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Abstract Variance-stabilizing transformations are common-
ly exploited in order to make non-homoskedastic data eas-
ily tractable by standard methods. However, for the most
common families of distributions (e.g., binomial, Poisson,
etc.) exact stabilization is not possible and even achieving
some approximate stabilization turns out to be rather chal-
lenging. We approach the variance stabilization problem as
an explicit optimization problem and propose recursive pro-
cedures to minimize a nonlinear stabilization functional that
measures the discrepancy between the standard deviation of
the transformed variables and a �xed desired constant. Fur-
ther, we relax the typical requirement of monotonicity of the
transformation and introduce optimized nonmonotone sta-
bilizers which are nevertheless invertible in terms of expec-
tations. We demonstrate a number of optimized variance-
stabilizing transformations for the most common distribu-
tion families. These stabilizers are shown to outperform the
existing ones. In particular, optimized variance-stabilizing
transformations for low-count Poisson, binomial, and nega-
tive-binomial data are presented.

Keywords variance stabilization � heteroskedasticity �
transformations

1 Introduction

Let z 2 Z � R be a random variable distributed according
to a one-parameter family of distributionsDDD D fD� g, where
� 2 2 � R denotes the parameter, and let � .�/ D E fzj�g
and � .�/ D std fzj�g be the conditional expectation and the
conditional standard deviation of z given as functions of the
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parameter � . For example, DDD can be the family of Poisson
distributions with mean � 2 2 D [0;C1/, Pr [z D � j� ] D
e�� �

�

� ! , � 2 N; in this case � .�/ D � and � .�/ D
p
� .

Other important examples are given in Table 1.
We are concerned about the following problem: to �nd

a function f : Z ! R such that the transformed variable
f .z/ has constant conditional standard deviation, say, equal
to c > 0, � f .�/ D std f f .z/ j�g D c. In other words,
the sought f is a variance-stabilizing transformation that
transforms the variable z in such a way that the conditional
standard deviation does not depend anymore on the distrib-
ution parameter, thus turning a heteroskedastic z into a ho-
moskedastic f .z/, and, at least for what concerns the vari-
ances, f transforms a signal with signal-dependent noise
into one where the noise is signal-independent. Using the
words of Curtiss (1943), � f .�/ becomes functionally inde-
pendent of � . Of course, f itself should be independent of
� and we are not interested in pathological solutions such
as having f identically constant, since often one eventually
wants to be able to estimate � from f .z/. Typically, one
would require f to be monotone strictly increasing.
The problem of �nding variance-stabilizing transforma-

tions is widely studied because of their practical usefulness.
Starting from the early 1900's, numerous publications have
appeared in the mathematical and especially in the applied
statistics and engineering literature, where variance-stabi-
lization plays a central role in making non-homoskedastic
data easily tractable by standard methods. The fact that for
the most common families of distributions (e.g., binomial,
Poisson (Curtiss 1943), etc.) exact stabilization is not pos-
sible1 shifted the attention towards �nding transformations

1 For example, the binary samples z 2 f0; 1g D Z of the
Bernoulli distribution with parameter � D E fzj�g cannot be sta-
bilized to the same constant variance for different values of � : in-
deed, elementary calculations show that E f f .z/ j�g D � f .1/ C
.1� �/ f .0/ and var f f .z/ j�g D E

�
. f .z/� E f f .z/ j�g/2 j�

	
D
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that lead at least to some approximate (or asymptotic) stabi-
lization. However, even approximate stabilization turns out
to be rather challenging and improved transformations and
different approaches are still being proposed nowadays.

1.1 Background

Let us give a brief overview of the existing approaches to the
variance-stabilization problem and related techniques. We
begin with the classic heuristic stabilizer having the simple
inde�nite integral form2

f .z/ D
Z z c

� .�/
d� .�/ . (1)

This expression appears in many early works from the
1930's (e.g., Tippet 1934; Bartlett 1936) but, because of
its utmost simplicity, it had presumably been considered
and used long before those years. Likewise, it has regularly
resurfaced in numerous engineering papers, particularly in
the �eld of signal processing (e.g., Prucnal and Saleh 1981;
Arsenault and Denis 1981; Kasturi et al 1983; Hirakawa and
Parks 2006; Foi 2009a). It is important to emphasize that
although (1) does not follow from a rigorous mathematical
derivation, it nevertheless enjoys good asymptotic properties
(Curtiss 1943) and was empirically shown to provide rea-
sonable stabilization in various applications, as con�rmed
by its extensive use. More important, it served as the start-
ing point in suggesting the parametric forms of many classi-
cal stabilizers which were later improved through analytical
study.
While (1) pretends to be a universal recipe for stabili-

zing an arbitrary family of distributions, traditionally, most
of the efforts and contributions have been targeted at the
stabilization of few particular families of distributions, with
the Poisson distribution standing out as the most researched
one. Let us mention the works of Bartlett (1936), Anscombe
(1948), Freeman and Tukey (1950), and Veevers and Twee-
die (1971). As matter of fact, the best known variance-sta-
bilizing transformation is actually Anscombe's root trans-
formation (Anscombe 1948) of Poisson data (Anscombe

. f .0/� f .1//2 � .1� �/. The last term is constant if and only if f .z/
is constant.
2 The expression (1) follows from considering a local �rst-order ex-

pansion of f at � .�/,

f .z/ ' f .� .�//C .z � � .�//
@ f
@z
.� .�// .

One can then derive (treating z as distributed according to an impulse
centered at � .�/, so-called �delta-method� (Greene 2000))

std f f .z/ j�g '
@ f
@z
.� .�// � .�/ ;

and thus, by imposing std f f .z/ j�g D c, obtain the inde�nite integral
(1).
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std f f .z/ j�g

E fzj�g D �

Fig. 1 Conditional standard-deviation � f .�/ D std f f .z/ j�g of
the transformed Poisson variables z with parameter � D � .�/ af-
ter stabilization by �ve root-type transformations f .z/: 2

p
z (1),

2
p
z C 1, 2

p
z C 1=2 (Bartlett 1936), 2

p
z C 3=8 (Anscombe 1948),p

z C
p
z C 1 (Freeman and Tukey 1950).

attributes the result to A.H.L. Johnson). In their works,
Anscombe, Freeman, and Tukey present stabilizers also for
the binomial and negative-binomial distributions (�angular�
transformations based on the arcsine and hyperbolic arc-
sine). In a recent paper, Guan (2009) studies the trade-off be-
tween variance, skewness and kurtosis of transformed Pois-
son, binomial and negative binomial distributions, proposing
few variations of the transformations of Anscombe (1948)
and Freeman and Tukey (1950).
As an illustration of the problem at hand, in Fig-

ure 1 we show the conditional standard deviation
� f .�/=std f f .z/ j�g of the transformed Poisson variables
z with parameter � D � .�/ after stabilization by the follow-
ing �ve root-type transformations f .z/: 2

p
z (1), 2

p
z C 1,

2
p
z C 1=2 (Bartlett 1936), 2

p
z C 3=8 (Anscombe 1948),

p
z C

p
z C 1 (Freeman and Tukey 1950). Without loss of

generality, here and in the sequel we aim at stabilizing to a
unitary constant standard deviation c D 1.
All the above mentioned works propose parametric

transformations which �nd their origin in the rough stabi-
lizer given by (1). The design and applicability of these
transformations is restricted to the respective family of dis-
tributions and the stabilization is exact only asymptotically.
There are three seminal works that provide results about

the stabilization of a generic family of distributions. First,
there is the 1943 paper by Curtiss, where general asymptotic
theorems are proved, giving theoretical support to many em-
pirical stabilizers that were already widely used. Second and
arguably the most important contribution is Efron's 1981
work (Efron 1981; 1982) on the existence of transformations
for exact variance stabilization and/or perfect normalization.
Efron not only formalizes suf�cient conditions for the exis-
tence of the exact transformations (using the framework of
so-called �general transformation families�), but also pro-
vides their analytical expressions. Third, we mention Tib-
shirani's 1986 AVAS procedure (Tibshirani 1986b; 1988) for
regression, where approximate variance stabilizing transfor-

mations are iteratively computed by recursive application of
(1). Roughly speaking, this can be interpreted as an itera-
tive re�nement of the stabilizer. Although the AVAS is de-
veloped for data-driven application, Tibshirani brie�y high-
lights its potential use for random variables. The variance-
stabilizing transformations used by Efron and Tibshirani are
nonparametric and the stabilization is non-asymptotic.
Together with the AVAS, other widely used tools for

