12(right)
and 8.13(bottom) show the corresponding results obtained when the raw data
is Þltered by the adaptive LPA-ICI method using the estimated variance func-
tion ρ (y): smooth areas are faithfully restored and Þner details are accurately
preserved.
All these experiments were produced using the same algorithm parameters.

In this particular implementation, the variance update is performed three times
and the recursive adaptive Þltering is repeated twice. A set H of seven scales
is used, and the anisotropic estimates are obtained by fusing eight directional
adaptive estimates. Again, the algorithm uses convex mixtures gλh of zero-order
LPA kernels g0h and Þrst-order LPA kernels g1h: g

λ
h = (1 − λ)g0h + λg1h. These

polynomial mixtures [7] allow to achieve a better Þt of the data but, contrary
to the pure higher-order polynomial produce estimates with a sensibly lower
variance.
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Figure 8.12: Raw data from cameraphone�s CMOS sensor, R channel, 1ms exposure
(left), and reconstructed image using the LPA-ICI adaptive method with the estimated
variance function.

Figure 8.13: Color image reconstructed, using the standard imaging chain, from the
noisy raw data (top) and from the LPA-ICI -Þltered raw data (bottom).
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Chapter 9

Deconvolution

In this chapter we describe three methods which are based on the nonparamet-
ric �regularized inverse-regularized Wiener inverse� deconvolution ([45],[44]).
SigniÞcant improvement was achieved by endowing the basic deconvolution al-
gorithm with the higher adaptivity of the anisotropic LPA-ICI estimator [46]1

(Section 9.1). Some consistent changes have been required in order to enable the
anisotropic deconvolution algorithm to perform efficient Þltering of Poissonian
distributed observations [23] (Section 9.2). A rather different application, which
can be modelled as a particular deconvolution problem, is considered in the last
section of this chapter: inverse halftoning [21].

9.1 Additive white Gaussian noise

9.1.1 Introduction

We wish to recover an image y from noisy observations

z = (v ~ y) + ση,

where v is the point-spread function (PSF ) of the optical system. It is assumed
that the PSF is known and that the noise η is standard Gaussian. In the
frequency domain the observation equation has the form

Z = Y V + ση, (9.1)

where capital letters are used for the discrete Fourier transform of the corre-
sponding variables.

An unbiased solution of a deconvolution problem of the form (9.1) can be
obtained in a straightforward manner by Þrst inverting the convolution operator
V and then removing the noise V −1ση.
However, it is now standard to approach such inverse problems by the

method of regularization, in which one applies, rather than the inversion, a
regularized inverse operator [13]. A special common point of most methods

1 [46]: Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, �Directional varying scale
approximations for anisotropic signal processing�, Proc. XII European Signal Proc. Conf.,
EUSIPCO 2004, Vienna, pp. 101-104, September 2004.

125
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Figure 9.1: Anisotropic LPA-ICI regularized Wiener inverse algorithm. In the Þrst
line of the ßowchart the RI estimates are calculated for a set of scales and directions,
the ICI is used to obtain the pointwise-adaptive directional estimates �yRI

h+,θk
that are

then fused into the anisotropic �yRI estimate. In the second line the RWI estimates
are calculated using �yRI as a reference signal in Wiener Þltering, again ICI and fusing
are performed to obtain the Þnal �yRWI estimate.

starting from the frequency domain equation (9.1) is that some basis func-
tions are used to approximate the object function y in the form of series with
coefficients deÞned from the observations. These functions may be Fourier har-
monics, eigenfunctions of the convolution operator in SVD methods or wavelets
in wavelet multiresolution decompositions. There exist a lot of deconvolution
techniques based on this sort of approaches.
Basically different ideas and methods arise from the pointwise nonparametric

estimation approach [15]. These methods mostly do not assume any underlying
global parametric model of the object and do not use some global parametric
series for object approximation. It is assumed only that the object is composed
from piecewise regular elements and every point of the object allows a good
local approximation. The main goal of estimation is to build a pointwise ap-
proximation using the observations from a neighborhood. There is a number of
proposals for nonparametric smoothing of non-blurred noisy images which allow
for preserving the sharp edge structure as well as the edge detection and recon-
struction. Actually, these methods are based on kernel smoothing with a special
choice of the kernels. Spatial pointwise adaptation is now commonly considered
as a crucial element of the nonparametric estimation. These adaptation meth-
ods, even for an originally linear method, are Þnalized in nonlinear estimators
[28, 43, 67, 78]. The recently proposed LPA-ICI deconvolution [27, 45, 44, 46]
exploits the nonparametric smoothing for a deconvolution algorithm where the
regularized inversion of the convolution operation and the Þltering of the noise
are performed simultaneously in an adaptive fashion.
The anisotropic version of the LPA-ICI estimator [46] is a powerful tool

to further improve the adaptivity of the nonparametric approach. We brießy
describe this estimator in the following section.

9.1.2 Adaptive RI-RWI deblurring algorithm

The considered technique is based on the following regularized inversion (RI )
and regularized Wiener inversion (RWI ) algorithms, using the directional-LPA
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Figure 9.2: Directional smoothing (function estimation) kernel (a) and differentiating
kernel (b) obtained by the directional-LPA design with m = (0, 0) and m = (1, 0)
respectively.

kernels gh,θk :

�Y
RI

h,θk
=

V Gh,θk
|V |2 + ε21 Z, (RI), (9.2)

�Y
RWI

h,θk
=

V |Y |2Gh,θk
|V Y |2 + ε22σ2Z, (RWI ), (9.3)

where ε1, ε2 > 0 are regularization parameters. The estimate of y is given by
the RWI deconvolution scheme (9.3) that uses the ICI based RI estimate as
a reference signal Y . Thus, we arrive to two steps procedure (see Figure 9.1).
The adaptive procedure assumes that the estimates {�yRIh,θk}h∈H are calculated
according to (9.2) for a set of scales H and the ICI rule selects the best scales for
each direction and for each pixel. In this way we obtain the directional varying
scale adaptive estimates �yRIh+(x,θk),θk , k = 1, . . . ,K, which are fused in the Þnal
one �yRI according to (4.8). This �yRI serves as the reference signal in the RWI
procedure (see Figure 9.1). The adaptive RWI algorithm is similar and gives
the ICI adaptive varying scales estimates �yRWI

h+(x,θk),θk
for each direction and x.

Then, the Þnal estimate �yRWI is obtained by fusing these directional ones again
according to (4.8).
The use of the ICI rule requires the calculation of the standard deviations of

the individual varying scale directional estimates {�yRIh,θk}h∈H and {�yRWI
h,θk

}h∈H .
These standard deviations can be easily calculated by the l2-norm of the fre-
quency response of the corresponding Þlters:

σ�yRIh,θk
= σ

°°° V Gh,θk

|V |2+ε21

°°°
2
, σ�yRWI

h,θk

= σ
°°° V |Y |2Gh,θk

|V Y |2+ε22 σ2
°°°
2
.

