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Joint Nonlocal, Spectral, and Similarity Low-Rank
Priors for Hyperspectral-Multispectral Image Fusion

Tatiana Gelvez-Barrera, Henry Arguello, Alessandro Foi

Abstract—The fusion of a low-spatial-and-high-spectral res-
olution hyperspectral image (HSI) with a high-spatial-and-low-
spectral resolution multispectral image (MSI) allows synthesizing
a high-resolution image (HRI), supporting remote sensing ap-
plications such as disaster management, material identification,
and precision agriculture. Unlike existing variational methods
using low-rank regularizations separately, we present an HSI-
MSI fusion method promoting various low-rank regularizations
jointly. Our method refines the HRI spatial and spectral correla-
tions from the individual HSI and MSI data through the proper
plug-and-play (PnP) of a nonlocal patch-based denoiser in the
alternating direction method of multipliers (ADMM). Notably,
we consider the nonlocal self-similarity, the spectral low-rank,
and introduce a rank-one similarity prior. Furthermore, we
demonstrate via an extensive empirical study that the rank-one
similarity prior is an inherent characteristic of the HRI. Simu-
lations over standard benchmark datasets show the effectiveness
of the proposed HSI-MSI fusion outperforming state-of-the-art
methods, particularly in recovering low-contrast areas.

Index Terms—HSI-MSI Fusion, Low-rank regularizations,
PnP-ADMM, Nonlocal patch based denoiser.

I. INTRODUCTION

YPERSPECTRAL imaging sensors face a trade-off

between the spatial resolution and the signal-to-noise
ratio because of the limited incident energy [1]. Hence,
hyperspectral-multispectral image (HSI-MSI) fusion is a com-
putational technique that combines the valuable information of
two images obtained from different sensors, adding robustness
and easing subsequent processing in remote sensing applica-
tions [2]. Precisely, a high spatial-spectral resolution image
(HRY) is synthesized from a low-spatial-and-high-spectral res-
olution hyperspectral image (HSI) and a high-spatial-and-low-
spectral resolution multispectral image (MSI) [3].

The HSI-MSI fusion has been mainly addressed through
data-driven deep-learning (DL) and interpretable variational
frameworks. DL uses training data to learn a non-linear oper-
ator that maps the HSI and MSI observations to the desired
HRI. A DL approach first combines the HSI and MSI features
and inputs them into a single network that maps the HRI [4]-
[6]. An alternative DL approach first extracts the HSI and MSI
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features using two independent networks and then combines
them to estimate the HRI [7]-[9]. However, DL methods are
limited by the need for several pairs of HSI-MSI scenes during
the training process [10]. Variational HSI-MSI fusion methods
use instead prior information such as sparsity, smoothness,
and low-rank properties to regularize the HRI [11]-[15]. Such
priors can be coupled to take advantage of various properties
simultaneously and more effectively [16], [17].

The low-rank prior contributes differently across the spatial,
spectral, and nonlocal dimensions. Then, regularizers operat-
ing over individual dimensions can be coupled to improve
the HRI estimation [18]; tensor decomposition models with
nonlocal self-similarity, spectral unmixing, or sparse-based
regularizations are among the most popular [19]-[22]. How-
ever, there is a gap in previous low-rank-based HSI-MSI fusion
methods, neglecting strong correlations in the similarity di-
mension. Therefore, we present an HSI-MSI fusion that, unlike
previous methods, synergistically combines the nonlocal self-
similarity, the spectral low-rank, and an introduced low-rank
similarity prior, dubbed rank-one similarity. We introduce this
concept upon the idea that intrinsic nonlocal spatial structures
occur across the entire spectral dimension. We demonstrate
through a separate extensive empirical study that the rank-one
similarity prior is an inherent characteristic of the HRI.

The low-rank priors are combined in the problem through an
implicit regularization function, which is solved numerically
by the versatile and flexible plug-and-play with alternating di-
rection method of multipliers (PnP-ADMM) framework [23]—
[27]. The PnP-ADMM enables employing multichannel block-
matching and 3D filtering (M-BM3D) denoising, presented
in [28] as a realization of BM3D to process color images. M-
BM3D finds the matching block positions in the first channel
and propagates them to filter the other channels. The proposed
fusion method is tested over three benchmark datasets covering
multispectral, hyperspectral, and satellite images through sev-
eral experiments that compare the quantitative and qualitative
results against various state-of-the-art variational methods. Our
method provides superior fusion quality, particularly in the
recovery of spectral signatures, and can obtain significant gains
at low-contrast blocks. The main contributions are summarized
as follows

« We introduce the concept of rank-one similarity prior
(Section II-A), which we validate through an extensive
study (Section II-B).

« We combine the nonlocal self-similarity, spectral low-
rank, and rank-one similarity priors with an implicit
regularization for HSI-MSI fusion (Section III-A).

« We present a practical algorithm based on the versatile
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PnP-ADMM framework to solve the formulated problem
via the M-BM3D denoising (Section III-B).

« We demonstrate a significant improvement in the visual
quality and objective metrics, particularly in the mean
spectrum-wise PSNR, with excellent recovery of spectral
signatures even in low-contrast regions (Section IV).

II. RANK-ONE SIMILARITY PRIOR

The geometry of the objects in an HRI is typically irre-
spective of the object reflectance and responsivity at different
spectral bands. Therefore, we introduce the following rank-
one similarity prior to formalize an intrinsic HRI character-
istic under which all spectral bands share common structural
similarities of small spatial blocks.