data-driven variance stabilization are the Box-Cox paramet-
ric transformations (for a review, see Sakia 1992) and their
modi�cations (Blaylock and Smallwood 1985; Sakia 1992;
DiCiccio et al 2006).
More recently, a number of techniques for dealing with

wavelet coef�cients of heteroskedastic data have been also
proposed. In particular, noting that the Anscombe transfor-
mation is not adequate for low-count (photon limited) sig-
nals, Starck et al. (Starck et al 1998; Zhang et al 2008) de-
veloped a generalization of this transformation applicable
to linear combinations of Poissonian variates. It is shown
that, provided some smoothness of the underlying data, the
variance stabilization of the wavelet coef�cients is more ef-
fective and, in a sense, easier to achieve than the variance
stabilization of the original data. With a similar goal, Fry-
zlewicz, Nason, et al. introduce so-called wavelet-Fisz trans-
forms (Fryzlewicz and Nason 2004; Fryzlewicz and De-
louille 2005; Fryzlewicz 2008; Nunes and Nason 2008; Na-
son 2008) where stabilization is achieved by dividing each
wavelet coef�cient by an estimate of its standard deviation.
In connection with these latter methods, it is worth citing
also the various threshold-correcting schemes by Kolaczyk
(1997; 1999). Further references can be found in the review
articles (N. 2006; Taylor 2006).
Summarizing, we can say that most of the works have

traditionally been about variance stabilizing transformations
having an explicit parametric expression (e.g., Bartlett 1936;
Anscombe 1948; Freeman and Tukey 1950; Veevers and
Tweedie 1971; Blaylock and Smallwood 1985; Sakia 1992;
DiCiccio et al 2006; Starck et al 1998; Zhang et al 2008;
Guan 2009), while relatively few authors have researched
nonparametric stabilizers (e.g., Efron 1981, 1982; Tibshira-
ni 1986b, 1988; Fryzlewicz 2008) and that, quite clearly, the
leading interest is for non-asymptotic results (e.g., Bartlett
1936; Freeman and Tukey 1950; Veevers and Tweedie 1971;
Efron 1981, 1982; Tibshirani 1986b, 1988; Guan 2009), al-
though also asymptotic ones (e.g., Curtiss 1943; Anscombe
1948; Starck et al 1998; Zhang et al 2008) can be satisfac-
tory for applications.
With such abundance of different transformations, the

natural question arises about which transformations provide
the best stabilization. Unfortunately, this question remains
largely unanswered. Firstly, because, as noted explicitly by
Freeman and Tukey (1950) and later by Laubscher (1961), it
is typically impossible to achieve simultaneously good sta-
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bilization for all parameter values: thus, when a stabilizer
appears to be better than another one for some values of the
parameter � , it is likely that for other values it is actually
worse. In this sense, there might be no �universally best sta-
bilizer�. Secondly, because no objective criterion for assess-
ing the goodness of a stabilizer has ever been formulated.
In the light of the �rst remark, we see that simply demand-
ing std f f .z/ j�g to be as close as possible to c might be too
vague and ambiguous.

1.2 Contributions and outline

The contribution of this paper is �ve-fold and the remainder
of the paper is structured accordingly.
First and foremost (Section 2), we approach the variance

stabilization problem as an explicit optimization problem,
where we aim at minimizing a nonlinear weighted stabi-
lization functional that measures the discrepancy between
the conditional standard deviation std f f .z/ j�g of the trans-
formed variable f .z/ and the �xed desired constant c. In
particular, we consider functionals having different weights
for different values of � and that can accommodate small
stabilization errors, thus enabling a more uniform stabiliza-
tion overall. The stabilization functional can be used as an
objective measure to test the goodness of f as a variance
stabilizer.
Second (Section 3), we propose a recursive procedure

that at every iteration re�nes a nonparametric continuous
monotone function in such a way to decrease the corre-
sponding value of the stabilization functional.
Third (Section 4), we demonstrate optimization by di-

rect search. In particular, in our experiments we rely on the
downhill simplex algorithm (Nelder and Mead 1965). This
method is particularly effective for families of discrete dis-
tributions.
Fourth (Section 5), we relax the typical assumption of

monotonicity of f , and replace it with a somewhat milder
requirement on the invertibility of E f f .z/ j�g. This is a
suf�cient condition for successful use of stabilization in
many applications such as, for example, regression, where
the main interest is about estimating the parameter � . Opti-
mized nonmonotone stabilizers can provide sensibly better
stabilization than monotone ones.
Fifth (Section 6), as a result of the above techniques,

we present a number of optimized variance stabilizers
for the most common distribution families. These stabi-
lizers are shown to outperform the existing ones. In par-
ticular, variance-stabilizing transformations optimized for
low-count Poisson data are presented as leading examples
throughout the various parts of the paper.
We conclude with discussions and a few open problems

(Section 7).

2 Variance stabilization as a minimization problem

Let c > 0 be a �xed positive constant (throughout the paper
we assume c D 1) and

e f .�/ D � f .�/� c

be the local error because of inexact stabilization (where
locality is understood in terms of the conditioning on � ).
A global cost functional is hence de�ned as

C f D
Z
2

��e f .�/�� d�: (2)

In principle, one may formulate the variance stabilization
problem as the solution of

argmin f C f ; (3)

under some constraints on f (e.g., f continuous and strictly
increasing). Variance stabilization is exact only when C f D
0 for some f . In most cases of practical interest, this cannot
be achieved and the in�mum value of C f is strictly posi-
tive and/or a minimum cannot be attained. For example, ex-
act variance stabilization cannot be achieved for the Poisson
or binomial families of distributions (Curtiss 1943). Conse-
quently, most works have been devoted to ensuring asymp-
totic stabilization for limiting values of the parameter � . For
these cases, the goodness of stabilization expressed by the
rate of decay of the limit

e f .�/ �!
�!1

0: (4)

The contributions by Curtiss, Barlett, and Anscombe have
been of this sort. While these work ignore an integral for-
mulation such as (2), we note that the quadratic decay for
(4) achieved by the Anscombe stabilizer at least ensures the
convergence of the improper integral (2). However, an un-
weighted cost functional like (2) is not suf�ciently �exible
to be useful in the practice. In particular, one has often to
deal with parameter values that are far from limiting values
and asymptotic stabilization is no longer appealing. Typi-
cally, when exact stabilization is not possible, an optimal
asymptotic decay prevents e f .�/ to be small for ordinary
values of � . Thus, compromises are necessary. For the case
of the Poisson distribution, we note that the main goal of
Freeman and Tukey (1950) was actually to obtain a stabi-
lizer, f .z/ D

p
z C

p
z C 1 (see Figure 1), that yields an

e f .�/ which has slower decay for � ! 1 but which re-
mains �small� also for �small� values of � . Thus, it appears
that the simple formulation given by (2)-(3) is inadequate to
properly specify the problem and deal with it.
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Fig. 2 The weight function ' (8) used for the construction of the sta-
bilization functional (9).

2.1 Weighted stabilization functional

As clear from the previous discussion, it makes little sense
to aim at exact variance stabilization simultaneously for all
parameter values. Therefore, we consider a weighted stabi-
lization functional of the form

C f D
Z
2
w� .�/we

�
e f .�/

�
d�; (5)

where the weight functions w� and we provide different
weighting for the different values of � and the different sta-
bilization errors e f .�/, respectively.
In particular, we consider the following special form of

the weights we, which favor approximate stabilization while
ignoring very large stabilization errors, in a fashion roughly
similar to Tukey's biweight. Let 
 u ,
 ` � 1, r 0u ,r 0` � 0,
r 00u � r 0u , r 00` � r 0`, ou ,o` � 1 be some real constants and
�� be the characteristic (indicator) function of a set �. We
de�ne the weights we as

we
�
e f .�/

�
D
��' �e f .�/� e f .�/�� ,

where e f is the clipped stabilization error

e f .�/ D � f .�/� c D max
�
�r 00` ;min

�
r 00u ; e f .�/

		
; (6)

� f .�/ D max
�
c � r 00` ;min

�
c C r 00u ; � f .�/

		
; (7)

and with the function ' given by (see Figure 2)

'
�
e f
�
D 
 u � � [0;C1/

�
e f
�
�

�

(�
1�
�
e f�r 0u
r 0u

�2�.ou�1/
�.�1;r 0u/

�
e f
�
C � [r 0u ;C1/

�
e f
�)
C

C 
 ` � � .�1;0/
�
e f
�
�

�

(�
1�
�
e fCr 0`
r 0`

�2�.o`�1/
�.�r 0`;C1/

�
e f
�
C �.�1;�r 0`

��e f �):
(8)

The clipped argument e f .�/ cannot distinguish stabilization
errors whose magnitude is larger than r 00` ,r

00
u , while the mul-

tiplication against the function ' increases the polynomial
order of the small stabilization errors from 1 (i.e., linear) to

Table 2 Recursive integral algorithm for optimizing f .