The ICI adaptive scales h+ (·, θk) represent the distribution of image features
across the direction θk, as shown in Figure 9.4 (right) where smaller scales are
darker.
Table 9.1 presents results for four different experiments: Cameraman image,

9× 9 boxcar v, BSNR=40dB (Experiment 1, see Figure 9.3); v (x1, x2) = (1 +
x21 + x

2
2)
−1, x1, x2 = −7, . . . , 7, σ2 = 2 (Exp.2) or σ2 = 8 (Exp.3), and Lena

image, v is a 5× 5 separable Þlter with the weights [1, 4, 6, 4, 1]/16 in horizontal
and vertical directions, BSNR=15.93dB (Exp.4). For these experiments a set
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Method Experiment 1 2 3 4
Anisotropic LPA-ICI [46] 8.23 7.78 6.04 3.76
GEM (Dias) [10] 8.10 7.47 5.17 −
EM (Figueiredo and Nowak) [18] 7.59 6.93 4.88 2.94
ForWaRD (Neelamani et al.) [75] 7.30 6.75 5.07 2.98

Table 9.1: ISNR (dB) of the proposed algorithm and of methods [10], [18] and [75] for
the four experiments.

of eight directions, {θk}8k=1 = {0, π/4, π/2, . . . , 7/4π} and Þve scales, #H = 5,
are used. Function estimation kernels were designed on conically-supported
windows choosing the LPA orders m = (1, 0) and m = (0, 0) for the RI and
RWI stages, respectively. These kernels are shown in Figure 9.2. For smaller
scales in H the suppwh is a 1-pixel-width line.
Overall, the SNR improvement (ISNR) in Table 9.1 shows that the new

developed RWI algorithm demonstrates a good performance and outperforms
some state-of-the-art techniques. Visual inspection is also in favor of the new
algorithm. Figure 9.4 (left) shows a fragment of the restored Cameraman image.
The directionality of the kernels is an important element of this good per-

formance. For example, in the same algorithm non-directional quadrant kernels
give ISNR=7.52dB for Exp.1 (see [44]) versus ISNR=8.23dB in Table 9.1.

9.1.3 Derivative estimation and edge detection from noisy
blurred observations

As a further illustration of the ßexibility of our approach we present two ex-
amples of differentiation of y using the noisy blurred observations. Let us re-
place in the RWI stage of the algorithm (9.3) the smoothing kernels g(0,0)h,θk

by
the discrete derivative-estimation kernels g(1,0)h,θk

. Then the output �yRWI

h+,θk
of the

two stage algorithm gives the estimate of the directional right-hand derivative
∂
+θky. Figure 9.5 (left) shows the diagonal derivative estimate �∂θ2 calculated for
θ = π/4 as the mean of the two one-sided directional derivatives with θ2 = π/4
and θ5 = θ2 + π = 5π/4, �∂θ2 = (�y

RWI

h+,θ2
− �yRWI

h+,θ5
)/2.

Further, for the edge detection, we calculate the sum of the absolute values
of these derivatives

P4
k=1 |�∂θk |. The image of this sum is shown in Figure

9.5 (right). It demonstrates a very accurate recovery of the image edges from
the blurred noisy image data. Observe that the in the above formulas concerning
the combination of different derivatives there is no weighting by the inverse of
the variance. Exactly as it is done in Section 7.2, and in particular in Figure
7.13, the absolute values of the different derivatives are summed together in
order to reveal the edges.

9.2 Poisson deconvolution

A spatially adaptive image deblurring algorithm is presented for Poisson ob-
servations. The RI-RWI algorithm is modiÞed in such a way that the signal-
dependant characteristics of the Poissonian noise can exploited. This allows to
accurately compute the pointwise variances of the directional estimates.
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Figure 9.3: Original Cameraman image (left) and noisy blurred observation (Experi-
ment 1) (right)

Figure 9.4: Anisotropic LPA-ICI deconvolution algorithm performance: restored im-
age, ISNR=8.23dB (left) and adaptive scales scales h+( · , π/4) (right)

This section is essentially based on [23]2.

9.2.1 Introduction

In many imaging systems the recorded observations have the physical meaning of
numbers of detected photons. The photons are counted at different spatial loca-
tions and in this way form an image of an object. This sort of scenario is typical
for many imaging problems in medicine, including positron and single-photon
emission tomography, in gamma astronomy, microscopy, and photon-limited op-
tical imaging. The Poisson distribution is the conventional probabilistic model
for the random number of photons detected during an exposure time. An im-

2 [23]: Foi, A., S. Alenius, M. Trimeche, V. Katkovnik, and K. Egiazarian, �A spatially
adaptive Poissonian image deblurring�, (accepted) IEEE 2005 Int. Conf. Image Processing,
ICIP 2005, September 2005.
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Figure 9.5: Directional derivative (left) and edge detection (right)

portant consumer application where Poissonian distributions dominate are the
widespread CCD/CMOS-sensor digital cameras (e.g. [93]).
An optical blurring is typically introduced into the observation process. This

distortion of the image is commonly modeled by the convolution (y ~ v)(x) of
the true image y with the point-spread function (PSF) v of the optical system.
It is assumed that the observations z(x) are Poissonian, according to the model

z (x) ∼ P ((y ~ v) (x)) , (9.4)

where P denotes the Poisson distribution. This model means that E{z(x)} =
(y~ v)(x) and σ2z (x) = var{z(x)} = (y~ v)(x). Thus, the observation variance
σ2z (x) is signal dependent and, consequently, spatially variant. In our approach
we make explicit use of this variance function to reconstruct the image y from
the noisy observations z. Observe that (9.4) can be rewritten in the additive
form z (x) = (y ~ v) (x) + η (x), where the noise term η (x) has zero mean and
variance σ2η (x) = (y ~ v) (x).

9.2.2 Poissonian RI-RWI algorithm

For the AWGN model, the RI -RWI estimates (9.2)-(9.3) are computed com-
pletely in the Fourier domain. For the Poissonian case there are some modiÞ-
cations. The main problem is that variance of the estimates is spatially varying
(noise variance is not constant over the image). This makes necessary the com-
putation of the pointwise-varying variance of each of the estimates. Also some
slight changes in the form of the Wiener denominator are required.

9.2.3 Linear inverse with directional adaptive LPA-ICI
Þltering

This algorithm uses the nonparametric regularized inverse (RI ) and regularized
Wiener inverse (RWI ) LPA-ICI deconvolutions developed for the Gaussian
inverse in [45],[46] and for inverse halftoning (colored noise) in [21]. For the
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Gaussian noise case, the Þltering was performed completely in the Fourier do-
main, according to (9.2) and (9.3). For the Poissonian case there are some
modiÞcations. The main problem is that, as the observation variance σ2z (x)
is not constant, the standard deviations of the directional estimates are spa-
tially varying. It makes to compute a pointwise-varying variance for each of
the estimates. Secondly, some change in the form of the Wiener denominator is
required, with the constant σ2 replaced by a correct estimate of the Poissonian
noise power spectrum.
In order to calculate all these elements efficiently, a mixed space/frequency

domain approach is exploited. Let us start from the regularized inverse stage.

