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Abstract—Many approaches to compressive video recovery proceed
iteratively, treating the difference between the previous estimate and
the ideal video as residual noise to be filtered. We go beyond the
common white-noise modeling by adaptively modeling the residual as
stationary spatiotemporally correlated noise. This adaptive noise model
is updated at each iteration and is highly anisotropic in space and
time; we leverage it with respect to the transform spectra of a motion-
compensated video denoiser. Experimental results demonstrate that our
proposed adaptive correlated noise model outperforms state-of-the-art
methods both quantitatively and qualitatively.

I. INTRODUCTION

High-speed motion capture has many important applications. How-
ever, direct high frame-rate capture is severely restricted by hardware
constraints, often inherent to the read-out electronics. This notwith-
standing, the spatial and temporal regularity of natural scenes makes
it possible to recover high frame-rate video indirectly from temporally
multiplexed measurements at a low frame-rate [1]–[9]. The forward
model of a temporal multiplexing camera maps a high frame-rate
video sequence composed of pq frames into q frames, where p > 1
is the temporal compression factor. This can be written in matrix
notation as

y=Ax+e , (1)

where x∈Rn1n2p×q is a matrix whose columns are the vectorization
of p consecutive n1×n2 spatial frames of the high frame-rate video,
A ∈ Rn1n2×n1n2p is a coding matrix, e ∈ Rn1n2×q is a random
measurement error, and y ∈Rn1n2×q is a matrix whose columns are
the vectorized temporally compressed measurements of the columns
of x. Typical temporal multiplexing cameras such as streak cameras
[7] and the coded aperture compressive temporal imager (CACTI) [3]
leverage translating masks during exposure. Assuming the vectoriza-
tion of each video chunk is done first in time and then in the direction
of mask translation, then the coding matrix A has a n1n2×n1n2 block
diagonal structure, where the n1n2 blocks along the diagonal are 1×p
row vectors, whose vertical concatenation yields a stack of n2 Toeplitz
matrices, each of size n1×p.

After capture, the high-speed video can be recovered using a
nonlinear sparsity-promoting algorithm, under the assumption that x
is sparse or compressible with respect to a given basis or a redundant
dictionary mutually incoherent with A [10], [11]. This process is
termed compressive video recovery (CVR).

CVR is typically iterative, where each iteration includes a filtering
step in which the current/previous estimate is treated as a degraded
observation of the video to be recovered [1]–[6]. A common feature
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of these approaches is that the degradation to be filtered at each
iteration is modeled as additive white Gaussian noise (AWGN)
which is alleviated by shrinkage or denoising. However, the common
assumption of uncorrelated white noise holds only under special
conditions that are hardly met in practice, e.g., the coding matrix
A being itself random i.i.d. Gaussian [12].

A more general model, which we advocate in this paper, allows
spatial and temporal correlation within such degradations. This cor-
relation can be result of multiple contributors: the structure of A, the
statistics of e, as well as their interaction with the structure of x and
the effect of denoisers during the previous iterations. Since denoising
filters take advantage of spatial and temporal redundancy within the
video, the filtering can introduce various forms of correlation between
adjacent samples in space and time.

In contrast to AWGN noise, correlated noise can lead to errors
that are disproportionate across the data spectrum, to an extent
that AWGN denoisers may not effectively discern between the true
signal and noise in regularization via shrinkage. Hence, ignoring such
correlation in the denoising step can lead to ineffective filtering and
also distortion to the underlying video, thus impairing the accurate
high-quality recovery of x.

In this work we leverage the RF3D filter [13], which natively
supports different forms of spatiotemporal noise correlation.

Our contributions are summarized as follows:

• We model the noise at each iteration of CVR as stationary
spatiotemporally correlated noise, and adopt this model within
the iterative/shrinkage thresholding (IST) [14] approach (Section
II-A).

• We describe the noise correlation through the noise power
spectral density (PSD), which we estimate at every iteration
from the median absolute deviation (MAD) [15] of the transform
spectra of the residual error signal (Section II-C), with respect
to the sparsifying transform used internally by the RF3D filter
(Section II-B): these PSDs modulate the shrinkage thresholds,
i.e. allow to compare the magnitude of each transform coefficient
against that of the corrupting noise.

• We develop a method for CVR based on the IST framework
via the RF3D filter as the denoiser/regularizer under the mod-
eling assumption of either i.i.d. (referred to as IST-wRF3D)
or spatiotemporally correlated noise model (referred to as IST-
cRF3D). We compare the state-of-the-art CVR techniques with
our developed method, showing a significant advantage of our
adaptive correlated noise model in terms of both objective and
subjective visual quality (Section III).