0. Initialize
f0 .z/ D z (i.e. identity), or f0 .z/ an arbitrary monotone
increasing function.

Iterate the following three stages:
1. Compute statistics
# fk .�/ D med f fk .z/ j�g ; (conditional median)
� fk .�/ D std f fk .z/ j�g : (conditional st. deviation)

2. Compute stabilization re�nement

rk .�/D
Z �

fk .za /
I fk .�/ d

�
# fk .�/

�
Ca; (integration w.r.t. cond. median)

where

I fk .�/ D 1�
w� .�/ '

�
e fk .�/

�
e fk .�/

� fk .�/
; (weighted integrand)

e fk .�/ and � fk .�/ are de�ned by (6) and (7), respectively,
and za and a are �xed anchoring constants.

3. Compose
fkC1 .z/ D rk . fk .z// : (re�nement of the stabilizer)

o`,ou . Note that for a positive (resp. negative) argument, the
function ' has a zero of order ou�1 (resp. o`�1) at zero and
becomes constant (with quadratic-smooth joint) equal to 
 u
(resp. 
 `) starting from r 0u (resp. r 0`), as shown in Figure 2.
Thus, the cost functional (5) takes the form

C f D
Z
2
w� .�/

��' �e f .�/� e f .�/�� d�; (9)

where the factor w� .�/ is bounded as 0 � w� .�/ � 1 and
provides localization to the functional by assigning small
weights to the values of � for which precise stabilization
is not required. While the functional (5) can, of course, be
given also in other forms, we found the simple (9) to be
particularly convenient for demonstrating the signi�cance of
a weighted stabilization, as illustrated by the examples given
in the later sections and especially by those in Sections 3.1
and 6.3.

3 Recursive integral re�nement

We propose an heuristic iterative procedure which aims at
minimizing the cost functional (9) through recursive stabili-
zation. The procedure is described by the algorithm in Table
2.
The general structure of this algorithm is analogous to

the iterations for stabilization of the variance used in AVAS
(Tibshirani 1988). The crucial difference stays however in
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the de�nition of the re�nement function rk

rk .�/ D
Z �

fk .za/
I fk .�/ d

�
# fk .�/

�
C a; (10)

which in AVAS is de�ned by the simple integral (1) (where
the integration is computed with respect to the conditional
mean E f fk .z/ j�g), whereas we use the weighted integrand
I f .�/,

I f .�/ D 1�
w� .�/ '

�
e f .�/

�
e f .�/

� f .�/
; � 2 2 � R; (11)

integrated with respect to the conditional medians # f .�/ D
med f f .z/ j�g D f .med fzj�g/. Here and throughout
the paper, we consider Riemann-Stieltjes integration (see,
e.g., Kolmogorov and Fomin 1975), i.e. given two func-
tions g (integrand) and h (integrator) of � , the integral
of g with respect to h,

R
g .�/ d [h .�/], can be written asR

g .�/ @@� h .�/ d� , where both the integral and the derivative
operator are taken in their distributional sense, thus allow-
ing h to have discontinuities. All numerical computations
are enabled by employing trapezoidal integration and linear
interpolation and extrapolation.
Let us give an intuition why (11) can be useful for

minimizing (9). If w� .�/
��' �e fk .�/� e fk .�/�� is small then

I fk .�/ is close to 1, the re�nement function rk has a deriv-
ative which is close to 1 and, thus, composition of fk with
rk (Step 3) does not alter essentially the conditional stan-
dard deviation � fk .�/. Conversely, if w� .�/

��' �e fk .�/��� is
close to 1 (which is the upper bound for these weights), then
w� .�/

��' �e fk .�/� e fk .�/�� is close to ��e fk .�/�� and I f .�/ is
close to c

� f .�/
, which by relaxation of (7) coincides with

the integrand of (1), thus composition of fk with rk should
make � fk .�/ close to c. The same reasoning can be in-
stalled even when 
 u or 
 l are equal to some 
 < 1, be-
cause when w� .�/

��' �e fk .�/��� is close to 
 , then I f .�/ �
1 � 


�
� fk .�/�c

�
� fk .�/

and � fkC1 .�/ � � fk .�/ � 

�
� fk .�/� c

�
leading to a geometric convergence (with rate .1� 
 /k) of
� fk towards c. Further discussion about the particular form
of (10) is provided in Section 7.1.
Observe that, since w� � 1 and ' � max

�

 u; 
 l

	
� 1,

we have that the weighted integrand (11) is positive, I f � 0,
which means that composition of a monotone function with
the re�nement rk returns another monotone function. Thus,
the re�ned transformations fk are all monotone increasing,
from which we have med f fk .z/ j�g D fk .med fzj�g/ for
all k 2 N. Note also that the anchoring constants in (10)
are used to maintain fkC1 .za/ D a and thus avoid drift of
the re�ned stabilizer while the algorithm progresses. This is
a mere technicality, because an arbitrary additive constant
does not obviously in�uence the stabilization properties of a
transformation.

Fig. 3 Illustration of the weighted integrand I f (11), shown as function
of � f for w� D 1 and we de�ned by the parameters ou; ol D 1:5,
r 0u; r 0l D 0:2, r 00u ; r 00l D 0:5, 
 u; 
 l D 0:8. The weighted integrand
(thick line) is compared with the basic integrand 1=� f used in (1) (thin
line).

Overall, this particular algorithm is obtained mostly out
of the above heuristic speculations. While we cannot claim
that it can exactly minimize the cost (9) (a few counterex-
amples are given in the later sections), our extensive ex-
periments suggest that the cost is at least progressively de-
creased through the recursions, i.e. the sequence

C fk D
Z
2
w� .�/

��' �e fk .�/� e fk .�/�� d� . (12)

is decreasing. Thus, the algorithm may be treated as a
pseudo-minimizer for (9).
On this point, we wish to note that performing the inte-

gration with respect to the conditional median (as opposed
to the conditional mean) appears to be crucial for enabling
the decrease of the sequence of costs (12). In the following
sections, we give few examples demonstrating that if the in-
tegration with respect to the conditional means were used
(i.e. de�ning # fk .�/ D E f fk .z/ j�g instead of # fk .�/ D
med f fk .z/ j�g in Table 2), the sequence (12) would not be
decreasing and instead it would converge to a limit sensi-
bly larger than its minimum. The examples are discussed in
Section 7.2.

3.1 Example: Poisson

Let us give an example of the application of this algorithm to
the stabilization of the Poisson family. We consider a stabili-
zation functional where w� D � [0;15] (characteristic function
of the closed interval [0; 15]) and wherewe is de�ned by the
following parameters: ou; ol D 1:5, r 0u; r 0l D 0:2, r

00
u ; r 00l D

0:5, 
 u; 
 l D 0:8. Figure 3 illustrates the weighted integrand
I f (11) corresponding to these parameters as a function of
� f when w� D 1, i.e. for � 2 [0; 15]. For the computations
it suf�ces to regard only 0 � z � 54, because the probability
Pr [z > 54j� ] is numerically negligible for any � 2 [0; 15],



7

fk std f fk .z/ j�g

Fig. 4 Optimization of Poisson variance stabilizer using the recursive integral algorithm (Table 2). Left: sequence of transformations fk .z/; Right:
sequence of the corresponding conditional standard deviations std f fk .z/ j�g (the red contour lines indicate where stabilization is exact).