A. Concept

Let z€ RVnmLn represent the vector form of an HRI with
N2, spatial pixels and Ly, spectral bands, and let Py ; € RP*P
denote a pxp HRI block whose top-left corner is at the 7*"
spatial position, 1=1,..., N,%I, within the \*® spectral band,
A=1,..., Ly. A dissimilarity map is a 2D array containing the
dissimilarity measure of a reference block to its neighboring
blocks. Let D ; e R¥** denote the dissimilarity map for the
P ; reference block, where w € Z is the neighborhood size
and whose entries are calculated in terms of the /5-norm as

Dyi(j) = [IPx: — Pajll3, (1)
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Figure 1.

for 7 CQ;, where €; is a set of indexes of the blocks within
the wxw nelghbourhood of the reference block. We further
denote by D, eRY *xLn the matrix whose columns contain
the normalized and vectorized dissimilarity maps for reference
blocks at the same position index 7 over all spectral bands:

D; = [vec(D1,;)/s(D1), ... ,vec(Dy, ;)/s(Dy, )], (2)

where s(D, ;) denotes the sample standard deviation of D ;.

The rank-one similarity prior assumes that, for a high-
contrast reference block at position index ¢, the dissimilarity
maps differ across the spectral bands only by a proportionality
factor, i.e. Dy ;=) ;D1 YA. Adopting this prior in practice
means approximating D; (2) by a rank-one matrix.

While alternative formulations are possible (e.g., adopting
different norms for (1), or an histogram equalization of each
D, ;(j) prior to forming (2)), for the sake of simplicity we
adopt the above basic definitions throughout this work.

B. Validation

The rank-one similarity prior is validated through an ex-
tensive empirical study that analyzes the singular values of
the matrix (2), whose decay is expected to be fast, especially
from the first to the second singular value and on high-contrast
blocks, as illustrated in Fig. 1 for the Colombia dataset [29].

The study follows the procedure below over ten datasets
covering real-world objects, remote sensing, and satellite
sources [30], [31].
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Illustration of the rank-one similarity prior for a high-contrast (top) and a low-contrast (bottom) reference block of size pXp=8x 8 from the

Colombia dataset acquired in our optics laboratory [29]. A red square bounds each reference block into the RGB version of the search neighborhood employed
to generate a dissimilarity map of size 39 x 39 across the first principal component (PC) and five spectral bands. There, the dissimilarity maps D} ;, VA,
(1) appear to be all proportional to each other so that D; (2) exhibits a fast singular value decay as observed at the bottom plots. The orange plot shows
the decay when the dissimilarity map size is 39 X 39. The fast decay from the first to the second singular value indicates that D; can be approximated as a
rank-one matrix. We also show the singular-value decay when varying the dissimilarity map size from 19x 19 to 239 x 239, while maintaining the reference
block size fixed to 8 x 8. Observe that the decays for the high-contrast reference block are faster than for the low-contrast reference block and that the decays

are faster for smaller dissimilarity map size.
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1) Calculate the reference block contrast C(P) ;) as

C(P,,;) =max(P) ;) —min(P, ;). 3)

2) Calculate the singular values of f),», V1.

3) Analyze the singular-value decay, where high-contrast
blocks are expected to yield a fast decay, i.e. large
C(P,;) leads to fast decay of the singular values of D,.

We primarily focus on the case where the block size is
pxp=_8x8 and the neighborhood size is wxw=39x 39, as
in [28]. Figure 2 illustrates the singular value decay of D, Vi.
We define a high-contrast reference block as a reference block
whose contrast is higher than the half of the contrast’s range
for every analyzed dataset; other definitions are also possible.
The expected behavior can be observed in the figure, where
high-contrast blocks (on average 16.47% of all blocks) lead
to a fast decay, i.e. red color must appear at the bottom and
must be absent at the top of plots.

In particular, the second singular value is on average
3.2x 1073 times the first one (i.e. a decay from the first one
of 99.7%) within the first quartile and 5.9 x 103 times (a
99.4% drop) for the first (i.e. lower) half of its distribution;
this rate of decay continues through the further singular values,
as can be seen in the figure. Such fast decay supports the
incorporation of the rank-one similarity prior to the solution
of spectral imaging problems. For instance, for the HSI-MSI
fusion, the rank-one similarity prior is helpful to effectively
propagate the detailed spatial information presented in the MSI
across the narrow spectral bands presented in the HSI.

III. HYPERSPECTRAL-MULTISPECTRAL IMAGE FUSION

Let M € RV:*N2 denote a uniform spatial sub-sampling
matrix, B € RV% N5 denote a spatial blurring convolution
matrix, and n, € RV #Ln denote additive Gaussian noise. The
HSI, denoted by zj, € RN2Ln, can be modeled as a spatial

blurred and sub-sampled version of the HRI z as
Zh = (ILh ®M)(1Lh ®B)z+nh :MBz—i—nh, 4)

where the Kronecker product ® applies the sub-sampling
and blurring across the sgectral bands mamtamlng a vector
notation, so that M € RViLnxNiLn and B € RNiLnx Ny L

Similarly, let R € REm*Er denote a multispectral sensor
spectral response, and ny, € RNmLm denote additive Gaussian
noise. The MSI, denoted by 7y, € RV7=Lm | can be modeled
as a spectrally degraded version of the HRI Z as

zm:(R®IN3n)z—|—nm:]::{z—|—nm, 5)

where ® applies the spectral degradation along all spatlal plx-
els maintaining a vector notation, so that R € RNm Lm Ny L

The proposed HSI-MSI fusion follows a subspace-based
formulation and a PnP-ADMM algorithm to estimate the HRI
from the HSI and MSI degraded observations.

A. Subspace-based Inverse Problem Formulation

The proposed cost function comprises two ¢>-norms main-
taining the data fidelity to the observations and one implicit
regularization function ¢ : RNnLn —5 R that aims to promote
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Figure 2. Singular value decay of the matrix D; (2) for all reference blocks
from ten publicly available datasets. The decays are grouped in quantiles ([0%-
1%), [1%-5%), [5%-20%), [20%-50%), [50%-80%), [80%-95%), [95%-99%),
[99%-100%]) and each singular value is colored according to the maximum
contrast of the values that belong to the corresponding quantile; red color
indicates high-contrast blocks, and blue color indicates low-contrast blocks.
The color histogram on the right-hand side of each plot shows the distribution
of the reference blocks according to their contrast; one can observe that in a
typical natural image, the most frequent blocks have a relatively low-contrast
(Cupitre being an exception, with a nearly uniform histogram). The plots show
that only a very slim band of upper quantiles of the singular values (slowest
decay) might feature only low-contrast blocks: higher-contrast blocks always
have fast decay of the associated singular values and must appear at bottom.

jointly the spectral low-rank, the nonlocal self-similarities,
and the rank-one similarity prior, taking full advantage of the
intrinsic spatial-spectral structural correlations.