9.2.4 Poissonian RI inverse

The actual regularized inversion is performed in the frequency domain, and then
the LPA Þltering is performed as a convolution of the pure regularized inverse
zRI against the LPA kernel gh,θ in the spatial domain:

T RI (f) =
V (−f)

|V (f)|2 + ε21 , tRI = F−1(T RI ) , (9.5)

zRI = F−1 (T RI Z) , �yRIh,θ = z
RI ~ gh,θ. (9.6)

Estimation of the standard deviation of the RI -LPA estimates (needed for the
ICI adaptive-scale selection and for the fusing of the directional adaptive-scale
estimates) is also calculated in a mixed frequency/space domain. The variance
of �yRIh,θ is obtained as

σ2�yRIh,θ
= F−1

³
F
³
(tRI ~ gh,θ)2

´
· Σ2

z

´
, (9.7)

where Σ2
z = F ¡σ2z¢ is the Fourier transform of the space-varying variance of

z. Here σ2z is estimated directly from the noisy observations, i.e. �σ2z = z
and Σ2

z = Z. This is the simplest possible unbiased estimate of the variance,
accordingly to the Poissonian rule E {z} = var {z}.
All the varying scale estimates {�yRIh,θ}h∈H obtained for each θ are fed (to-

gether with their standard deviations {σ�yRIh,θ}h∈H) into the ICI algorithm, which
selects the pointwise-adaptive scale h+(x, θ). This is done independently for each
direction θ. In this way, the adaptive-scale directional estimates �yRIh+(x,θk),θk ,
k = 1, . . . ,K, are constructed.
Fusing these directional estimates is done using the inverse variances as

weights in the convex combination

�yRI (x) =
X

k
λRIk (x)�y

RI
h+(x,θk),θk

(x), (9.8)

λRIk (x) = σ
RI−2
k (x)/

P
iσ

RI−2
i (x),

σRI−2i (x) = 1/σ2�yRI
h+(x,θi),θi

(x) .

The Þnal estimate of the RI stage is the anisotropic �yRI . The anisotropy of this
estimate is a direct consequence of the selection of an adaptive scale for each
direction.
The use of the space domain convolutions (9.6) and (9.7) instead of multi-

plications in Fourier domain can speed-up calculations signiÞcantly, since the
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support of the directional-LPA kernels gh,θ is usually very small. Moreover, this
choice allows more freedom in the handling of the boundary conditions. Observe
that the formula for the variance (9.7) can be rewritten easily in the standard
convolution form σ2

�yRIh,θ
=
¡F−1 (T RIGh,θ)

¢2 ~ σ2z.
9.2.5 Poissonian RWI inverse

The regularized Wiener inverse algorithm proceeds similarly:

T RWI (f) =
V (−f)|Y (f)|2

|V (f)Y (f)|2+ ε22 Φη(f) , tRWI = F−1(T RWI ), (9.9)

zRWI = F−1(T RWI Z) , �yRWI
h,θ = z

RWI ~ gh,θ. (9.10)

Here, Φη is the power spectrum of the noise. It can be shown that for Poissonian
observations Φη is constant and equal to the spatial mean of E {z} over the
image domain. As E {z}= y ~ v is unknown, its value may be estimated as
�yRI ~ v. However, since E {η (x)}=0, we simply set Φη =meanx(z). This is
an accurate approximation of meanx(E {z}) for large size images.
The Þnal fused estimate of the RI stage, �yRI , is used quite naturally as a

�pilot� estimate in the Wiener Þltering. It means that |Y |2 in (9.9) is replaced
by | �Y RI |2.
Similarly to the regularized inverse stage, also the standard deviations of the

RWI -LPA estimates are calculated in mixed frequency/space domain. Again,
the variance of �yRWI

h,θ is obtained as

σ2�yRWI
h,θ

= F−1
³
F
³
(tRWI ~ gh,θ)2

´
· Σ2

z

´
.

In this second stage, σ2z is estimated more accurately than in the previous one
(in order to get a better estimate for Σ2

z), from the regularized inverse estimate:
�σ2z = �yRI ~ v ' y ~ v = σ2z. Then, the ICI rule selects the pointwise-adaptive-
scale estimate �yRWI

h+(x,θ),θ(x), for every x, and for each speciÞed direction θ.
The fusing procedure is performed exactly as for the RI, with

�yRWI (x) =
X

k
λRWI
k (x)�y

RWI
h+(x,θk),θk

(x),

λRWI
k (x) = σRWI−2

k (x)/
P

iσ
RWI−2
i (x),

σRWI−2
i (x) = 1/σ2�yRWI

h+(x,θi),θi
(x) .

The Þnal output of the two-stage Poissonian RI-RWI is the anisotropic adaptive
estimate �yRWI .

9.2.6 Comments

In general, the regularized inverse and regularized Wiener inverse are linear
Þlters which actually are not appropriate to the problem with the varying sig-
nal dependent observation variance. In particular, even the ideal Wiener Þlter,
which is obtained by setting ε22 = 1 in (9.9) and by using the �oracle� esti-
mates for |Y | and Φη, achieves quite a poor performance, as shown in Figure
9.7(right). Main reason is that the Wiener Þlter itself is not able to produce a
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global estimate Þtting nonstationary varying-variance observations3. However,
the directional RI and RWI Þlters generate sets of estimates rich enough to
select from, and the ICI efficiently performs this adaptive selection.
The anisotropic fusing (9.8) of these adaptive estimates for various directions

yields a remarkable improvement in the restoration.
The presented algorithm can be modiÞed, so to be used for restoration from

signal-dependant noises other than the Poissonian one. Moreover, if the ran-
domness of the noise is particularly high, the Þrst stage can be executed once
or more times again in order to reÞne the estimate of σ2z by using a feedback
mechanism similar to the one described in Section 8.3.1.

9.2.7 Numerical experiments
In our simulations, in order to achieve a desired level of randomness (i.e. desired
SNR) in the noisy Poissonian observations, we Þrst multiply the true signal yTRUE

(which has range [0,1]) by a scaling factor χ > 0: y = χ · yTRUE , z ∼ P(y ~ v).
Thus, E{z} = σ2z = χ ·yTRUE ~v, and E{z}/std{z} =