C fk

k

Fig. 5 Optimization of the Poisson stabilizer by the recursive integral
algorithm. Solid lines: value of the stabilization functional vs. itera-
tions (logarithmic scale). For all three initializations the �nal value is
C f4000 D 0:1051. Dotted lines: sequence obtained by integration with
respect to conditional mean (see Section 7.2).

with Pr [z > 54j� ] < 2 Pr [z D 55j15] D 2:3 � 10�15. In
Figure 4 we show the sequence fk of transformations pro-
duced by 4000 iterations of the algorithm and the corre-
sponding conditional standard deviations std f fk .z/ j�g. The
algorithm had been initialized by f0 .z/ D z with the an-
choring constants za D a D 0. We can see that after the
�rst 10 iterations the algorithm reaches a near steady-state,
with a slow but progressive improvement. The decreasing
sequence of costs C fk (12) is plotted in Figure 5. In this
�gure we also show the sequence C fk obtained from differ-
ent initializations, using f0 D 2

p
z C 3=8 (Anscombe 1948)

and f0 D
p
z C

p
z C 1 (Freeman and Tukey 1950): as one

can see from the plots, in practice, it does not really matter
which had been the particular initialization, since the same
stabilization accuracy is eventually achieved with approxi-
mately the same rate (for all three cases, C f4000=1.051). The
optimized stabilizer f D f4000 obtained from f0 D z is

Thin:
f .z/

Thick:
E f f .z/ j�g

Thin: z Thick: � D E fzj�g

Fig. 6 Optimized Poisson stabilizer f obtained after 4000 iterations
of the algorithm in Table 2 initialized by f0 D z (thin solid line) and
the corresponding expectation mapping E fzj�g 7! E f f .z/ j�g (thick
line). The thin dotted line shows the optimized stabilizers obtained
by initialization by either f0 D

p
z C

p
z C 1 (Freeman and Tukey

1950) or f0 D 2
p
z C 3=8 (Anscombe 1948) (the plots of these two

optimized stabilizers coincide and, for z � 25, overlap almost perfectly
with the one obtained from f0 D z).

shown in Figure 6. It is interesting to observe few peculiar-
ities of this transformation. We notice that the �rst 16 sam-
ples 0 � z � 15 are roughly following a root-type progres-
sion, pretty much like the stabilizers cited in Section 1.1. For
z > 15 the transformations fk remain af�ne like f0 D z, be-
cause (due to the linear extrapolation) the re�nement itself
is always af�ne for z > 15, since med fzj�g � 15 if � � 15
(Adell and Jodrá 2005). Close inspection shows the curious
fact that f .1/ � f .2/. In other words, the optimization
leads to a non-invertible transformation. As demonstrated in
the next sections, this peculiarity turns out to be quite com-
mon for optimized non-decreasing transformations. It is im-
portant to emphasize that the lack of invertibility of f does
not necessarily compromise the invertibility and smoothness
of the mapping E fzj�g 7! E f f .z/ j�g (see the thick dashed
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std f f .z/ j�g

E fzj�g D �

Fig. 7 Conditional standard deviation of the Poisson variance stabi-
lizer f optimized by the recursive integral algorithm (Table 2) vs. those
corresponding to the classical stabilizers 2

p
z C 3=8 (Anscombe 1948)

and
p
z C

p
z C 1 (Freeman and Tukey 1950).

line in Figure 6), which is the actual inverse mapping that
one uses after processing the stabilized data (e.g., �ltering
in a regression application). Note that monotonicity of f is
anyway guaranteed by the nonnegativity of I fk in the inte-
gral (10).
In the same �gure, the thin dotted line shows the two

stabilizers f4000 obtained from initialization with the root
transformations f0 D 2

p
z C 3=8 (Anscombe 1948) and

f0 D
p
z C

p
z C 1 (Freeman and Tukey 1950) (with the

maximum absolute difference of 0.0073, their respective
plots are so close to each other, that they cannot be dis-
tinguished in the �gure). These two stabilizers practically
coincide with that obtained from f0 D z for all z � 25
(maximum absolute difference of 0.0506).
Figure 7 presents the conditional standard deviation

std f f .z/ j�g for f D f4000 in comparison with that for
f D 2

p
z C 3=8 (Anscombe 1948), f D

p
z C

p
z C 1

(Freeman and Tukey 1950), and f D z. The improvement
of the stabilization is here clearly visualized.
Stable convergence of the iterative integral algorithm

was veri�ed experimentally, up to the numerical precision
of the algorithm, in extensive tests. However, its limit does
not generally coincide with the in�mum of the stabilization
functional. In particular, in the above example we have seen
that the re�nement outside of the conditional medians, i.e.
for z � 15 D max��15med fzj�g, is bound to be af�ne and
thus it restricts the space of functions which can be spanned
by the iterations of the algorithm.

4 Optimization by direct search

A practical way to circumvent the above issues as well as the
computational aspects involved in the evaluation of the inte-
grals and in the composition with the re�nement functions,
is to approach the minimization by direct search, i.e. by ex-
plicit evaluation of C f . This method is particularly feasible
for discrete distributions, for which the search space can be
identi�ed directly with the values of f .z/, but it can be used

also with continuous distributions provided a suitable repre-
sentation of f (e.g., optimizing over the wavelet coef�cients
or other multiscale decompositions of f ) or by using inter-
polation over an adaptive sampling grid.
In principle, any iterative algorithm for direct search or

derivative-free optimization may be used (Kolda et al 2003).
In our simulations, we utilize the downhill simplex algo-
rithm (Nelder and Mead 1965; Conn et al 2009). We choose
this algorithm mainly because of its ease of applicability.
Other more sophisticated methods (e.g., Kelley 1999; Conn
et al 2009) can be considered as well. The stabilizer found
upon convergence of the recursive integral algorithm may be
taken as initialization for the search.
First, we minimize the cost functional (9) within the

class of monotone nondecreasing3 functions, thus constrain-
ing the search to these functions. A more general case is then
considered in Section 5.

4.1 Example: Poisson

Again, we give here an example of the application of this al-
gorithm to the stabilization of the Poisson family, for the
same weighted stabilization functional as in the previous
section.
The optimized stabilizer found by direct search is shown

in Figure 8. Observe that this transformation is constant on
many subintervals of [0; 54], while the mapping E fzj�g 7!
E f f .z/ j�g is smooth and invertible for all � 2 [0; 15]. The
value of the stabilization functional achieved by this trans-
formation is 0.0944, well below the cost of 0.1051 obtained
from the iterative integral solutions (see also Figure 5). Part
of this improvement stems from the direct search succeed-
ing in optimizing also the samples z > 15. As observed
in Efron (1982), ideal stabilization and ideal normalization
typically cannot coexist and the distribution of stabilized
variables needs to depart from a normal one. In Figure 10,
we can see that indeed the conditional cumulative distrib-
utions functions (c.d.f.) after direct search optimization al-
low a poorer �t by the standard normal c.d.f.8 compared to
those after recursive integral optimization.
As in the previous section, we ignore the optimization

for z > 54. Firstly, because we aim at restricting the dimen-
sionality of the search space, optimizing only over the most
in�uential samples for the considered stabilization func-
tional, which is supported on the closed interval [0; 15]. Sec-
ondly, because, as noted above, with a growing z > 54,
Pr [zj� ] for � 2 [0; 15] becomes so small that the opti-
mization of f .z/would eventually be badly conditioned and
3 We note that it is practically equivalent to restrict to either nonde-

creasing or strictly increasing functions: provided ' is continuous and
kw�k1 <1, one can always introduce a small enough perturbation to
a nondecreasing f , making it strictly increasing and without increasing
C f more than an arbitrary positive constant.
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Thin:
f .z/

Thick:
E f f .z/ j�g

Thin: z Thick: � D E fzj�g

Fig. 8 Optimized monotone stabilizer for the Poisson family obtained
by direct search (thin line) and the corresponding expectation mapping
E fzj�g 7! E f f .z/ j�g (thick line).

hence numerically unstable. Thus, restricting the optimiza-
tion to z � 54 can be formally interpreted as a form nu-
merical regularization. We shall discuss in Section 6.6 how
stabilizers optimized on bounded subsets can be easily ex-
tended for stabilization over unbounded subsets.

5 Relaxing the monotonicity of f

The example shown in Figure 8 highlights the maybe sur-
prising fact that optimization can lead to transformations
which have concentrated �jumps� between a number of sta-
tionary segments. It is quite natural to suspect that improved
stabilization may be achieved by allowing this pattern to be
enhanced (e.g., larger jumps between segments where the
transformation is decreasing).
Therefore, here we relax the requirement on the mono-

tonicity of f (undertaken in Sections 3 and 4) and replace
it with that of the invertibility of the mapping E fzj�g 7!
E f f .z/ j�g. The choice of this latter requirement follows
from the idealized scenarios where variance stabilization is
utilized. For instance, the principal aim of regression is es-
timating the conditional expectation E fzj�g from the given
noisy observations. Thus, when the regression problem is
translated to the stabilized variables, one estimates their
conditional expectation E f f .z/ j�g; the inverse mapping
E f f .z/ j�g 7! E fzj�g is then exploited to express the so-
lution for the untransformed variables.
We note that the monotonicity of E fzj�g 7!