The HSI-MSI fusion is thus an inverse problem formulated as

minimize f(z),
Z2ERVM L

. o ©
£(z) = 5l — MBa|3 +

Ellzm — Ral3 + Ao (2).
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where ;>0 and A >0 correspond to the regularization param-
eters that balance the three terms.

B. PnP-ADMM algorithm

The proposed algorithm to solve (6) follows the established
PnP-ADMM framework [25], promoting the low-rank priors
through a denoiser based on nonlocal regularization.

The PnP-ADMM begins with the introduction of three
auxiliary variables v;, for ¢+ = 1,2, 3, upon which (6) becomes

S | - =
minimize §||z11 — Mvy |3+ gHzm — Rvy||3 + Ap(v3),

subject to vi = Bz; vy =12; vVv3=az, (7)

whose augmented Lagrangian optimization problem with dual
variables g;, for i = 1,2, 3 is given by
minimize L(z,v;,g;)
Z,Vi,8i
1 Y. 2 | M 5 2
£ viom) =glan =Ml + Gllam ~ Rl
A6(vs) + £llvi — Bz + g3+

P p
Liva — 2+ gall3 + Llivs — 2+ g3

where p > 0 is the dual regularization parameter.
Each primal variable is optimized by solving the iterative
alternating process
2"l ¢ argmin L(z,vF, gh),

z

€ argmin L(z

Vi

9
Jo ©

» Vi, gf )a
implemented by Algorithm 1 with variables calculated as
detailed in Table I. Specifically, the proposed algorithm is
termed R1BM3D, referring to the inclusion of the rank-one

similarity prior and the use of the M-BM3D [28].
1) Initialization: In Algorithm 1, line 3, the estimated HRI
and the auxiliary and dual variables are initialized as

1 o _
0 T T
~— - (B'M R zn,).

275l 2n + R 2m) (10)

v« Bz, v) 2" v] 2"

Algorithm 1 Rank-one via BM3D for HSI-MSI fusion
1: procedure R1BM3D(zy, zm, M, B, 1, A, p, iters)

k<0

(z%,vE, gk) < (as in (10))

W, < Table |

while £ < iters do

8 Wildf

v]l’H'1 — Wl_ldlf

vitl « Wtdb

qf « 2" - gf

10 vt « PnP-BM3D(q5, \/p)

11: g]fH — V’fJrl — BzFt! 4+ g’f.

12 ghtl ¢ vh L _ghtl 4 gk

13: g§+1 — v§+1 —zhtl 4 gk

14: k+—k+1

15: return z"*"

> Initialization
> Precomputation
> Update

R AN

> (see Algorithm 2)

2) Precomputation: In Algorithm 1, line 4 the matrices
that will be used to invert the optimization sub-problems are
precomputed as detailed in Table I.

3) Plug-and-Play of the Multichannel BM3D: In Algorithm
1, line 10, the M-BM3D addresses the implicit regularization
function ¢(v3) that promotes the HRI low-rank property,
entailing important considerations detailed below.

In practice, the rank-one similarity prior is verified because
the structural features that determine the nonlocal block sim-
ilarity are repeated across the different spectral bands. How-
ever, over real-world measurements, the structural features
may be buried under noise and be distorted by the coarse
sampling, depending on the particular band. Therefore, it is
challenging to obtain a reliable dissimilarity map to build the
block-matching by working over individual bands.

When applying the principal component analysis (PCA) to
the spectral bands, the structural features typically end up
being represented with a substantially higher signal-to-noise
ratio (SNR) in the first principal component (PC). Therefore,
it is convenient to operate the block-matching over the first PC;
otherwise, noise can disrupt the block-matching as illustrated
in Fig. 3. As the structural features drive the block-matching
on the first PC, it can be used by the rank-one prior for all
spectral bands.

In principle, the BM3D can be applied separately on each
band using the common block-matching inherited from the
first PC. However, the spectral decorrelation provided by the
PCA is also beneficial to further sparsify the 3D spectrum of
a group of blocks within each spectral band in the M-BM3D,
which is therefore applied upon PCA.

In Algorithm 1 line 10, the update of vs assumes that
qy =zFt! — gk is a noisy version of vz whose effective noise
is considered to be white Gaussian with variance o= \/p.
Therefore, a denoised version of v3 is obtained by the PnP of
the M-BM3D following the procedure in Algorithm 2, where
the block-matching step is driven over the first PC as follows.

1) Calculate the PCs of qf organized as the matrix Q} €
RLrXNG,

2) Find the mutual similar blocks by applying the block-
matching in the first PC.

3) Propagate the positions of the found similar blocks to
filter and preserve a small number r < L;, of PCs. Note
in Algorithm 2, line 7, that PCA-!(-) denotes an inverse
truncated PCA on only the first » components, meaning
that the remaining L; —r components are treated as zero.

Table 1
SUMMARY OF VARIABLES COMPUTATION

Wo € VoL Vi = BTB 4 2lys ,

Wi € RNmLaxNo L — MTM + Pz L, -
Wy € RNmLn XNy L — pnRTR + PInz L, -
df e RN Ln =BT(v} +gf) + (v§ +&5) + (v +gf).
d,* e RNZ Ly = MTzy, + p(BzF*! — gh).

d2k c ]RN'ranh = NRTZm + P(szrl - gl2c)
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Noiseless
1th PC

3th PC

Figure 3. Suitability of the first PC to match similar blocks. The block-matching is executed in the first PC for a low-contrast and a high-contrast reference block
that are bounded and zoomed in dashed magenta and cyan windows, respectively. The reference blocks are bounded with a red square and its corresponding
matched similar blocks are bounded with a green square. The matched similar blocks found in the first PC that are superimposed over the 3t and 7t PCs
result well suited for other few PCs, except for the noisy case where the last components are mainly driven by noise. Therefore, the block-matching found
in the first PC can be propagated to filter only other PCs that are considered significant.