II. ANISOTROPIC SPATIOTEMPORAL REGULARIZATION IN

COMPRESSIVE VIDEO RECOVERY

A. Denoising-based Iterative Shrinkage Thresholding

The IST framework [14] follows the two-step iterative procedure

rk = y − Axk , (2a)

xk+1 = Φ(xk + ρkA†rk ) , (2b)

where xk and rk are, respectively, the estimate of the underlying
video x and the residual measurement at iteration k ≥0, x0=0, Φ is
a sparsity-promoting filter, A† is the pseudo-inverse of A, and ρk >0
is the step size.

The action of Φ on its input can be regarded as a denoiser seeking
to recover x from the noisy observation [12]

zk = x + ηk = xk + ρkA†rk , (3)

where zk and ηk respectively represent the degraded video and the
effective noise at each iteration of (2a)-(2b). We dub ρkA†rk the
residual signal.

B. Stationary Colored Gaussian Noise Denoising

We use the RF3D filter Φ in the denoising step (2b), tacitly
assuming that its input zk is reshaped so to reconstitute the three
dimensions of the video and that its output is vectorized back. RF3D
models the noise ηk as a combination of two frame-wise noise
components: a random noise ηRNDk that is independently realized at
every frame, and a fixed-pattern noise (FPN) ηFPNk that is constant
in time. Thus, in a set of pq frames, there are pq independent
realizations of ηRNDk and pq copies of a unique realization of ηFPNk .
Both ηRNDk and ηFPNk are zero-mean processes and each features its
own spatial correlation. Overall this corresponds to a spatiotemporally
correlated noise whose 3D-FFT PSD is composed of
• pq − 1 temporal-AC planes that being characterized exclusively

by ηRNDk are all equal to each other, and
• a temporal-DC plane that encompasses both ηRNDk and pq

copies of ηFPNk .
Leveraging this noise model into the filter Φ (2b) is equivalent to an
anisotropic spatiotemporal regularization in CVR.

RF3D aggregates a multitude of motion-compensated spatiotem-
poral volumes which are filtered in a transform domain. Specifically,
a generic spatiotemporal volume v extracted from zk is formed by
concatenating b×b blocks extracted from h= h+−h−+1 consecutive
frames into a b×b×h array, i.e. v=

[
zk [di, i]

]h+
i=h− , where di are the

spatial coordinates of a block within i-th frame, and h− and h+ are the
first and last frame indices of the spatiotemporal volume. The spatial
coordinates are adaptively chosen so that concatenated blocks follow
a motion trajectory in the scene. The transform-domain filtering of v
can be defined as

ṽ = T−1
3D

(
Υ

(
T3D(v); τk

) )
, (4)

where Υ is a shrinkage operator, e.g., hard thresholding, τk is a
threshold value depending on the statistics of ηk and x, T3D is
the separable 3D discrete cosine transform (DCT) operating on 3D
spatiotemporal volumes and T−1

3D is its inverse. The blocks forming
ṽ are estimates of the noise-free blocks {x[di, i]}h

+

i=h−
and they

are therefore returned and adaptively aggregated to their original
positions {[di, i]}h

+

i=h−
in the video.

In the simplest case when ηk is a zero-mean AWGN with variance
σ2
ηk

, τk could have been fixed as a multiple of standard deviation of
the noise, i.e. τk =λσηk , λ>0.

In the spatially-correlated random+fixed noise model of RF3D,
the coefficient-invariant threshold has to be changed to an adaptively
varying one:

τk [ξ1, ξ2, ξ3] = λσT3D(v)[ξ1, ξ2, ξ3] , (5)

where σ2
T3D(v)

is the T3D noise PSD of v, and ξ1, ξ2, and ξ3 are,
respectively, the two spatial frequencies and the temporal frequency
in the separable T3D domain.

The T3D noise PSD of v can vary not only with respect to ξ1, ξ2,
and ξ3, but also depending on the spatial alignment of the blocks,
i.e. {di}i , due to the presence of FPN (see [13, Section IV-D]). In
particular, there are two extreme cases: 1) all blocks in v share the
same spatial position, hence the FPN accumulates in the temporal-
DC component; 2) all blocks have sufficiently different positions so
that the FPN at di is not correlated with that at dj if i , j, hence
the FPN behaves like another independent noise at every frame. The
mathematical expressions of the T3D noise PSD of v for these two
cases are

1) σ2
T3D(v)[ξ1, ξ2, ξ3]=

{
ΨRNDk

[ξ1, ξ2]+hΨFPNk
[ξ1, ξ2] ξ3=1,

ΨRNDk
[ξ1, ξ2] ξ3,1,

2) σ2
T3D(v)[ξ1, ξ2, ξ3]=ΨRNDk

[ξ1, ξ2]+ΨFPNk
[ξ1, ξ2],

where ΨRNDk
and ΨFPNk

are T2D-PSDs of ηRNDk
and ηFPNk

, and
ξ3 = 1 corresponds to the temporal DC. RF3D adaptively defines
σT3D(v) also for all intermediate cases based on ΨRNDk

, ΨFPNk
, and

the specific {di}i [13]. The subindex k in the notation for ΨRNDk

and ΨFPNk
emphasizes that these PSDs may vary at each iteration

of CVR.