E f f .z/ j�g is not necessarily a weaker requirement than the
monotonicity of f , in the sense that the latter does not im-
ply the monotonicity of E f f .z/ j�g as a function of � or
E fzj�g. For instance, in Foi (2009a) we have shown that
monotonicity of f is alone not suf�cient to ensure monoto-
nicity of the mapping E fzj�g 7! E f f .z/ j�g for particular
families of normal distributions and have formulated suf�-
cient conditions which require hypotheses on both f and
� .�/.

Thin:
f .z/

Thick:
E f f .z/ j�g

Thin: z Thick: � D E fzj�g

Fig. 9 Optimized nonmonotone stabilizer for the Poisson family ob-
tained by direct search (thin line) and the corresponding monotone
expectation mapping E fzj�g 7! E f f .z/ j�g (thick line). The values
outside of the plot are f .52/ D �21:697, f .53/ D �35:938, and
f .54/ D 134462:365, while max�2[0;15] Pr [z D 54j� ] D 4:28 � 10�15
(see text).

5.1 Example: Poisson

Figure 9 shows the optimized nonmonotone stabilizer found
by direct search. Observe that this stabilizer has indeed a
number of oscillations and that there is a visible correspon-
dence between the main stationary segments of the monoto-
ne stabilizer in Figure 8 and the segments where this non-
monotone stabilizer is decreasing.
The reduction of the stabilization functional C f after

relaxation of the monotonicity is substantial, going further
down from 0.0944 to 0.0771. In connection with the re-
mark made at the end of Section 4.1, let us note that the
large-magnitude values found here for z D 52; 53; 54 have
no practical impact to the actual stabilization, as they are
anyway several orders of magnitude smaller than the corre-
sponding probabilities Pr [zj� ] for � 2 [0; 15].
We wish to observe also that, for � D E fzj�g � 5,

the plot of E f f .z/ j�g has a stationary point (i.e., there is
a value of � such that @E f f .z/ j�g =@E fzj�g D 0). This
suggests that better stabilization could be reached by further
relaxing the constraint on the invertibility of the mapping
E fzj�g 7! E f f .z/ j�g.
Figures 11 and 12 show the conditional standard devia-

tion std f f .z/ j�g for our three optimized stabilizers in com-
parison with that for the classical stabilizers shown in Figure
1. As a result of the optimization, all our stabilizers, and par-
ticularly the nonmonotone one, have a negligible maximum
overshooting4 of the desired stabilized deviation c D 1 and
yet a very slow decay at zero5.
It is remarkable that the additional freedom of a nonmo-

notone f also contributes to improving the approximate nor-
mality of the conditional distributions of f .z/ j� , as shown
in Figure 10.

4 About 3%, comparable to that achieved by f D
p
z C

p
z C 1

(Freeman and Tukey 1950).
5 Comparable to that produced by f D 2

p
z, which instead over-

shoots dramatically.
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Recursive integral Direct search - Monotone Direct search - Nonmonotone
(Section 3.1) (Section 4.1) (Section 5.1)

Fig. 10 Stabilization vs. normalization: the conditional cumulative distribution functions (c.d.f.) of the stabilized Poisson variables after our three
proposed optimization procedures. The distributions are drawn centered about their mean E f f .z/ j�g. The dashed line is the c.d.f. 8 of the
standard normal N .0; 1/.

std f f .z/ j�g

E fzj�g D �

Fig. 11 Conditional standard-deviation std f f .z/ j�g of the trans-
formed Poisson variates after stabilization by our optimized stabilizers
compared against the other stabilizers from Figure 1. Although the op-
timization is made for � 2 [0; 15], here we detail only 0 � � � 5. See
Figure 12 for the logarithmically scaled plot with 0:001 � � � 15.

std f f .z/ j�g

E fzj�g D �

Fig. 12 Same as in Figure 11, but using logarithmic scale on both axes.

6 Examples of optimized transformations

In this section, to further illustrate to potential of the pro-
posed techniques, we present a number of optimized stabi-
lizers for the most common families of distributions. When

relevant, comparisons are made against some of the best sta-
bilizers found in the literature.
Matlab and ASCII �les implementing all op-

timized transformations presented in this paper
can be downloaded from the author's website at
http://www.cs.tut.fi/~foi/optvst .

6.1 Binomial

Let us consider the stabilization of the binomial family of
distributions with n trials and parameter � 2 2 D [0; 1].
Similar to the Poisson family, we compare against the an-
gular transformations by Anscombe (1948) and by Freeman
and Tukey (1950):

f .z/ D 2
q
n C 1

2 arcsin
q
zC3=8
nC3=4 ; (13)

f .z/ D
q
n C 1

2

�
arcsin

q
z
nC1 C arcsin

q
zC1
nC1

�
. (14)

Here z 2 Z D [0; n] and, for any � 2 .0; 1/, both these
transformation are asymptotically exact as n ! 1. Good
stabilization for � close to 0 or 1 is dif�cult to obtain when
n is small, thus in the following examples we consider
n D 4; 7; 15; 30. In Figure 13 we show the stabilizers (13)-
(14), the optimized stabilizers found by the proposed algo-
rithms, and the corresponding conditional standard devia-
tions (in both linear and logarithmic scale). The optimized
transformations are found by minimization of a stabilization
functional where the weight we is the same as that used in
Section 3.1 while w� D �2 D � [0;1] . As can be seen from
the �gure, optimization leads to more accurate stabilizati-
on than it is achieved using classical stabilizers of the form

http://www.cs.tut.fi/~foi/optvst
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Fig. 13 Stabilization of the binomial families with number of trials n D 4; 7; 15; 30. Variance-stabilizing transformations f (top row) and the
corresponding conditional standard deviations of the stabilized variables std f f .z/ j�g (middle and bottom row, in logarithmic scale). Solid thick
line: optimized monotone stabilizer found by direct search. Dashed line: optimized nonmonotone stabilizer found by direct search. Dash-dotted
line: optimized stabilizer found by recursive integral algorithm. Solid thin line: angular stabilizer (13) (Anscombe 1948). Dotted line: angular
stabilizer (14) (Freeman and Tukey 1950). The transformations are plotted vertically shifted one with respect to the other, to improve discrimination.

(13)-(14). Figure 14 shows the values C fk of the stabiliza-
tion functional for n D 7 during the recursive integral opti-
mization. Similar to Figure 5, we show plots for three differ-
ent initializations f0: identity, (13), and (14). The sequences
(solid lines) converge to 0.0293, which can be further de-
creased by direct search minimization to 0.0284 (monotone)
and 0.0235 (nonmonotone). In Figure 13, we can observe for
the binomial family the same qualitative behavior found for
the Poisson stabilization, i.e. the optimized monotone stabi-
lizers present a number of constant segments and relaxing
monotonicity allows to improve stabilization by introducing
oscillations in correspondence with those segments. How-
ever, this is improvement is here less pronounced than with
the Poisson family (indeed, the differences can be clearly
seen only in the plots with logarithmic scale). Curiously,
while all monotone stabilizers are found to be symmetric
about to their middle point, optimization of nonmonotone
stabilizers produced a few asymmetric transformations for
particular values of n: e.g., n D 30 (as can be seen in Figure
13, top-right) or n D 12 (not shown).

Stabilization for the scaled binomial families is equiva-
lent and involves only an obvious rescaling of the stabilizer.

C fk

k

Fig. 14 Optimization of the binomial stabilizer by the recursive inte-
gral algorithm. Solid lines: value of the stabilization functional vs. iter-
ations (logarithmic scale). For all three initializations the �nal value is
C f15000 D 0:0293. Dotted lines: sequence obtained by integration with
respect to conditional mean (see Section 7.2).
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Fig. 15 Stabilization of the negative binomial family with exponent � D 2; 5; 10. Variance-stabilizing transformations f (top row) and the
corresponding conditional standard deviations of the stabilized variables std f f .z/ j�g (middle and bottom row, in logarithmic scale). Solid thick
line: optimized monotone stabilizer found by direct search. Dashed line: optimized nonmonotone stabilizer found by direct search. Dash-dotted
line: optimized stabilizer found by recursive integral algorithm. Solid thin line: angular stabilizer (15) (Anscombe 1948). Dotted line: angular
stabilizer (16) (Laubscher 1961). The transformations are plotted vertically shifted one with respect to the other, to improve discrimination.