Algorithm 2 PnP rank-one prior via multichannel BM3D
on top PCs

1: procedure PNP-BM3D(q%, 02)

2 Qf + M(q}) > Unfold as a matrix
3: P+ PCA(Q}) © Find principal components (PCs)
4: r + HySime(P) > Find dimensionality
5: P+ [p1,---,Pi,---,Pr], Pi : i'" column of P

6: QF « M-BM3D(P,,0?) > Apply M-BM3D assuming

noise variance o>

7. V5« PCA'(Q}) v Return filtered spectral bands
8 return v§ « vec(V¥)

Solving the regularization ¢(v3) through Algorithm 2 pro-
motes the spectral low-rank, the nonlocal self-similarities,
and the rank-one similarity jointly. The spectral low-rank is
promoted when filtering and preserving just 7 PCs to represent
the entire HRI, the nonlocal self-similarity is promoted when
matching and filtering mutual nonlocal similar blocks, and
the rank-one similarity is promoted when propagating the
positions of similar blocks found in the first PC to filter the
other PCs. The number r of preserved PCs is updated at each
iteration by using the hyperspectral signal subspace identifica-
tion by minimum error (HySime) method [32]. Notice that the
algorithm’s computational complexity is remarkably reduced,
avoiding the calculation of multiple block-matching at each
PC or each spectral band.

The first PC has the highest inter-pixel variance with well-
defined blocks so that the filtering is conservative, and it is ex-
pected not to match together blocks that are dissimilar in other
PCs, which are typically smoother. Nonetheless, in the rare
but possible event where the block-matching on the first PC
creates a group of dissimilar blocks in another PC, M-BM3D
does not break down because the noise attenuation is done
after shrinkage of the 3D transform of the group. Furthermore,
matching significantly different blocks (e.g., above the noise

level that exists in that PC) will elicit 3D-transform spectrum
coefficients larger than the shrinkage threshold. Hence, these
coefficients will be preserved, and the blocks’ differences will
be preserved after the inversion of the 3D transform.

C. Computational Complexity

The computational complexity of Algorithm 1 is mainly
determined by the update of variable v3 in line 10 and
unfolded in Algorithm 2. The computational complexity of
Algorithm 2 is dominated by the steps from line 3 to line 6
corresponding to the calculation of the PCA, the dimension
subspace estimation, and the BM3D filtering. The PCA implies
the calculation of the covariance matrix and the singular value
decomposition, entailing a complexity of O(NZL?+L3).
The HySime method includes a noise estimation procedure
with complexity O(N2 L3 +L3) [32] and subspace dimension
estimation with complexity O(N;} Ly +L3). The complexity
of M-BM3D is proportional to N2 (1+ ) [28]. Finally, given
that »<< Ly, the asymptotic complexity of each iteration in
Algorithm 1 can be estimated as O(N2 L, +N2 L3 +L3).

D. Convergence Analysis

Algorithm 1 is an instance of the block coordinate descent
(BCD) optimization strategy. Therefore, the algorithm con-
verges if the objective function decreases every iteration, en-
tailing the different sub-problems’ solutions [23]. Note that the
update for variables z, v, va,g;, fort =1,...,3 comes from
a convex formulation with a closed-form solution, decreasing
the objective function. In contrast, the update of variable vg
through the proposed PnP of the M-BM3D may not decrease
the objective. However, according to the extensive simulations,
the objective value is decreased at each iteration in most cases.

IV. SIMULATIONS AND RESULTS

To evaluate the proposed R1IBM3D HSI-MSI fusion, we
conducted extensive experiments across various publicly avail-
able multispectral and hyperspectral datasets described below.
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1) Multispectral CAVE dataset: Stuff_Toy image from the
standard CAVE dataset [30] of 512x512x 31 spatial-spectral
resolution taken with a cooled CCD camera spanning the
(0.4 — 0.7)um spectral range in intervals of 0.01um. The
HSI was generated with a Gaussian blur kernel with stan-
dard deviation 2 pixel and spatial downsampling factor of
dp =N, /N, =16. The MSI was generated using a simulated
spectral response R € R3*3!, The simulations were conducted
with SNR level of 35dBs and 30dBs for the HSI and MSI.

2) Hyperspectral Pavia University Dataset: Semi-synthetic
standard Pavia University dataset [31] of size 610x340x 103
taken with the ROSIS sensor spanning the (0.43 — 0.86)um
range, and spatial resolution of 1.3m. Following the experi-
mental setup in [11], [14], [19], [33] only the top-left 256 x 256
spatial pixels and the last 93 spectral bands are considered
after removing the water vapor absorption bands. The HSI
was simulated with a Gaussian blur kernel with standard de-
viation 1.333 pixel and downsampling factor dy, = N,,, /Ny, =4
along vertical and horizontal spatial directions. The MSI
was simulated using the spectral response of the IKONOS
satellite sensor which captures 4 multispectral bands in the
ranges (0.45 — 0.52), (0.52 — 0.60), (0.63 — 0.69), and
(0.76 — 0.90)um [34]. As in [11], [19], [33], the simulations
were conducted with SNR level of 35dB for the first 43 bands
and SNR level of 30dB for the remaining 50 bands of the HSI,
and with SNR Ievel of 30dB for all bands of the MSI.

3) Hyperspectral Urban Dataset: The hyperspectral Urban
dataset [35] contains information about six materials along
307x 307 spatial locations and 210 spectral bands, spanning
the (400 — 2500)nm spectral range with a resolution of
10nm [36]. The experiment considers a subset of spatial-
spectral dimension 300 x 300 x 162, after removing the 1 — 4,
76,87, 101 — 111, 136 — 153, and 198 — 210 noisy bands.
The HSI was generated with a Gaussian blur kernel with
standard deviation 1.2 pixel and downsampling factor of
dp=N,,/N,=6. The MSI was generated using a simulated
spectral response R € R6*162 The simulations were con-
ducted with SNR of 35dBs and 30dBs for the HSI and MSI.