√
χ
√
yTRUE ~ v, i.e. better

BSNR (SNR of the blurred observation against its expectation) corresponds to
larger χ.
We consider a deblurring experiment similar to the one considered in the

previous section. The Cameraman image is heavily blurred by a 9×9 �boxcar�
uniform PSF and degraded by noise, with a BSNR=32.5dB. The PSF v is
assumed to be known. To create a noisy Poissonian distributed observation
with that BSNR, the parameter χ=17600 is selected. Despite so large value
of χ, the non-uniformity of the noise is still quite an essential issue for the
Poisson deblurring, as the following simulations show. The actual values of
the standard deviations σz are in the range of [0, 0.0075] (assuming that the
image is renormalized back to the range [0, 1]). It is interesting to note that this
level of randomness is as much as what can be observed in images taken with a
consumer-level CMOS4 sensor under normal light conditions.
The proposed RI-RWI adaptive algorithm is implemented with the following

parameters. As in [46], a set of eight directions, {θk}8k=1 = {0, π/4, π/2, . . . , 7/4π}
and Þve scales, #H = 5, are used. Function estimation kernels were designed
on conically-supported windows choosing the Þrst and zero LPA orders for the
RI and RWI stages, respectively. For smaller scales in H the kernel support is
a 1-pixel-width line. The ICI thresholds and regularization parameters for the
RI and RWI, are ΓR I = 1.5, ΓRW I = 1.4, ε1 = 0.03 and ε2 = 0.28.
Figure 9.6 shows details of the blurred Poisson noisy observation and the

reconstructed Cameraman image. The reconstruction is visually quite good,
with most of the details properly restored and no signiÞcant distortions. The
objective values of ISNR and RMSE are given in Table 9.2. Figure 9.8 shows
the adaptive scales selected by the ICI for a vertical direction from the RI and a
horizontal direction from the RWI stage of the algorithm. It is remarkable how
these scales reveal the features of the image across the corresponding direction.
To demonstrate the improvement arising from our modiÞed algorithm, we

compare it against the standard Gaussian version of Section 9.1. First, we re-

3Nevertheless, linear Wiener Þlters have been used quite extensively for the restoration of
blurred images with Poissonian and more generally, signal-dependant noise (e.g. [17],[59]),
mostly because of their lower complexity and good stability.

4Raw data from Nokia 6600 camera phone.
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Algorithm ISNR RMSE
Poissonian anisotropic LPA-ICI RI-RWI 6.61 0.0428
Optimized Gaussian LPA-ICI RI-RWI 6.03 0.0458
Gaussian LPA-ICI RI-RWI [46] 5.38 0.0493

Table 9.2: MSE and ISNR (dB) for Cameraman image for Poisson image reconstruc-
tion.

Figure 9.6: Deblurring the Cameraman image. Left is a fragment of the noisy blurred
observation (BSNR=32.5dB). Right is the reconstructed image obtained by the pro-
posed Poissonian adaptive deconvolution algorithm, ISNR=6.61dB.

store the image applying the algorithm in a straightforward manner, estimating
the noise using a MAD estimator (it gives constant �σ = 0.0045), and using the
standard parameters that were optimized for the Gaussian case. Second, we
tune the parameters, in order to compensate to the wrong noise model assumed
by algorithm, trying to obtain the best possible restoration. Results are shown
in the Table and in Figure 9.9. Numerically, both results obtained by the Gaus-
sian algorithms are worse than the one obtained with the algorithm speciÞcally
designed for the Poissonian data. Comparing images in Figure 9.9 we may note
the enhancement obtained by the parameter optimization. A further compari-
son with the reconstructed image in Figure 9.6(right) obtained by the algorithm
developed for the Poissonian data demonstrates an obvious visual advantage of
the proposed algorithm.

9.3 Inverse halftoning
In this section, which is substantially based on [21]5, an original inverse halfton-
ing algorithm for restoring a continuous tone image from a given error-diffusion
halftone image is presented. The algorithm is based on the anisotropic decon-
volution strategy introduced earlier in this chapter. The linear model of error
diffusion halftoning proposed by Kite et al. [55] is exploited. It approximates
error diffusion as the sum of the convolution of the original grayscale image

5 [21]: Foi, A., V. Katkovnik, K. Egiazarian, and J. Astola, �Inverse halftoning based on the
anisotropic LPA-ICI deconvolution�, Proc. Int. TICSP Workshop Spectral Meth. Multirate
Signal Proc., SMMSP 2004, Vienna, Austria, pp. 49-56, September 2004.
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Figure 9.7: Result of the pure regularized inverse zRI from (9.6) (left) and the �oracle�
Wiener estimate, ISNR=5.22dB (right).

Figure 9.8: Adaptive scales: RI h+( · , π/4) (left), and RWI h+( · , 0) (right). Darker
color represents smaller scales.

with a speciÞc kernel and colored random noise. Under this model the inverse
halftoning can be therefore formulated as a special deconvolution problem.

The deconvolution is performed following the RI -RWI (regularized inverse-
regularized Wiener inverse) scheme and exploiting the anisotropic LPA-ICI es-
timator. This adaptive varying scale estimator, based on the directional-LPA
technique and the ICI scale-selection algorithm, allows near optimal edge adap-
tation. As a result, the reconstructed continuous-tone image presents smooth
areas faithful to the unknown original and yet preserves all the details found
in the halftone. Conventional inverse-halftoning algorithms often produce esti-
mates that are either oversmooth (loss of details) or still noisy.

The simulation experiments reported at the end of this section conÞrm the
state-of-the-art performance of the proposed algorithm, both visually and in
mean-squared-error sense.
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Figure 9.9: Filtering the Poisson data by the algorithm developed for the Gaussian one.
Standard selection of the algorithm parameters gives a poor estimate, ISNR=5.38dB
(left). Up to some extent, it can be improved by manually optimizing some algorithm
parameters, ISNR=6.03dB (right).

−−−→
halftoning

−−−→
inverse

halftoning

Figure 9.10: An illustration of halftoning and inverse halftoning. Detail of the Lena
image: original (left), Jarvis error-diffusion halftone (center), and LPA-ICI estimate
(PSNR=33.0dB) (right).

9.3.1 Halftoning and inverse halftoning

In the last two decades the color-depth of digital images, graphic cards, com-
puter displays and digital cameras has steadily increased. The current standard
for consumer devices is 8 or more bits for each color channel. In particular,
for grayscale images this is equivalent to 256 or more different intensity val-
ues. Since the human eye is usually not able to distinguish between so close
adjacent shades of gray, such grayscale images are often called continuous-tone
images. Coarser palettes are nowadays considered only for lossy image/video
compression applications.
Despite this progress, many output and rendition devices are still unable to

reproduce these continuous tone shades and can provide only a binary (black-
and-white) output. Typical examples of such devices are office and industrial
printers but also low-cost displays for mobile devices.
Digital halftoning is the rendition process of a continuous tone into a binary

image. Although the naive approach where shades lighter or darker than a
50% gray level are thresholded, respectively, to white or black, is the simplest
to implement, it is almost never used because of its visually poor result on
photographic images. Taking into account the characteristics of the human
visual system, which acts as low-pass Þlter, halftones are generated in such a way
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that the difference between the halftoned binary image and the original grayscale
image is compacted into the high frequency end of the Fourier spectrum.
Halftoning techniques include ordered dithering or screening (dispersed-dot

and clustered-dot), error diffusion, blue-noise dithering [92], and direct binary
search [1]. The latter is known to provide the highest quality halftones. However
the most widely used methods, because of their computational efficiency, are
order dithering and error diffusion. Figure 9.10 illustrates the halftoning process.
Halftoned images may look good printed on paper. However, due to their