6.2 Negative binomial

For the negative-binomial families, we consider the stabiliz-
ers by Anscombe (1948) and Laubscher (1961):

f .z/ D
q
�� 1

2 arcsin
q
zC3=8
��3=4 ; (15)

f .z/ D
p
� arcsin

q
z
� C

p
�� 1 arcsin

q
zC3=4
��3=2 . (16)

Here z 2 N and, for any � > 0, both these transformation are
asymptotically exact as � !1. Negative-binomial variates
share many features with the Poisson ones. In particular, the
smaller gets � , the harder becomes achieving good stabili-
zation. For the following examples, we take � D 2; 5; 10,
which are the values investigated in the two cited papers.
Figure 15 shows the stabilizers (15)-(16), the optimized sta-
bilizers found by the proposed algorithms, and the corre-
sponding conditional standard deviations (in both linear and
logarithmic scale). Here, for the optimization we use the
same stabilization functional used in Section 3.1. The bene-
�t of optimization can be clearly seen in the �gure, particu-
larly for smaller � values. Again, we can observe that there
is a rough correspondence between the locations of the �at

segments in the optimized monotone stabilizers and those of
the oscillations in the nonmonotone ones.
Stabilizers for the scaled negative binomial families are

obtained by an obvious rescaling.

6.3 Poisson

To illustrate the �exibility of the stabilization functional, we
now show some additional examples for the Poisson family,
using different weights in the de�nition of the functional (5).
In particular, we compare the examples given in Sections
3.1,4.1,5.1 (cost functional �A�, Section 3.1) with those ob-
tained by either modifying the localization on � , replacing
w� D � [0;15] with w� D � [0;3] (cost functional �B�), or by
allowing larger stabilization errors, replacing ou; ol D 1:5,
r 0u; r 0l D 0:2, with ou; ol D 3, r 0u; r 0l D 0:4 (cost functional
�C�). These two modi�cations can be meaningful, respec-
tively, either when one wants stabilization only for small
values of the parameter (in this case � � 3), or when bet-
ter stabilization for smaller values of the parameter (which
is harder to achieve) is preferred to an accurate stabilization
overall.
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In Figure 16 we show the best monotone and nonmono-
tone stabilizers found by minimizing these three function-
als. These plots allow to distinguish various trade-offs en-
abled by the weighting. In particular, it is remarkable how
improving the stabilization for small � corresponds to an in-
crease in the amplitude of the oscillations of the conditional
standard deviation (functional �C�) while relaxing the stabi-
lization for � > 3 does not provide a conspicuous bene�t to
the stabilization achieved for � 2 [0; 3]. We discuss on this
particular issue in Section 6.6.
The stabilization of the scaled Poisson family can be

achieved by a simple change of variables in the argument
of the stabilizer.

6.4 Filtered Poisson

It is interesting to look also at the stabilization of �l-
tered Poisson data. Here, we consider the �ltered Pois-
son distributions through the 2-D B3-spline low-pass �lter
h D hB3 
 hB3 , given as tensor product of the 1-D ker-
nels hB3 D [1 4 6 4 1] =16. This particular case have been
studied in Zhang et al (2008), where Anscombe-type sta-
bilizers are utilized. In the same paper, the authors eval-
uate also the stabilization produced for these distributions
by the conditional variance stabilization (CVS) technique
by Jansen (2006). Observe that h � 0, khk1 D 1, and
khk2 D 5 � 7 � 2�7 D 0:2734375. Thus, the �lter is mean
preserving and � .�/ D � just like for the Poisson family,
while � .�/ D

p
� khk2. The 5 � 5 D 25 Poisson samples

which are combined by the �lter yield distributions which
are much closer to a normal one than the original Pois-
son distribution is (because of the central-limit theorem).
Though the �ltered distributions are still obviously discrete,
they have much �ner granularity and, thus, give way to in-
creased freedom in the optimization of the stabilizer.
In Figure 17, we compare the stabilization achieved

by our optimized monotone transformation found by direct
search (using the same cost functional �A� as in Section 3.1)
against that achieved by the stabilizers of Zhang et al (2008)
and Jansen (2006). It can be seen that the optimized stabi-
lizer provides signi�cantly better stabilization, especially for
low values of � .

6.5 Clipped heteroskedastic normal

In Foi et al (2008); Foi (2009a), we proposed a noise model
for the digital raw data output of imaging sensors, which
can be expressed by a clipped heteroskedastic normal fam-
ily of distributions. Let z � N

�
y; � 2.y/

�
, where � .y/ D

p
ay C b; with a; b 2 RC and y � � ba , and de�ne the

clipped observations Qz as

Qz D max f0;min fz; 1gg : (17)

Therefore, Qz 2 QZ D [0; 1] are distributed according to a
doubly censored Gaussian distribution having a generalized
probability density function (p.d.f.) of the form

pdf
�
Qzjy
�
.� / D

D 8
�
�y
�.y/

�
�0.� /C

1
�.y/�

�
��y
�.y/

�
�[0;1]C8

�
y�1
�.y/

�
�0.1� � /;

(18)

where �0 is the Dirac delta impulse at 0. The conditional
expectation and variance of Qz are

E fQzjyg D Qy D 8
�

y
�.y/

�
y �8

�
y�1
�.y/

�
.y � 1/C

C � .y/ �
�

y
�.y/

�
� � .y/ �

�
y�1
�.y/

�
; (19)

varfQzjyg D Q� 2. Qy/ D 8
�

y
�.y/

� �
y2 � 2 Qyy C � 2.y/

�
C

C Qy2 �8
�
y�1
�.y/

� �
y2 � 2 Qyy C 2 Qy C � 2.y/� 1

�
C

C� .y/ �
�
y�1
�.y/

�
.2 Qy � y � 1/�� .y/ �

�
y

�.y/

�
.2 Qy � y/ ;

(20)

where � and8 are the p.d.f. and c.d.f. of the standard normal
N .0; 1/, respectively.
We are interested in the stabilization of Qz, i.e. for the

family of distributions given by (18). Thus, in this section,
the clipped variable Qz plays the role that the variable z has in
the rest of the paper. Because there exists a smooth invertible
mapping which links y and Qy (Foi 2009a), we can use � D Qy
as the reference parameter which identi�es the distribution
within the family.
As an illustrative example, we consider the case given

by a D 1=30; b D 0:01. The conditional standard deviation
stdfQzj�g is plotted in Figure 18(middle) (dotted line).
First, let us compare the stabilizing transformation pro-

duced by the simple integral (analogous to that in (1))

f0 .Qz/ D
Z Qz

0

1
Q� .�/

d� (21)

against the optimized transformation obtained by the recur-
sive integral algorithm of Section 36. For this, we use the
same stabilization functional used for the binomial family
in Section 6.1. Figure 19 shows the evolution of the vari-
ance stabilizing transform fk through 15000 iterations of
the recursive algorithm initialized by f0 (21). The �gure
shows also the sequence of the conditional standard devia-
tions std f fk .Qz/ j�g. The initial and optimized stabilizers f0
and f15000 and their respective conditional standard devia-
tions after stabilization are plotted also in Figure 18 (thin
6 We obviously replace z by Qz in the formulas in Table 2. The bound-

edness of the integral (21) is proved in Foi (2009a). Similar arguments
can be used to prove the boundedness of the integral (10) applied to the
clipped Qz.
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std f f .z/ j�g

E fzj�g D �

std f f .z/ j�g

E fzj�g D �

Fig. 16 Conditional standard-deviation std f f .z/ j�g of the transformed Poisson variates after stabilization by monotone (top) and nonmonotone
(bottom) stabilizers minimizing (direct search) three different cost functionals (see text).

std f f .z/ j�g

E fzj�g D �

Fig. 17 Stabilization of Poisson data �ltered through a 2-D B3-spline low-pass �lter. Comparison between the conditional standard-deviation
std f f .z/ j�g after stabilization using the Anscombe-type stabilizer (Zhang et al 2008), the CVS technique (Jansen 2006), and the proposed
optimized monotone stabilizer found by direct search.

solid and dash-dotted lines). As can be seen in the �gures,
the stabilizer f0 produced by (21) is much overshooting the
desired unit deviation. This should not surprise: we have al-
ready seen in Figure 1, for the Poisson case, that this sim-
ple kind of stabilization can overshoot higher than the other
more sophisticated approaches.