We compare our approach against various state-of-the-art
approaches that employ different strategies to obtain the fused
image. Specifically, we compare against the subspace based
Hyperspectral Superresolution (HySure) [12]; the HSI-MSI fu-
sion based on Bayesian Sparse Representation (BSR) [11]; the
Non-Negative Structured Sparse Representation (NSSR) [33];
the Couple Sparse Tensor Factorization (CSTF) [14]; the Clus-
tering Manifold Structure (CMS) [37]; the super-resolution
tensor-reconstruction (STEREO) [38], the super-resolution
based on coupled Tucker Tensor approximation (SCOTT) [39],
and the structured coupled LL1 decomposition (SC-LL1) [22].
Further, to analyze the effectiveness of the rank-one similarity
prior, we compare the results against a baseline algorithm
that replaces M-BM3D in Algorithm 2 line 6 by BM3D
applied independently for each of the r preserved principal
components, referred to as [-BM3D.

All comparison methods were implemented by their pub-
lished code found in the hyperspectral super-resolution bench-
mark [40]-[43]. The main parameters of RIBM3D and of
each comparison method have been tuned separately for each

dataset to optimize the PSNR as detailed in Section IV-A.
The HSI-MSI fusion performance is evaluated in terms
of the global, spatial, and spectral peak signal-to-noise ratio
(PSNR) measured in decibels (dB), the Universal Image Qual-
ity Index (UIQI), the Spectral Angle Mapper (SAM) measured
in degrees, and the dimensionless global relative error of
synthesis (ERGAS), calculated as presented in [44], and the
root-mean-square error (RMSE) calculated as in [11] for 8-bit
representations of original and estimated images i.e. we scale
the images to the range [0, 255]. Each quantitative metric is
mathematically defined in the supplementary material.

A. Parameters Selection

Due to the very different spatial and spectral sampling
conditions characterizing each dataset, the fusion algorithms
all benefit from separate tuning of their key parameters.
The comparison methods are tuned as follows in order to
maximize the PSNR of the fused image separately for each
dataset. For NSSR we set the number of dictionary atoms, the
number of iterations, and the regularization terms to K =256,
iters=11, 771:1674, and 772:8673 for Pavia University;
K =280, iters=12, n; = le !, and 72 =3.3e* for Stuff_Toy;
and K =300, iters=12, m =3.5¢75, and ne=1.7 for Urban
dataset. For CSTF we set the number of dictionary atoms of
the spatial-spectral modes to n,, =256, np =256 and ns=11
for Pavia University; n,, =150, np =150 and nys=12 for
Stuff_Toy; and n,, =250, n, =250 and ngs=>5 for Urban
dataset. For CMS we set the size of the overlapped local
full band patches, the number of clusters, and the interval
between patches to /g=2, K=250, and d=1 for Pavia
University; ,/q=8, K =500, and d=2 for Stuff_Toy; and
V4=2, K=300, and d=1 for Urban dataset. For STEREO
we set the tensor rank to F' =300 for Pavia University, F'=285
for Stuff Toy and F' = 300 for Urban dataset. For SCOTT
we set the main parameters according to the recoverability
conditions to Ry = Ry =250 and R3=3 for Pavia University,
R1=R5=150 and R3=2 for Stuff_Toy, and R; = Ry=300
and R3=3 for Urban dataset. For SC-LL1 we set the key
regularization parameters as in [22] to 6= le=3, A=0.8,
n=1e~® for Pavia University, f =1e=3, A\=0.8, n=>5e~3 for
Stuff_Toy, and §=5e~3, A=0.8, n = 9¢~* for Urban dataset.

RIBM3D has three key parameters, A controlling the
implicit regularization term, p controlling the dual variable
weights, and . controlling the weight of the fidelity term to the
MSI. In the experiments, we fix A = o2 p, where o stands for
the MSI effective noise standard deviation, which is assumed
by the M-BM3D for denoising. Then, p and p are tuned
through simulations for each dataset. Figure 4 shows the global
PSNR as function of p and u. Based on these simulations,
we set 4=7 and p=0.16 for Pavia University; ©=0.6 and
p=0.02 for Stuff Toy; and ;1=0.65 and p=0.09 for Urban
dataset. In general, the selection of p affects the convergence
speed. Very small values will produce a fast convergence but
will reduce the importance of the dual terms, affecting the
quality. Very large values of p will instead produce slow
convergence. Note that p is commonly larger than p, hence
the fidelity to the MSI in (8) is more relevant than the fidelity
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Figure 4. PSNR for Pavia University, Stuff_Toy, and Urban datasets. Each
dataset benefits from a different combination of parameters p and p.

to the HSI towards obtaining good quality. Based on empirical
tuning, for the I-BM3D algorithm we set =5 and p=0.16
for Pavia University, ©=0.06 and p=0.2 for Stuff_Toy, and
©#=0.65 and p=0.09 for Urban dataset.

When the HRI ground-truth is unknown, the regularization
parameters p and p can be tuned, e.g. as suggested in [22],
according to the RMSE between the observed HSI or MSI
and the corresponding estimated HSI or MSI, which can be
defined from the estimated HRI by the degradation matrices.

B. Comparative Benchmarking

Table II summarizes the objective results averaged over ten
independent noise realizations for each case. It can be observed
that R1BM3D outperforms previous methods by up to 3 dBs in
the global PSNR, where the improvement mainly comes from
the gain in the spectral domain as shown with the spectral
PSNR.

To visualize the spectral reconstruction quality improvement
reported in Table II, Fig. 5 shows the spectral signatures
and difference in absolute value with respect to the ground-
truth for a random spatial location P1 in the reconstructions
for each fused image. These results show that the RIBM3D
spectral reconstructions are more accurate than those of the
comparison methods. Figure 6 shows an RGB mapping of
the obtained reconstructions, where the spatial improvement
can be visualized in the zoomed sub-region, especially in the
reconstruction of smooth regions.