high frequency characteristics they cannot be used in many situations. For
example, scanning and reprinting a high-resolution halftone would result in a
poor quality output (see, for example, the left column of Figure 9.16). Halftones,
when displayed on a computer screen (which has a resolution signiÞcantly in-
ferior to that of printer) present evident aliasing artifacts. Further processing,
such as resizing or contrast enhancement, can severely degrade the image qual-
ity. Moreover, standard compression techniques are not able to process halftones
efficiently. The development of applications such as high-quality digital archive
of old newspapers or scientiÞc journals can thus still be considered as challeng-
ing tasks. In all these cases it would be desirable to process, whenever available,
the original grayscale image rather than the black and white halftone.
Inverse halftoning is the reconstruction process of a continuous tone image

from its binary halftone, as illustrated in Figure 9.10. It is clear, from the above
discussion, that inverse halftoning should mimick the human visual system.
Thus, all inverse halftoning techniques perform some sort of low-pass Þltering. A
Þxed-kernel low-pass Þltering is simple to implement, nevertheless very seldom
yields satisfactory results. In the recent years inverse halftoning has gained
renewed interest and several new adaptive methods have been proposed [98].
They include thresholding in transform domain [73, 74], projection onto convex
sets (POCS) [34, 4], MAP projection [97], anisotropic diffusion [56] and look-up
tables (LUT) based on learning/training [71, 72, 52].
In what follows, we describe a novel inverse halftoning technique, which

combines a linear model for error diffusion [56] and the proposed anisotropic
deconvolution scheme based on the regularized inverse-regularized Wiener in-
verse (RI-RWI ) LPA-ICI from Section 9.1.2. We assume that the error diffu-
sion kernel is known. In particular, we show simulation results obtained for the
Floyd-Steinberg [19] and Jarvis et al. [38] error diffusion kernels.
Just as for the traditional image deblurring problem, also for inverse halfton-

ing the anisotropic LPA-ICI-based deconvolution yields state-of-the-art perfor-
mance through a two stage, non-iterative, Þltering procedure where blur and
noise are simultaneously removed. The anisotropy of the proposed estimator
allows to restore accurately edges and details, producing a result quite faithful
to the original.

9.3.2 Error diffusion

Roughly speaking, the error-diffusion halftoning works by raster-scanning the
continuous-tone image and recursively distributing, or �diffusing�, the quanti-
zation errors due to binarization on the neighboring pixels.
Let y be the original continuous tone image, x the pixel coordinate and z
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Figure 9.11: Error Þlters hed for the Floyd-Steinberg [19] (left) and Jarvis [38] error
diffusions. The black dot indicates the center of the kernel.

the halftoned image (to be generated); after setting the initial conditions [19]

�y1 = y,

x1 = (1, 1) (start from top-left pixel),

error diffusion is precisely deÞned by the following iterative procedure:
z (xn) = [�yn (xn)]0,1;
en = �yn (xn)− z (xn);
�yn+1 (xn + x) = �yn (xn + x) + enh

ed (x) ∀x;
xn+1 = successor (xn);

where hed is a weight kernel, [ · ]0,1 is the binarization (or rounding) operation
(i.e. [�y]0,1 = 1 iff �y ≥ 1

2 , otherwise [�y]0,1 = 0) and �successor� denotes the next
pixel to be processed in raster-scanning.
In other words, at every step, the error-diffusion algorithm

binarizes the current pixel (i.e. rounding to {0,1});
computes the quantization error;
diffuses error on neighboring pixels using weights from hed ;
moves to the next pixel (in raster-scanning);

.

The kernel hed is called the error Þlter. Examples of error Þlters are shown
in Figure 9.11. Observe that the weights are non-zero only for those pixels
that have not been already scanned. It means that the diffusion never goes
backwards with respect to the scanning direction and after a pixel has been
binarized its value is not modiÞed by future iterations. The algorithm ends when
the bottom-right pixel has been processed. The diffusion of the quantization
error guarantees that the local averages of the halftoned z are close to the
corresponding local averages of the continuous tone y.
Although the iterative nature of the procedure restricts its computational

speed, on the other hand the simplicity of the iteration step, the negligible
memory footprint, and the excellent rendition quality made error diffusion one
of the most established halftoning techniques.
Several modiÞcations to the above procedure (such as different pixel-scan

ordering or threshold modulation) are possible [92].

9.3.3 Linear model of error diffusion

In [54] Kite et al. propose the following linear model as an approximation of
error diffusion halftoning. Let Y and Z be the Fourier transforms of y and z,
respectively. Then

Z = PY +Qη, (9.11)
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Figure 9.12: Absolute value of P (left) and Q (right) corresponding to the Floyd-
Steinberg error Þlter.

where η is white Gaussian noise (with standard deviation σ),

P =
Kgain

1 + (Kgain − 1)Hed , Q =
1−Hed

1 + (Kgain − 1)Hed ,

Hed is the frequency response of the error Þlter hed and Kgain is a gain constant.
Kgain is found [54, 55] to be essentially independent on y and depends instead
only on the used error Þlter: for example, Kgain = 2.0 and Kgain = 4.5 for the
Floyd-Steinberg and Jarvis error Þlters respectively.
Since the typical Hed is a low-pass, Q is a high-pass Þlter (see Figure 9.12).

This is consistent with the fact that error-diffusion halftoned images differ from
the continuous-tone original mostly for the high-frequency components of the
spectrum (blue noise).
The model (9.11) has been proved to be quite accurate [55], and it has been

already exploited in a number of algorithms (e.g. [57], [73], [74]).

Convolutional model

In the spatial domain, multiplications are replaced by convolutions and (9.11)
becomes

z = p~ y + q ~ η (9.12)

where p and q are the impulse responses of P and Q respectively.
According to this model, the inverse halftoning process can be formulated

as a deconvolution problem, where p is the point-spread function and the ob-
servations z are contaminated by the colored blue noise q ~ η.

Deconvolution

Just as for the conventional deconvolution problem discussed in the previous
sections, an unbiased solution of a deconvolution problem of the form (9.11)
or (9.12) can be obtained in a straightforward manner by Þrst inverting the
convolution operator P and then removing the noise P−1Qη.
Unlike deconvolution examples from the previous sections, where the PSD

was a low-pass Þlter, the Þlter P corresponding to the error-diffusion halftoning
has an absolute value always larger that one, as shown in Figure 9.12. Thus,
in principle, there should not be need of any regularization for the inversion of
the convolution. In practice, however, it is found that � although quite accurate
� the model (9.11) is not completely exact, and the regularization can act as
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Figure 9.13: Varying-scale directional-LPA kernels (top) and the absolute value of
their Fourier transforms (bottom); m = (1, 0), θ = 0.

Figure 9.14: Varying-scale directional-LPA kernels (top) and the absolute value of
their Fourier transforms (bottom); m = (1, 0), θ = 7π/4.

an efficient stabilizing device, which can attenuate the distortions due to the
imprecisions of the assumed model.

9.3.4 Anisotropic LPA-ICI inverse-halftoning

We approach the inverse-halftoning problem according to the above convolu-
tional model, using the anisotropic LPA-ICI RI-RWI to perform the regularized
deconvolution.