We now turn to the direct-search optimization. To deal
with continuous domain QZ D [0; 1] of the distribution fam-
ily, we use linear resampling of f on an adaptive sampling
grid which is progressively re�ned during the optimization.
The optimized stabilizer and the conditional standard devia-
tion of the stabilized variables are plotted in Figure 18 (thick
solid lines). A comparison between the conditional standard

deviations associated to the two optimized stabilizers shows
that the latter has wider oscillations around the desired value
c D 1, but at the same time its decay towards zero is slower,
thus achieving smaller value of the stabilization functional:
0.6646 (direct search) versus 0.6784 (recursive integral).

It is interesting to observe that, while the conditional
standard deviations which appear at the denominator of the
integrands in (21) and (10) are continuous functions (and
thus (21) is continuous also), both optimized stabilizers pre-
sent discontinuities at both 0 and 1, presumably re�ecting
the discontinuities at 0 and 1 in the c.d.f. associated to
(17),(18). In particular, the value at Qz D 1 of the stabilizer
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fk std f fk .Qz/ j�g

Fig. 19 Recursive integral optimization (algorithm of Table 2) of the stabilizer for the clipped heteroskedastic normal Qz D max f0;min fz; 1gg,
z � N

�
y; � 2.y/

�
, in the case � .y/ D

p
y=30C 0:01. The algorithm is initialized by f0 of Equation (21). Left: sequence of transformations fk .z/;

Right: sequence of the corresponding conditional standard deviations std f fk .z/ j�g (the red contour lines indicate where stabilization is exact).

optimized by the recursive integral algorithm is 7.898, while
that of the stabilizer optimized by direct search is 7.921.
Successful application of the optimized stabilizers to the

denoising of raw data from digital camera has been demon-
strated in Foi (2008, 2009b) and is the subject of a forthcom-
ing publication.

6.6 Splicing transformations

The examples considered so far are optimized over compact
parameter supports, using weightsw� de�ned as characteris-
tic functions of closed intervals. Outside such a support, the
stabilization is not guaranteed and, as seen in Section 6.3
(particularly in Figure 16) stabilization errors can be very
large.
While the optimization can be always recomputed for

wider supports (i.e. with a different w� ), in some practical
situations, it can be instead useful to extend an optimized
transformation so to be applicable for any parameter value,
without seriously compromising the stabilization accuracy
achieved on the support of w� .
This can be operated by splicing together two stabilizing

transformations: one optimized over a limited range of para-
meter values (e.g., like those introduced in the previous sec-
tions), another one providing stabilization for all parameter
values (e.g., a transformation with asymptotical properties,
such as those by Anscombe 1948). Let us denote these two
stabilizers as fopt and fasy, respectively. Splicing can be re-
alized as

fspliced .z/ D

D

Z z

za
wmix .v/ f 0opt .v/C .1� wmix .v// f

0
asy .v/ dv C a,

(22)

where wmix : Z ! [0; 1] is a mixing window function that
regulates the transition from fopt to fasy and za 2 Z and
a 2 R are arbitrary constants. In case of discrete distrib-
utions, the integral and derivatives in (22) are assumed in
generalized sense.

We illustrate this by considering the particular situa-
tion where the monotone Poisson stabilizer optimized over
� [0;15] by direct search (Section 4.1) fopt is spliced to-
gether with Anscombe (1948) root transformation fasy .z/ D
2
p
z C 3=8. The derivatives in (22) are here computed as

the �nite differences f 0opt .z/ D fopt .z C 1/ � fopt .z/ and
f 0asy .z/ D fasy .z C 1/� fasy .z/, while the integral becomes
a cumulative sum.

In choosing the mixing window function, we �rst ob-
serve that the Anscombe transformation fasy provides ex-
cellent stabilization for � � 4 (see Figures 1 and 7), while
for smaller values of � fopt is a much better stabilizer (see
Figure 11). However, fopt ensures optimal stabilization for
all � � 15. We then analyze what is the in�uence of the
samples at z to the conditional distributions. More precisely,
for each � 2 Z , we look at max

�
Pr [z D � j� ] over spe-

ci�c ranges of parameter � . If this quantity is very small
at a certain � , then modi�cations of the value of f .� / will
not result in signi�cant changes to the conditional stan-
dard deviation std

�
fspliced .z/ j�

	
. In Figure 20 we show

plots of max
�22 j

Pr [z D � j� ] as function of � for 21 D [0; 4/,

22 D [4; 50/, 23 D [50;C1/. We can see that the stabi-
lization on 21 is practically not affected by the transforma-
tion for � � 20, with the most in�uential values of � being
the �rst few smallest. Likewise, the stabilization on 23 is
practically not affected by � � 20.
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f .Qz/

Qz

std f f .Qz/ j�g

Qy D E fQzj�g D �

std f f .Qz/ j�g

Qy D E fQzj�g D �

Fig. 18 Stabilization of the clipped heteroskedastic normal Qz D
max f0;min fz; 1gg, z � N

�
y; � 2.y/

�
, in the case � .y/ D

p
y=30C 0:01: transformations and conditional standard-deviations.

Solid thin line: stabilizer (21). Dash-dotted line: optimized stabilizer
found by recursive integral algorithm. Solid thick line: optimized
monotone stabilizer found by direct search. Dotted line: identity (i.e.
no stabilization).

Thus, as mixing window we take the smooth function
(see Figure 21)

wmix .� / D

8><>:
1 0 � � � 5;
1
2

�
1C cos

�
.��5/�
14

��
5 � � � 19;

0 19 � � :
(23)

This choice ensures that fspliced inherits the good stabilizati-
on of fopt for small � 2 21 and at the same time have practi-
cally the same stabilizing properties of fasy for large � 2 23.
The in-between values � 2 22 are those where splicing
might ruin the stabilization offered by fasy or fopt and there-
fore are those where the stabilization produced by fspliced
(i.e. std

�
fspliced .z/ j�

	
) deserves most to be inspected.

The transformations fasy, fopt, fspliced, and the condi-
tional standard deviations std

�
fasy .z/ j�

	
, std

�
fopt .z/ j�

	
,

std
�
fspliced .z/ j�

	
are shown in Figure 22 and Figure 23,

max
�22 j

Pr [z D � j� ]

�

Fig. 20 max
�22 j

Pr [z D � j� ] over the parameter ranges 21 D [0; 4/,

22 D [4; 50/, 23 D [50;C1/.

�

Fig. 21 Mixing window function wmix (23).

f .z/

z

Fig. 22 Splicing together the Anscombe root transformation fasy with
the optimized monotone stabilizer fopt obtained by direct search. The
enlarged fragment shows the portion 0 � z � 25.

respectively. The loss of stabilization outside of the interval
[0; 15] is clearly visible in the plot of std

�
fopt .z/ j�

	
. As

can be seen in the enlarged fragment shown in Figure 23,
the spliced transformation fspliced yields stabilization which,
for all � � 0, is within a 1.5% tolerance of the best among
std
�
fasy .z/ j�

	
, std

�
fopt .z/ j�

	
. In particular, the behavior

of std
�
fspliced .z/ j�

	
and std

�
fopt .z/ j�

	
for very small �

values (i.e. � � 4) is essentially identical, while

e fspliced .�/ D std
�
fspliced .z/ j�

	
� 1 �!

�!C1
0

and

e fasy .�/ D std
�
fasy .z/ j�

	
� 1 �!

�!C1
0

converge to zero at the same rate.

7 Discussion and conclusions

In this paper we aimed at ful�lling a number of goals. We
have introduced a clear formulation of variance stabilizati-
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std f f .z/ j�g

E fzj�g D �

Fig. 23 Conditional standard-deviations of the transformed Poisson
variates after stabilization by the Anscombe root transformation fasy
(dashed line), by the optimized monotone stabilizer fopt (solid thin
line), and by the spliced transformation fspliced (thick red line).

on as a cost-minimization problem, under which different
variance-stabilizing transformations can be evaluated and
compared. While such an approach is widespread, with suc-
cessful application to many optimization problems in ap-
plied mathematics and engineering, it had surprisingly never
been formulated in the context of variance stabilization. This
formalism, allows one to look for approximate and local-
ized stabilization, using weights which allow a certain tol-
erance for small stabilization errors as well as to restrict
around only some speci�ed range of the parameter values.
We have then presented two ways to perform the minimiza-
tion of the cost functional: �rst by an algorithm based on re-
cursive integration, and then by direct search. In both cases,
the variance-stabilizing transformations are nonparametric.
Further, we have demonstrated that improved stabilization
can be achieved by relaxing the commonly assumed require-
ment of invertibility of the variance-stabilizing transforma-
tion, supplanting it with the invertibility of the transforma-
tion of the expectations, which is the actual requirement in
regression. We have also shown the application of the pro-
posed approach to various distribution families, resulting in
optimized stabilizers that outperform the conventional stabi-
lizers found in the literature.
This paper can be partly seen as a continuation of the

works by Efron (1982) and especially Tibshirani (1988,
1986a), in the sense that we provide an alternative and prac-
tical method for designing optimal stabilizers based on re-
cursive re�nement of the variance-stabilizing transform us-
ing an approximate technique. The main formal difference
between our work and all previous ones, is that we treat
variance stabilization as a cost-minimization problem. We
note that Tibshirani does conjecture a minimization problem
solved by AVAS (Tibshirani 1988, Section 5.3). However,
his formulation is not relevant to the stabilization problem
itself, since in Tibshirani (1988) the minimization is of a
quadratic �t for the regression constrained to the class of
exact stabilizers (which in most situations happens to be
empty) and not a minimization of the stabilization error.