C. Adaptive Correlated Noise Estimation

Even though ηk does not coincide with the residual signal ρkA†rk
(3), we argue that the statistics of ΨRNDk

and ΨFPNk
for ηk can be

more conveniently estimated from ρkA†rk , since the residual signal
has the benefit of being readily computed in IST and, compared to
zk , it does not feature a dominating x component.

Thus, since the FPN component ηFPNk
is temporally invariant, we

estimate it as the temporal average of ρkA†rk over all the frames in
the video. The random noise component ηRNDk

can be then captured
by subtracting the estimated ηFPNk

from ρkA†rk . Finally, we can
compute the 2D root-PSDs Ψ

1/2
RNDk

and Ψ
1/2
FPNk

through the MAD
over all blocks extracted from estimated ηRNDk

and ηFPNk
at each

iteration.

III. EXPERIMENTS AND DISCUSSION

We compare the CVR results by our proposed IST-wRF3D/-cRF3D
with those of two state-of-the-art methods:
GMM-TP [8]: A Gaussian mixture model (GMM) approach where
the priors of the GMM are learned by the patches extracted from the
training datasets.
MMLE-GMM [9]: A maximum marginal likelihood estimator
(MMLE) that maximizes the marginal likelihood of the GMM of x
given only the measurement y when GMM-TP with full overlapping
patches is used to initialize it.

We measure the objective quality of the recovery by the peak
signal-to-noise ratio (PSNR) of the estimate x̃, i.e. PSNR(x, x̃) =
10 log10

(
n I2max/‖x−x̃‖2

)
where Imax is the peak of the noise-free

video x. We consider the 256×256×32 NBA video sequence (both
ground-truth and compressive measurements) used in [9]. The com-
pressive measurements are acquired by the CACTI system: each
video frame is masked with a shifted version of single random
binary mask drawn from the Bernoulli distribution with probability
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Figure 1. Evolution of PSNR versus iteration number for the case of noise-
free (left plot) and noisy measurements (right plot).

0.5, and the temporally-compressed 256×256×4 measurements are
constituted by summing such masked frames in consecutive groups
of p=8. The aggressive compressive acquisition of a dynamic scene
with complex motions of non-rigid bodies makes this a challeng-
ing and representative benchmark for testing CVR. We consider
CVR reconstruction from both noise-free and noisy measurements
(AWGN, SNR= 15 dB). Since the available codes for GMM-TP
[16] and MMLE-GMM [17] methods deal with CVR from noise-
free measurements while producing poor results in the case of noisy
measurements, for the sake of fair comparison we consider these
methods only with noise-free measurements.

For our IST-based RF3D CVR method, we fix ρk = 2 and adopt
spatiotemporal volumes composed of 8×8 blocks and spanning a
temporal extent of h = 9 frames. In GMM-TP and MMLE-GMM,
we follow the settings used in [9] by the same authors to train the
underlying GMM parameters and use them to initialize the MMLE.

Fig. 1 draws the evolution of PSNR versus iteration number under
noise-free and noisy measurements. At least in terms of PSNR, most
of recovery happens during the first 80 iterations, consistently for
the four different cases. We thus compare individual reconstructed

Figure 3. From left to right, 1st row: temporally encoded frame # 2 obtained
from combining masked original frames # 9,. . . ,# 16 which is then corrupted
by AWGN (SNR= 15 dB); the recovered frames via IST-wRF3D (25.20 dB)
and IST-cRF3D (25.76 dB), respectively. 2nd and 3rd rows: cropped+zoomed
portions of 1st row.

frames at k = 80 in Figs. 2 and 3, leaving the study of adaptive
stopping criteria to future work. It can be seen that the proposed
IST-cRF3D gives the best performance with a better detection of fast
and complicated motions with less artifacts around moving objects
in the video and without excessive loss of details.