Kernels

A collection of compactly supported directional-LPA kernels
©
ghj ,θk

ª
hj∈H,k=1,...,K

has been designed speciÞcally for the inverse halftoning problem. As usual, each
kernel is characterized by a direction θk and a scale parameter hj , and for each
Þxed θk, {ghj ,θk}hj∈H is a family of varying-scale directional kernels. Figure
9.13 and Figure 9.14 show two of these families of kernels corresponding to two
of the eight speciÞed directions.

Adaptive deconvolution algorithm

Analogously to the previous sections, capital letters are used for the discrete
Fourier transform of the corresponding functions. We denote by P the complex
conjugate of P . The considered technique is based on the following regularized
inversion (RI ) and regularized Wiener inversion (RWI ) estimates, using the
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directional-LPA kernels ghj ,θk :

�Y
RI

hj ,θk
=

PGhj ,θk

|P |2 + |Q|2 ε21
Z, (RI ) (9.13)

�Y
RWI

hj ,θk =
P |Y |2Ghj ,θk

|PY |2 + ε22 |Q|2 σ2
Z. (RWI ) (9.14)

The adaptive procedure assumes that the estimates {�yRIhj ,θk}hj∈H are calculated
according to (9.13) for a set of scales H and the ICI rule selects the adaptive
scales for each direction and for each pixel. In this way we obtain the directional
varying scale adaptive estimates �yRIh+(x,θk),θk , k = 1, . . . ,K, which are fused in
the anisotropic �yRI according to (4.8)

�yRI (x) =
X

k
λRIk(x)�y

RI
h+(x,θk),θk

(x), (9.15)

λRIk(x) = σRI−2k (x)/
X

i
σRI−2i (x),

where σRIk (x) is the standard deviation of the adaptive scale estimate �yRIh+(x,θk),θk (x).
The fused �yRI serves as the reference signal in the RWI procedure (see Figure

9.1). The adaptive RWI algorithm is similar and gives the ICI adaptive varying
scales estimates �yRWI

h+(x,θk),θk
for each direction and x. Then, the Þnal estimate

�yRWI is obtained by fusing these directional ones again similarly to (9.15):

�yRWI (x) =
X

k
λRWI
k (x)�y

RWI
h+(x,θk),θk

(x), (9.16)

λRWI
k (x) = σRWI−2

k (x)/
X

i
σRWI−2
i (x).

The Þnal estimate of y of the proposed inverse halftoning algorithm is the
output given by the RWI deconvolution scheme (9.3) that uses the ICI -based
RI estimate as a reference signal Y . Thus, we arrive to the two steps procedure
shown in Figure 9.1.

Remarks

The ICI adaptive scales h+ (·, θk) represent the distribution of image features
across the direction θk, as shown in Figure 9.15 (in the Þgure, darker color
corresponds to smaller scales).
The variances of the estimates �yRIhj ,θk and �y

RWI
hj ,θk

are obtained, respectively,
as

σRI 2hj ,θk = σ2

°°°°° PGhj ,θkQ

|P |2 + |Q|2 ε21

°°°°°
2

2

,

σRWI 2
hj ,θk

= σ2

°°°°° P |Y |2Ghj ,θkQ
|PY |2 + ε22 |Q|2 σ2

°°°°°
2

2

,

where k·k2 denotes the l2-norm, and σ2 is the variance of the noise η in formula
(9.11), which is assumed to be equal to 1.
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Figure 9.15: Peppers (detail): original image (top left), Jarvis error diffusion halftone
(top right), adaptive scales h+ (·, π/4) (center left), h+ (·, 0) (center right), h+ (·, π/2)
(bottom left), and LPA-ICI estimate (PSNR=31.6dB) (bottom right). The arrows
indicate the orientation of the kernels �gh+(x,θk),θk .
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9.3.5 Simulation results

The directional-LPA kernels were designed on asymmetrical windows oriented
along eight directions, {θk}8k=1 = {0, π/4, π/2, . . . , 7/4π}, with ordersm = (1, 0)
and m = (0, 0) for the RI and RWI Þlters, respectively. A set of 6 and 9 scales
was used for the RI and RWI, respectively. Some of these kernels are shown in
Figure 9.13 and 9.14. The Þrst and smallest scale is always equal to 1, i.e. the
kernel is the discrete Dirac delta function.
The regularization parameters ε1 , ε2 , the LPA kernels gh,θk and the ICI

threshold Γ are considered as Þxed design parameters of the proposed inverse
halftoning algorithm. For all results and Þgures presented in this section one
unique set of design parameters has been used.
Although relatively little investigation has been done in the optimization of

these design parameters, the anisotropic LPA-ICI inverse halftoning delivers
already more than satisfactory results (see Figure 9.16). Overall, the PSNR
values in Table 9.3 show that the new developed algorithm demonstrates a
good performance and outperforms some state-of-the-art techniques. Visual
inspection is also in favor of the new algorithm. Figure 9.17 shows a fragment of
the restored Lena image: when compared to the wavelet-based inverse halftoning
method [74], the proposed LPA-ICI procedure shows its superiority restoring
Þner details without introducing any visible artifacts.

Inverse halftoning technique Lena Peppers

Anisotropic LPA-ICI [21] 32.4 31.6
WinHD (Neelamani et al.) [74] 32.1 31.2
Wavelet-Vaguelette (Neelamani et al.) [73] 31.9 31.0
Wavelet (Xiong et al.) [99] 31.7 30.7
Gradient (Kite et al.) [56] 31.3 31.4
Kernel (Wong) [97] 32.0 30.3
LUT (Meşe and Vaidyanathan) [72] 31.0 �
LMS-MMSE (Chang et al.) [6] 31.4 31.2
POCS-SVD (Hein and Zakhor) [34] 30.4 �
POCS-Wavelet (Bozkurt and Çetin) [4] 32.2 30.9

Table 9.3: PSNR (dB) performance of the proposed algorithm and of other methods
for restoration from Floyd-Steinberg error diffusion.

Remark: Recently, in [52] it has been claimed that a decision tree learning LUT
algorithm can yield a PSNR of 34.75dB for the Lena image, sensibly outperforming all
previous records of other authors, in particular that of the other LUT-based algorithm
[72]. However, we do not include this result in Table 9.3 as it is achieved for an usually
sized 1050×1050 image. The results for the table, as well as all the Þgures in this
section, correspond instead to the standard 512×512 images. Nevertheless, we tested
our algorithm also for the �oversized Lena� used in [52], obtaining a PSNR of 37.75dB.
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Figure 9.16: Examples of Floyd-Steinberg error diffusion LPA-ICI inverse halftoning:
Peppers (PSNR=31.6dB), Lena (PSNR=32.4dB), and Boats (PSNR=29.5dB). The
pictures in the right column are the estimates obtained by the proposed procedure
from the binary halftone images (shown in the left column).
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Figure 9.17: Visual comparison for a detail of the Lena image: from left to right,
original and Floyd-Steinberg halftone (top row), the proposed anisotropic LPA-ICI
estimate (PSNR=32.4), and the �WInHD� estimate [74] (PSNR=32.1) based on de-
convolution and Þltering in the complex wavelet domain [53] (central row), and two
results obtained of using simple space-invariant Gaussian Þlters of different variance,
clearly exposing the inadequateness of a non-adaptive Þltering (bottom row).
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Chapter 10

Other applications

In this chapter we brießy present two more applications in which the developed
Þltering strategy may play a signiÞcant role. The aim is to further illustrate
the potential of the anisotropic LPA-ICI technique, and to provide ground for
a few more remarks on this method. No optimization or adaptation of the
standard algorithms for the following applications has been thoroghly done,
and no comparison with state-of-the-art techniques in the corresponding Þelds
is therefore provided.