The stepwise behavior of all the presented optimized
monotone stabilizers underlines the inadequacy of the clas-
sical approach to stabilization based on asymptotic calculus
with smooth functions in explicit parametric form.

7.1 Speci�c features of the proposed recursive integral
stabilizer

Let us discuss the particular re�nement function used in our
recursive integral algorithm of Section 3, in relation to other
stabilizers in integral form previously proposed in the lit-
erature. For convenience, these stabilizers are summarized
in Table 3. They can be mainly categorized according to
four features: iterative or non-iterative, integrand based on
pdf [zj� ] .�/ or on 1=� .�/, use of weights for the integrand
or not, integration with respect to conditional mean or with
respect to conditional median.
The fact that one should use integration with respect to

conditional median is explained by Efron (1982): it essen-
tially follows from the median of a distribution being in-
variant through transformation by a monotone function f
(i.e., med f f .z/ j�g D f .med fzj�g/), whereas the mean
is typically not invariant through a nonlinear transforma-
tion. In particular, Efron (1982) proves that for the so-called
�general transformation families� of distributions (i.e. one-
parameter families of distributions which are related to the
standard normal through some smooth transformations) the
transformation that achieves exact stabilization exists and
has the form

f .�/ D
Z �

za

pdf [zj�] .�/
� .0/

d [ med fzj�g ]C a, (24)

where � denotes the p.d.f. of the standard normal distrib-
ution N .0; 1/. It is easy to realize that for normal distri-
butions pdf [zj� ] .�/ D � .0/ =� .�/, from which follows
the commonly employed variance stabilizing transformation
(1). In this sense, by relying on a normal approximation of
pdf [zj� ] for the integrand, (24) becomes

f .�/ D
Z �

za

1
� .�/

d [ med fzj�g ]C a, (25)

where the integration is still with respect to conditional me-
dian. A non-iterative algorithm based on (25) is described
in a technical report by Tibshirani (1986a, Section 3). How-
ever, only a very brief note on this is eventually given in
Section 5.6 of the paper Tibshirani (1988), where single it-
eration algorithms based on (24),(25) are declared as �not
useful�. Ultimately, the AVAS algorithm presented in Tib-
shirani (1988) uses recursive stabilization with a re�nement
function,

rk .�/ D
Z �

fk .za/

1
� fk .�/

d
�
E f fk .z/ j�g

�
C a; (26)
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Table 3 Different variance-stabilizing transforms in integral form. See Sections 7.1 and 7.2.

NON ITERATIVE

eq. (1) (e.g., Bartlett 1936) f .�/ D
Z �

za

1
� .�/

d
�
E f fk .z/ j�g

�
C a

exact stabilizer for GTFs (Efron 1982) f .�/ D
Z �

za

pdf [zj� ] .�/
� .0/

d [ med fzj�g ]C a

normal approximation in the integrand
(Tibshirani 1986a) f .�/ D

Z �

za

1
� .�/

d [ med fzj�g ]C a

ITERATIVE fkC1 .z/ D rk . fk .z//

AVAS (Tibshirani 1988) rk .�/ D
Z �

fk .za /

1
� fk .�/

d
�
E f fk .z/ j�g

�
C a

proposed (Table 2 of Section 3) rk .�/ D
Z �

fk .za /
1� w� .�/'

�
e fk .�/

�
e fk .�/

� fk .�/
d
�
med f fk .z/ j�g

�
C a

modi�ed, integration w.r.t. to mean
(Section 7.2) rk .�/ D

Z �

fk .za /
1� w� .�/'

�
e fk .�/

�
e fk .�/

� fk .�/
d
�
E f fk .z/ j�g

�
C a

thus following a normal approximation of the p.d.f. for both
the integrand and the integrator.
Our re�nement function (Table 2, Section 3)

rk .�/D
Z �

fk.za/
1� w�.�/'

�
e fk.�/

�
e fk.�/

� fk.�/
d
�
medf fk .z/ j�g

�
Ca

(27)

can be interpreted as a recursive form of (25), where the
weighted integrand (11) is used instead of the basic ��1fk .�/,
which appears as the integrand in (26).
We have already shown that indeed multiple iterations

are necessary in order to achieve good stabilization (see Fig-
ures 4, 5, 14, 19). Likewise, the effect of weighting has been
shown in Section 6.3. In the next section we emphasize the
importance of the integration with respect to the conditional
medians.

7.2 Conditional median vs. conditional mean

If, in our recursive integral algorithm, instead of integrating
with respect to the conditional median, we integrate with
respect to the conditional mean, i.e. replacing (27) by

rk .�/D
Z �

fk.za/
1� w�.�/'

�
e fk.�/

�
e fk.�/

� fk.�/
d
�
E f fk .z/ j�g

�
Ca,

the recursion fails to effectively decrease the stabilization
functional. For example, we can see in Figure 5, that for
the Poisson family and using exactly the same settings as
in Section 3.1, the sequence C fk converges, regardless of

the particular initialization, to 0.2543. Although it is obvi-
ously much better than leaving the data untransformed, this
value is larger than that corresponding to the root stabilizer
by Freeman and Tukey (1950) while the improvement with
respect to the Anscombe (1948) transformation is marginal.
The same situation can be found for the other families and,
in particular, for the binomial (Figure 14), with C fk converg-
ing to 0.0659.
We wish also to emphasize that our recursive integral

algorithm with integration with respect to the conditional
median, though not reaching the optimum stabilizers in the
class of monotone transformations, takes us often extremely
close to this optimum, as much that it is hard to �nd signif-
icant differences between the plots of the conditional stan-
dard deviations corresponding to the optimum found by di-
rect search and the solution produced by the recursive inte-
gral algorithm.

7.3 Optimization of higher-order moments and additional
penalties

Here we have exclusively considered optimization of trans-
formations for the conditional variance. However, it is ev-
ident that, provided inclusion of higher-order moments in
the stabilization functional, its minimization can be used for
the joint optimization of variance, skewness, kurtosis, etc.
While, in its current form, the recursive integral algorithm is
addressing only the stabilization of the variance, the direct-
search procedures are directly applicable to the joint opti-
mization of multiple moments, as they explicitly work on the
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minimization of the functional. By proper choice of weights
in the functional, one can easily look for solutions which
favor normality over stability.
One would typically demand also some good condition-

ing for the inversion of the mapping E fzj�g 7! E f f .z/ j�g,
in order to avoid ampli�cation of estimation errors. For in-
stance, the mapping could be constrained to have derivative
included within a closed strictly positive range.
Since the direct search becomes practically unfeasible

when the number of dimensions is large, additional con-
straints might be used as a pragmatic way for dimensionality
reduction of the search space. In particular, without impos-
ing additional constraints or penalties on f (such as bounded
variation or some explicit or implicit parametric representa-
tion), it makes little sense to consider a nonmonotone f for
continuous distributions, as an unconstrained optimization
will likely introduce oscillations of large amplitude and high
frequency.

7.4 Open problems

We have focused on computational procedures to decrease
the stabilization functional, mainly ignoring the fundamen-
tal problem of ensuring the existence of the minimizer in
particular function classes.
The transformations obtained by direct search give evi-

dence of strong structures underlying the optimal stabilizers,
which suggests a potential use of ad-hoc optimization algo-
rithms for the minimization of the stabilization functional.
Exploiting these structures might be critical for dealing with
transformations with large supports, for which the Nelder-
Mead algorithm is inef�cient. Moreover, the proposed op-
timization techniques necessarily yield transformations in
nonparametric form, whereas it is apparent that in many
cases an underlying simple parametric model might exist
(see, e.g., Figure 18), which could be more practical both
for further analysis and for use in applications.
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