Figure 7 illustrates a comparison of quality with finer granu-
larity, as determined by the contrast of individual ground-truth
blocks. It can be observed that although the rank-one similarity
prior is primarily verified on high-contrast blocks, RIBM3D
shows significant improvements also for low-contrast blocks,
which are more impacted by noise, and their reconstruction
can be challenging for the comparison methods. The superior
performance is verified for both global PSNR and spectral
PSNR.

C. Semi-blind Comparison

This section evaluates the performance of R1IBM3D for
the semi-blind case, where the spatial degradation operator
is unknown. In this scenario, the HSI-MSI fusion can be ad-
dressed with our approach R1IBM3D by estimating the spatial
degradation with an effective literature algorithm such as the
presented in [12]. We compare the results against the pub-
licly available semi-blind versions for STEREO and SCOTT
methods denoted by BSTEREO and BSCOTT, respectively.

We employed the Pavia University dataset, where the MSI
and HSI were simulated as degraded downsampled versions of
the HRI as explained in IV-2. The regularization parameters
were tuned to F' = 200 for BSTEREO, R; = R, = 60 and
R3 = 2 for BSCOTT, and ;t = 1 and p = 0.016 for R1IBM3D.
Table III summarizes the objective results averaged over ten
realizations for each case, varying the noise. It can be observed
that the proposed RIBM3D fusion provides an improvement
of up to 4 dBs in the semi-blind scenario.

D. Rank analysis

We also analyze the number of PCs that are preserved at
each iteration. This number is directly related to the underlying
HRI rank, which is expected to be low. Figure 8 shows the
nuclear norm, the number of preserved PCs, and the global
PSNR as the iterations progress. It can be observed that
the number of preserved PCs converges to a relatively small
number, inducing a low-rank structure. Notice how the nuclear
norm fluctuates opposite to the PSNR; this is most noticeable
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Figure 5. Comparison of the recovered spectral signatures at a random spatial
location P1 for each dataset. The absolute error plots confirm that the spectral
signatures obtained by the RIBM3D method are more accurate than those
obtained by the comparison methods.
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Table 11

AVERAGE QUALITY AND STANDARD DEVIATION OVER 10 REPLICATIONS CHANGING THE RANDOM NOISE.
HSI-MSI FusioN METRICS: RMSE, ERGAS, SAM (IN DEGREES), UIQI, PSNR (IN DB) AND RUNNING TIME (IN SECONDS)