A few more applications have already been considered and partly imple-
mented, but are not discussed in this thesis. They include interpolation, color-
Þlter array interpolation, image sharpening, segmentation, and super-resolution
imaging.

10.1 Video denoising

An adaptive spatio-temporal algorithm for video denoising is presented. The
local polynomial approximation (LPA) is exploited in order to design 3D di-
rectional Þltering kernels. For each speciÞed direction in the 3D space-time
domain, an adaptive scale (size of the kernel�s support) is selected using the
intersection of conÞdence intervals (ICI ) rule. In this way a pointwise-adaptive
spatio-temporal estimator is constructed. Experimental results show a good
performance of the proposed method with a signiÞcant noise attenuation and
nearly perfect edges and change-point preservation.
From the theoretical point of view, the following method is a particular case

of the multi-dimensional LPA-ICI anisotropic estimator; as an algorithm, it
is a rather direct extension to the 3D case of the anisotropic LPA-ICI image
denoising of Section 8.1.
The simulations presented at the end of this section have been prepared,

under the author�s supervision, by Chiara Ercole and have been presented in
[14]1 . The present section is substantially based on this publication.

1 [14]: Ercole, C., A. Foi, V. Katkovnik, and K. Egiazarian, �Spatio-temporal pointwise
adaptive denoising of video: 3D non-parametric approach�, Proc. of the 1st International
Workshop on Video Processing and Quality Metrics for Consumer Electronics, VPQM2005,
Scottsdale, AZ, January 2005.
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10.1.1 Introduction

Noise is usually present in a video sequence because of transmission over noisy
channels or acquisition with poor quality devices. Besides unpleasant visual
effects, that sometimes can seriously compromise the perceiving and interpreta-
tion of the content, the main and most affecting problem is the degradation of
the result of further processing such as video compression, segmentation, mo-
tion estimation. When addressing the problem of restoring a corrupted video
sequence, the goal is to Þnd a denoising scheme that can guarantee good per-
formances of video processing algorithms and also a satisfactory visual quality.
Since dealing with 3D data set, a good approach should take into account both
spatial and temporal dimensions, so to exploit the spatial and temporal corre-
lation in the video. Nevertheless, constraints of real-time implementation make
all the efforts go in the direction of simple separable Þlters. Although they reach
the required computational speed, these Þlters cannot suppress noise sufficiently
well without introducing disturbing artifacts such as blurry edges or smoothing
away salient characteristics like details and texture. The loss of these elements
can heavily affect not only the further video processing, but also the subjective
perception, since they encode a great amount of visual information contained
in image sequences.

We develop the anisotropic LPA-ICI algorithm to 3D, where time is the
third dimension completing the 2D space of the image frame. In this way, we
build an anisotropic 3D denoising Þlter for video.

10.1.2 Coordinate system

In order to better understand the notation used for the presented results, we
spend a few paragraphs for the description of the coordinate system used for
the 3D video Þltering.
Let x = (x1, x2, x3), with x1, x2 being the spatial coordinates and the third

coordinate x3 being interpreted as time or frame number. A partition of the
neighborhood in the 3D space can be done in different ways. Here, similarly as
in Section (4.2.3), we discuss a partition based on spherical coordinate system.
Figure 10.1 illustrates the meaning of the spherical angular coordinates θ and ϕ
with respect to the cardinal spatial and temporal coordinates: θ is the angular
coordinate of a polar system in the frame plane, while ϕ is the temporal angular
coordinate. Thus, purely temporal directions are obtained for ϕ = 0modπ;
purely spatial directions are obtained for ϕ = π/2modπ, n ∈ Z. So, referring
to the frame plane, direction along axis x1 is obtained for ϕ = π/2 and θ = 0,
while direction parallel to axis x2 is obtained for ϕ = π/2 and θ = π/2.

10.1.3 Video-denoising simulation

As an illustrative application, we wish to recover the Akiyo video sequence y
from its noisy observation z = y+n, where n is an additive white Gaussian noise
with zero mean and σ=20. Here, contrary to the rest of the thesis, we assume
that the range of the original data is [0, 255]. We implemented the proposed
method in the simplest possible way, where the directional kernels are uniform
over 1-pixel-width segments oriented along the twenty six directions originating
from the center of a cube to the eight vertices, to the middle of the twelve sides,
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Figure 10.1: Spherical coordinates: the angle θ lies in the spatial frame plane while ϕ
is the angle measured from the temporal axis.

to the center of the six faces. These kernels are LPA kernels of order zero, m =
[0, 0, 0]. The following set of scales was used, H = {1, 2, 3, 5, 7, 10}. Exploiting
the directional nature of the kernel supports, we improve the adaptive-scale
selection (and thus the signal estimate) using a larger threshold Γ on the purely
temporal directions, taking advantage of the high temporal correlation between
frames.
When the data are discrete, it is impossible to have non-overlapping supports

for the directional kernels, and, in practice, they are all overlapping in the
origin voxel. Although in most of the applications presented in the previous
chapters, formula (4.8) has been used also for origin-overlapping kernels, the
larger number of directional estimates makes (4.8) unsuitable for this particular
application. Thus, in this scenario, we use the uniform fusing formula (4.20), to
avoid an excessive �super weighting� in the origin for g+.
A performance comparison of this 3D algorithm over the two-dimensional

version, working on single frames, has been done. Table 10.1 presents results
for this comparison: for the 2D case, Γ=0.9 gives an average PSNR of 30.32dB,
while for the 3D case, using Γ=0.7 for all directions but the temporal ones
(Γ=1.2) an average PSNR of 33.86dB is reached. Not surprisingly, experimental
results show that the 3D method outperforms the classical 2D version. What
is somehow unexpected is that, despite the very simple structure of the used
kernels, this basic implementation of the anisotropic 3D Þltering yields a very
good performance, with about 3.5dB of improvement over the 2D algorithm.
In the performed tests, a smaller value for Γ is considered, with respect to the

usual 2D algorithm, since a larger number of directional estimators are taken
into account in the fusing, in accordance with the analysis from Section (4.6).
However, along the purely temporal directions, to take advantage of highly
stationary areas in the frames, a bigger values for Γ can be chosen. This aspect
is a peculiarity that can be exploited only if the video is sufficiently stationary.
Figure 10.2 shows (a) the original version of the 41st frame of the test se-

quence and (b) the corrupted one. Figure 10.3 shows the same frame, restored
applying (a) the 2D version of the method, obtaining PSNR=30.32dB and (b)
the proposed method (3D algorithm), reaching a PSNR of 33.75dB. Visual in-
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average min min* max
noisy 22.11 21.99 21.99 22.24
2D 30.32 30.02 30.02 30.64
3D 33.86 32.97 33.45 34.38

Table 10.1: PSNR (dB) values of the noisy (σ=20) and restored Akiyo sequence. Fil-
tering is performed using the 2D and the 3D LPA-ICI estimator. Average, minimum
and maximum PSNR values are calculated frame by frame on the whole (300 frames)
sequence; min* is the minimum value of PSNR obtained on the trimmed sequence
from frame 10 to 291.