Figure 2. From left to right, 1st row: original frame # 15; temporally encoded frame # 2 obtained from combining masked original frames # 9,. . . ,# 16; the
recovered frames from noiseless measurements via GMM-TP [8] (PSNR: 24.13 dB), MMLE-GMM [9] (26.96 dB), IST-wRF3D (29.14 dB) and IST-cRF3D
(30.12 dB), respectively. 2nd and 3rd rows are respectively cropped+zoomed portions of the 1st row.



Figure 4. 1st (resp. 2nd) row: the 2D root-PSDs of the modeled ηRNDk
and ηFPNk captured in the residual errors of the reconstructed NBA video via
IST-cRF3D at iteration k = 10 (resp. k = 40). These root-PSDs are defined
with respect to the 8×8 2D DCT. The DC coefficient and the highest frequency
coefficient are diametrically opposed, with the former located in the top corner
(1, 1) and latter in the bottom corner (8, 8).

Figs. 4 and 5 show, respectively, the 2D root-PSDs and 3D PSDs of
the modeled noise captured in the residual signals at two different
iterations of IST-cRF3D. These 2D root-PSDs (resp. 3D PSDs) are
defined with respect to the 8×8 2D block DCT (resp. 8×8×9 3D
DCT) applied on the non-overlapping 2D blocks (resp. 3D volumes)
extracted from the residual signal. As can be seen from Figs. 4 and 5,
the spectrum of each residual signal of IST-cRF3D has a noticeable
anisotropic behavior implying the correlation in the modeled noise.

In the shrinkage step, λ scales the noise root-PSD to modulate
the filtering strength (5), and choosing a large (small) λ causes
oversmoothing (undersmoothing). While for simplicity we do not vary
λ as the recovery progresses, we did experiments for several different
values of λ in IST-cRF3D (resp. IST-wRF3D) and found out that
the highest PSNR at iteration 80 and further iterations is obtained
for λ being 11 and 3.56 (resp. 70 and 12), respectively, in the case
of noise-free and noisy measurements. The choice of λ = 3.56 in
IST-cRF3D in the case noisy measurements appears reasonable and
roughly matches the universal threshold factor

√
2 log

(
b2h

)
for an

array of size b × b × h [18]. The best λ values for the other three
cases are however larger. In IST-wRF3D, we compute the residual
noise variance from the highest-frequency portion of the anisotropic
spectrum of the residual signal, which as shown in Fig. 5 includes the
weakest components in the spectrum. For an AWGN model, the noise
variance coincides with the level of the flat PSD, which means that
in practice the algorithm operates with a significant underestimate
of the noise. Therefore, an increase of λ in the case of AWGN
yields a higher filtering strength to partly compensate the discrepancy
between noise models. We observed that in the noise-free case, both
IST-cRF3D and IST-wRF3D benefit from a comparably large λ in
order recover the signal during the first few iterations (k <20). This
seems consistent with parameter choices in other iterative recovery
algorithms, such as [19], [20]. We speculate that the PSNR decay that
takes place towards later stages of CVR (k > 100, shown in Fig. 1,
left) is due to oversmoothing of the data caused by a fixed and large

Figure 5. 1st and 2nd (resp. 3rd and 4th) rows: spatiotemporal correlation in
the residual errors of the reconstructed NBA video via IST-cRF3D (resp. IST-
wRF3D) when the corresponding temporally-compressed measurements are
noise-free, visualized as noise PSD with respect to the 8×8×9 3D DCT applied
on the 3D volumes, respectively, extracted from the residual signals at iteration
k = 10 and k = 40. Only the lowest- and highest-frequency faces of each 3D
PSD cube are shown.

λ. Hence, for future implementations of IST-cRF3D, we may consider
a λ that progressively decreases to

√
2 log

(
b2h

)
as k grows. For a

MATLAB/C implementation of the above experiments on a computer
equipped with Intel Core i7 2.8-GHz CPU, IST-wRF3D and IST-
cRF3D respectively take 10.9 and 13.2 seconds per iteration. Most
of the extra time in IST-cRF3D is dedicated to estimating the root-
PSDs (2.1 seconds).

IV. CONCLUSIONS

We modeled the noise at each iteration of CVR as stationary
spatiotemporally correlated noise, comprised of two spatially corre-
lated random and fixed-pattern noise components that are adaptively
estimated from the residual signal. It is worth noting that this is
not a perfect model of the actual underlying noise, however it is
much more flexible than the common i.i.d. model. We embed the
proposed model within the RF3D denoising algorithm, which we
adopted as the sparsity-promoting filter in IST. Experimental analysis
demonstrates the superior subjective and objective performance of the
proposed IST-based CVR method employing RF3D as the denoiser
via adaptive correlated noise model versus an i.i.d. model and state-
of-the-art techniques.
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