Pavia University

Methods RMSE | ERGAS | SAM | UIQI T Global PSNR T Spatial PSNR f Spectral PSNR T Time [s] |
HySure [12] 2.323 £0.015 | 0.8494+0.006 | 1.506+0.016 | 0.992 +8.094 x 10> 39.524 + 0.055 39.754 £0.057 | 32.706 £0.075 | 74.21 + 14.91
BSR [11] 2.363+£0.004 | 0.846+0.001 | 1.493+0.003 | 0.992+ 2.995 x 10~> 39.399 +0.014 | 39.80240.012 | 32.746 +0.016 | 43.54 £5.710
NSSR [33] 2.341£0.010 | 0.832+£0.003 | 1.495+0.006 | 0.992 4 8.519 x 10~° 41.835 + 0.482 40.285 +£0.039 | 32.753 £0.034 | 145.9 + 19.02
CSTF [14] 2.432+£0.035 | 0.870+0.010 | 1.576 £0.039 | 0.991 £2.793 x 10— * 41.706 + 0.329 39.915 +£0.104 | 32.389 £0.183 | 29.29 + 3.250
CMS [37] 3.171£0.010 | 1.090 +0.002 | 2.109 +£0.009 | 0.984 4+ 8.442 x 10~? 39.440 + 0.502 38.327 £0.015 | 30.387 £0.026 | 181.3 +24.22
NLTD [19] 2.114 0.756 1.298 0.985 41.627 — — —
STEREO [38] | 2.736 +0.008 | 0.978 +£0.003 | 1.873+£0.005 | 0.989 %+ 6.705 x 10~ 40.807 + 0.582 38.904 £0.027 | 31.133+£0.023 | 26.11 4+ 6.084
SCOTT [39] 2.663 +£0.005 | 0.961 £0.002 | 1.774+0.003 | 0.989 & 3.698 x 10—> 40.964 + 0.601 39.070 £ 0.026 | 31.558 £0.013 2.05+0.18
SC-LL1 [22] 2.164£0.072 | 0.769 £0.024 | 1.325+0.051 | 0.993 & 5.450 x 10~ 7% 42.639 + 0.288 41.022 +£0.228 | 34.089 +0.207 | 83.99 + 6.340
1-BM3D 3.648 £0.013 | 1.337£0.008 | 2.290£0.015 | 0.979 £1.960 x 10~ % | 38.056 £ 0.5836 | 36.883 £0.044 | 30.556 £0.071 | 2219+ 114.7
RIBM3D 1.960 +0.014 | 0.697 £0.007 | 1.188 £0.005 | 0.994 +1.042 x 10~ | 43.673+£0.214 | 41.858 £0.099 | 35.198 + 0.042 | 588.4 + 58.28
Stuff_Toy
Methods RMSE | ERGAS | SAM | UIQI T Global PSNR T Spatial PSNR T Spectral PSNR T Time [s] |
HySure [12] 3.858 £0.102 | 0.4374+0.013 | 3.775£0.202 | 0.994 +2.547 x 10~ % | 35.294 + 0.228 37.309 + 0.149 24.899 +0.360 | 204.17 £ 55.51
BSR [11] 3.080 £0.007 | 0.318 £0.001 | 2.643+0.008 | 0.997+ 1.223 x 10~ > | 37.248+0.019 37.209 + 0.020 27.581 £0.016 | 143.01 £ 28.59
NSSR [33] 3.108 £0.049 | 0.328 £0.005 | 2.4334+0.035 | 0.997£9.114 x 10> | 37.170 £+ 0.137 37.570 + 0.168 28.108 £ 0.115 | 169.76 + 29.95
CSTF [14] 2.941 +£0.070 | 0.309 +0.008 | 2.094 +0.066 | 0.997 +2.760 x 10~ % | 37.649 + 0.205 38.080 4+ 0.161 29.846 + 0.206 16.08 & 2.36
CMS [37] 3.197£0.018 | 0.328+£0.002 | 3.007 +0.023 | 0.997 +2.520 x 10~ | 36.922 & 0.050 36.681 + 0.053 27.045 £ 0.054 | 505.12 + 100.4
STEREO [38] | 4.3494+0.139 | 0.485+0.020 | 3.182+£0.131 | 0.991 +7.312 x 10~ | 34.252 +£0.277 35.571 +0.102 26.929 + 0.385 5.851 + 1.30
SCOTT [39] 5.135£0.004 | 0.588+£0.001 | 5.298 £0.006 | 0.990 & 2.695 x 10> | 32.807 & 0.007 35.167 + 0.004 22.521 + 0.006 1.350 +0.13
SC-LL1 [22] 3.375 £ 0.325 | 0.346 +£0.033 | 2.691 £0.196 | 0.997 +6.871 x 10~ % | 36.491 + 0.816 36.761 + 0.677 | 27.833+0.540 | 537.66 + 57.70
1-BM3D 7.083+0.131 | 0.717+0.013 | 3.613+0.490 | 0.989+3.857 x 10~ % | 30.014+0.159 | 29.779 +0.1544 | 24.798 +1.069 | 18228 +304.4
RIBM3D 2.183 £0.005 | 0.226 £ 0.001 | 1.2524+0.006 | 0.999 +£6.748 x 10~ ° | 40.237 +0.018 | 40.638 £ 0.021 | 35.401 + 0.037 5893 + 334
Urban
Methods RMSE | ERGAS | SAM | UIQI T Global PSNR T Spatial PSNR T Spectra PSNR T Time [s] |
HySure [12] 3.119 + 0.086 0.497+0.014 | 1.373+£0.046 | 0.989 £2.257 x 10~* | 36.173+£0.235 | 35.029 £0.185 | 34.144 +£0.208 | 101.57 + 17.28
BSR [11] 2.662 + 0.005 0.422 +0.001 | 1.145+0.003 | 0.992 +2.784 x 10~° | 37.546 £0.015 | 36.354 £0.014 | 35.679 £ 0.019 57.96 + 10.4
NSSR [33] 3.088 + 0.009 0.492 £0.002 | 1.4234+0.004 | 0.989+6.836 x 10~° | 36.255 £0.025 | 35.010£0.028 | 34.034 £0.025 | 185.59 &+ 32.49
CSTF [14] 3.192 + 0.096 0.510 +£0.001 | 1.412+0.003 | 0.988+3.539 x 10~% | 35.987+0.016 | 34.687 £0.012 | 33.919 +£0.017 16.63 + 4.02
CMS [37] 3.195 + 0.005 0.519£0.001 | 1.434+0.003 | 0.988 £4.027 x 10~° | 35.960 £0.014 | 34.532+£0.013 | 33.936 £0.015 | 437.48 4+ 67.33
STEREO [38] 3.220 + 0.005 0.522 +0.001 | 1.459+£0.003 | 0.987 £3.399 x 10~° | 35.892+0.014 | 34.464 £0.014 | 33.803 £0.017 40.13 £5.19
SCOTT [39] 3.369 + 0.002 0.544 £0.001 | 1.604 +£0.001 | 0.987 £1.299 x 10~° | 35.500 £ 0.005 | 34.235+0.006 | 33.222 £ 0.006 3.494+0.1
SC-LL1 [22] 3.531 + 0.085 0.559 +£0.010 | 1.704+£0.046 | 0.985+6.267 x 10-* | 35.095+0.208 | 34.026 £0.116 | 32.712+0.222 | 238.60 & 23.84
I-BM3D 2.722 + 0.004 0.427£0.001 | 1.263+£0.003 | 0.991 £2.186 x 10~° | 37.353 £0.012 | 36.244 £0.013 | 35.307 £ 0.023 4412 + 159.5
RIBM3D 2.544 +0.0030 | 0.402 £0.001 | 1.097 +£0.002 | 0.992 + 1.813 x 10~ ° | 37.944 +0.010 | 36.738 £0.012 | 36.741 £0.014 | 1216.7 & 20.34
Table III
SEMI-BLIND FUSION - AVERAGE QUALITY AND STANDARD DEVIATION OVER 10 REPLICATIONS CHANGING THE RANDOM NOISE.
HSI-MSI FusioN METRICS: RMSE, ERGAS, SAM (IN DEGREES), UIQI, PSNR (IN DB) AND RUNNING TIME (IN SECONDS)
Pavia University
Methods RMSE | ERGAS | SAM | UIQI T Global PSNR T Spatial PSNR I Spectral PSNR T Time [s] |,
BSTEREO [38] | 3.159 £0.006 | 1.14840.002 | 2.128 £0.006 | 0.985+6.842 x 10~* | 36.877 £0.018 | 37.184 £0.016 | 30.092 £ 0.022 6.375 + 0.075
BSCOTT [39] 4.121 £0.002 | 1.5834+0.001 | 2.461+0.002 | 0.973 £2.874 x 10— ° 34.569 + 0.004 | 35.196 +0.006 | 29.554 +0.008 | 0.198 4 0.005
RIBM3D 2.768 +£0.063 | 0.971+0.021 | 2.0114+0.049 | 0.989 +1.252 x 10~ % | 38.028 £0.198 | 38.708 +0.141 | 30.752 +0.226 1022 + 95.6

during the first stages of recovery when the filtering suppresses
spurious and erroneous structures from the HRI estimate.

Fig. 7, where M-BM3D outperforms independent filtering by
I-BM3D over the first » PCs.