(a) Original (b) Noisy

Figure 10.2: Frame 41 from the Akiyo sequence: (a) original and (b) noisy observation.

spection shows that edges and salient points of the video frame are preserved
better in Figure 10.3(b) than in (a).

The ICI adaptive scales h+i (x) represent the distribution of image fea-
tures across the direction (θi, ϕi). Figure 10.4 shows these adaptive scales
and the corresponding directional estimates for three different directions. In
particular, Figure 10.4(a)-(b) are obtained for a purely-spatial direction (left,
θ=0, ϕ=π/2); Figure 10.4(c)-(d) are obtained for a spatio-temporal direction
(θ=3π/4, ϕ=3π/4); Figure 10.4(e)-(f) are obtained for the purely-temporal di-
rection in the future (ϕ=π). It is remarkable how the temporal directions can
give important information on the motion in the video sequence, selecting larger
adaptive scales (white areas in the Þgure) for points that show slow motion or
no motion at all from frame to frame, and smaller scales (dark areas) for points
that move from frame to frame.

10.2 Shading from depth map: Z-buffer shading

Let ν =
³
− ∂f
∂x1
,− ∂f

∂x2
, 1
´
be the normal vector to a surface f (x1, x2). If we

assume the surface to be Lambertian then the reßected or transmitted luminous
intensity l in any direction from an element is proportional to the cosine of the
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(a) 2D (b) 3D

Figure 10.3: Frame 41 from the Akiyo sequence: (a) restored with 2D algorithm, (b)
restored with the proposed 3D algorithm.

angle between ν and the direction of illumination υ = (υ1, υ2, υz),

l ∝ νυT

|ν| |υ| .

As we discussed in Chapter 7, the estimation of the correct gradient (and
then the correct normal vector) can be compromised by the failure of the dif-
ferentiability assumption as well as by noise. When the normal vector is used
for the realistic visualization (rendering) of a 3D surface, even a weak noise can
produce a dramatic loss of quality. Indeed noise can be dealt with by means of
larger derivative estimation kernels. However these larger kernels are unable to
Þt discontinuities in the underlying function.
Here, we present some shading examples obtained by estimating the normal

vector with the use of the anisotropic gradient. A set of K = 32 directions
has been used for this example. The advantage of the anisotropic gradient can
be seen especially in Figure 10.8, where the estimator correctly recognizes the
non-differentiability line along the boundary of the paws. Larger kernels are
safely Þtted in the anisotropic neighborhoods of smoothness, and the estimate
is virtually noise-free even in the nearest vicinity of the non-differentiability line.
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(a) h+(·,0,π/2) (b) �yh+
(·,0,π/2),(0,π/2)

(c) h+(·,3π/4,3π/4) (d) �yh+
(·,3π/4,3π/4),(3π/4,3π/4)

(e) h+(·,ϕ=0) (f) �yh+
(·,ϕ=0),(ϕ=0)

Figure 10.4: Adaptive scales h+i and directional estimates �yh+i ,(θi,ϕi)
for the 41st frame

from the Akiyo sequence: (a)-(b) purely spatial direction (θ = 0, ϕ = π/2); (c)-(d)
spatio-temporal direction (θ = 3π/4, ϕ = 3π/4); (e)-(f) purely temporal direction in
the future (ϕ = π). Darker colour is used in the left column to represent smaller scales.
PSNR (dB) values for the directional estimates shown in the right column are, from
top to bottom, 23.69, 23.91 and 29.56, respectively.
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Figure 10.5: Rabbit: noisy depth map (Z-buffer).

Figure 10.6: Anisotropic gradient: ∂ϕ
∂x1

(left) and ∂ϕ
∂x2

(right).
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Figure 10.7: Shading obtained from the anisotropic gradient (normal vector).

Figure 10.8: Detail of the rabbit paws: from left to right, shading from gradient, kernel
length 2, 3, 7, and from anisotropic gradient.
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Hybrid methods: LPA-ICI
SA-DCT

The current research is focused on the combined use of the anisotropic LPA-ICI
and some other Þlter. In [24]1 we present the following hybrid method.

LPA-ICI-driven Shape-Adaptive DCT

The two-dimensional separable DCT, computed on a square or rectangular sup-
port, is a well established and very efficient transform in order to achieve a
sparse representation of image blocks. For natural images, its decorrelating per-
formance is close to that of the optimum Karhunen-Loeve transform. Thus, the
DCT has been successfully used as the key element in many compression and
denoising applications. However, in the presence of edges such near-optimality
fails. For this reason, other transforms with better edge adaptation capabilities
(e.g. wavelets) have been used in denoising, and post-processing deringing Þlters
are commonly used in MPEG-video decoders.
In the context of MPEG-4 coding, where arbitrarly shaped video-objects are

introduced, a shape-adaptive DCT (SA-DCT) has been proposed [86, 87] as an
extension of the classic separable DCT. The SA-DCT can be computed on a
support of any shape, but retains a computational complexity comparable to
that of the usual DCT. This makes the SA-DCT a well suited tool for the coding
of image blocks that lie on the video-object�s boundary.
We propose to use such a transform for image denoising.
The anisotropic LPA-ICI technique is used in order to deÞne the shape

of the transform�s support in a pointwise-adaptive manner. It means that for
each point in the image an adaptive estimation neighborhood is found. For
each one of these neighborhoods a SA-DCT is performed. The thresholded SA-
DCT coefficients are used to reconstruct a local estimate of the signal within
the adaptive-shape region. Since regions corresponding to different points are in
general overlapping (and generate an overcomplete representation of the signal),
the local estimates are averaged together (�fused�) using adaptive weights that
depend on the region�s statistics.

1 [24]: Foi, A., V. Katkovnik, and K. Egiazarian, �Pointwise shape-adaptive DCT as an
overcomplete denoising tool�, (accepted) SMMSP 2005, Riga, June 2005.
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Figure 11.1: The Cameraman image restored by the anisotropic LPA-ICI SA-DCT
estimator. The improvement in performance is noticeable, by visual inspection, and by
comparison of the objective criteria: ISNR=8.89dB, SNR=23.28dB, PSNR=28.87dB,
RMSE=9.19, MAE=5.65, MAX=87.36.

We conclude the thesis with a result that shows the potential of this hybrid
method. Figure 11.1 shows the Cameraman image restored by the �anisotropic
LPA-ICI + SA-DCT� estimator. The observation was the noisy image shown
in Figure 8.1 on page 110. Not only objective criteria are better, but also the
visual appearence of the estimate is clearly superior: edges are clean, and no
unpleasant ringing artifacts are introduced by the Þtted transform.
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