V. DISCUSSION

The presented fusion approach takes advantage of a rank-
one similarity prior, under which the dissimilarity maps of
high-contrast reference blocks are assumed to be proportional
to each other across the spectral domain. Nonetheless, the
analysis reported in Fig. 7 shows that the quality gap in
favour of the proposed method can be very significant also for
low-contrast blocks, which is perhaps unexpected. However,
low-contrast areas are more impacted by noise, and their
reconstruction can be challenging for the comparison methods.
As illustrated in Fig. 3, the strategy of determining the
dissimilarity of blocks on the first PC is particularly effective
under noise and is especially important for the recovery of
low-contrast blocks. Using the rank-one prior in RIBM3D
helps with guiding the block-matching under heavy noise,
and therefore the quality is improved. This is confirmed in

In connection to our work, it is interesting to mention
the hyperspectral denoising method FastHyDe [45]. While
FastHyDe is also based on a low-rank approximation of
the HRI and self-similarity via BM3D, the combination of
these principles with the rank-one similarity prior proposed
here is stronger and more efficient than the one adapted
by FastHyDe. Specifically, in FastHyDe it is assumed that
each PC is internally self-similar and the denoising is applied
separately on each PCs, implying that the block-matching is
operated independently on each PC, which leads to increased
computation and can also be impaired by the low SNR of
some PCs. RIBM3D is instead a multichannel approach,
where through the rank-one self-similarity prior we operate
the block-matching only once, on the PC with the highest
SNR, and reuse the matching positions for all PCs; this leads
to computational savings and substantial benefit for content
with low SNR and low-contrast.
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Figure 6. RGB mapping of the recovered Pavia University, Stuff_Toy, and Urban datasets by using the RIBM3D and comparative benchmarking. Notice in
the zoomed versions that the fused image obtained with RIBM3D presents a better reconstruction than the other methods, in terms of both detail and color
preservation of fine structures and noise reduction at smooth regions.
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Figure 7. Analysis of fusion quality vs block contrast. The PSNR is computed for each block of size px p=8x 8 within a fused image and collected into
nine bins according to the contrast (3) of the block at the corresponding position in the ground-truth image. The bar histogram shows the block bin count,
confirming that high-contrast blocks are not frequent. The plots show the average PSNR over each contrast bin, where the solid lines correspond to the
global PSNR and the dashed lines correspond to the spectral PSNR; the shaded areas around each plot visualize the standard deviation of the average PSNR
over ten independent noise realizations for each case. We compare the proposed RIBM3D with the best comparison method for each dataset (SCLLI1 for
Pavia University, CSTF for Stuff_Toy, and BSR for Urban), and with the I-BM3D algorithm. Although the rank-one similarity prior is primarily verified on
high-contrast blocks, RIBM3D shows its superiority also for bins corresponding to low-contrast blocks, where the relative impact of noise is higher and the
reconstruction can be challenging for the comparison methods. This advantage can be observed in terms of both global PSNR and spectral PSNR.
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Figure 8. Analysis of the number of preserved PCs during the iterations of RIBM3D. The plots show the behaviour of the number of preserved PCs that
are considered significant, the nuclear-norm of the estimated HRI, and the obtained global PSNR across the iterations. After some iterations, the number of
PCs converges to a small number for the three datasets. This behavior was expected because of the low-rank property. Furthermore, it can be observed a
counter-relation between the nuclear norm and the global PSNR during the first few iterations, in which a high value in the nuclear norm implies low quality.

These results indicate that the information removed during the first iterations effectively corresponds to noise.

Furthermore, it is interesting to discuss the differences be-
tween our approach and recent model-based tensor approaches
that maintain the three-dimensional natural structure of spec-
tral scenes. For instance, [38] and [39] present formulations
based on the canonical polyadic decomposition (CPD) and
the Tucker decomposition, respectively. These methods take
advantage of the tensor-based model to provide identifiability
and recoverability guarantees under mild conditions. Mean-
while, our approach is not based only on leveraging the natural
3D structure/regularity of the images, but also incorporates
the nonlocal self-similarity within each PC and the rank-one
similarity prior across all PCs. We wish to mention also [22],
which uses a block-term decomposition with a multi-linear
rank model, where the latent factors can be interpreted as the
HRI endmembers and abundances of the spectral linear mix-
ture model. Differently, we formulate a regularization function
that considers jointly the spectral, the nonlocal self-similarity,
and the introduced rank-one similarity priors, inducing the
low-rank property over different dimensions.

Various methods such as [46]-[50] have integrated low-
dimensional reduction with the filtering of 3D cubes to pro-
mote the low-rank property. All these methods fundamentally
differ from ours. Firstly, in the definition of the rank-one
similarity prior, the proposed method defines non-locality with
respect to 2D patches instead of 3D cubes, and specifically
M-BM3D operates shrinkage independently on groups of 2D
patches over different channels, which is more flexible than
assuming that nonlocal 4D groups composed of 3D cubes are
jointly sparse. Secondly, in the way the prior is leveraged
by the algorithm, the proposed R1BM3D is more efficient,
as by the rank-one similarity prior the positions of similar
patches are propagated across the spectral bands, avoiding
the computational burden of testing similarity by computing
differences and norms over the entire 3D cubes.

VI. CONCLUSION

We presented an HSI-MSI fusion termed R1BM3D that
combines the spectral low-rank, the nonlocal self-similarity,
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and an introduced rank-one similarity prior. The rank-one
similarity prior is introduced as an intrinsic HRI characteristic
under which the structural similarities of small blocks are
shared across all spectral bands. We conducted an extensive
empirical study over several real-world objects and remote-
sensing and satellite datasets, finding support for the rank-
one similarity prior. We developed an effective algorithm that
uses a nonlocal patch-based denoiser to promote the proposed
low-rank priors. The experiments show that RIBM3D can
significantly improve the HSI-MSI fusion, with the most re-
markable improvement observed in the recovery of the spectral
information at low-contrast locations.
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