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ABSTRACT

Supercontinuum light is generated by a train of laser pulses propa-
gating in an optical fiber. The parameters characterizing these pulses
influence the spectrum of the light as it exits the fiber. While spec-
trum generation is a direct process governed by nonlinear equations
that can be reproduced through numerical simulation, determining
the parameters of the pulse generating a given spectrum is a difficult
inverse problem. Solving this inverse problem has a relevant prac-
tical implication, as it allows generating beams with desired spec-
tral properties. We solve this multidimensional parameter estima-
tion problem by training a neural network and we introduce, as key
technical contribution, a weighted loss function that improves the
estimation accuracy. Most remarkably, this loss function is not spe-
cific to the considered supercontinuum scenario, but has the potential
to improve solutions of similar inverse problems where the forward
process can be reproduced via computationally demanding simula-
tions. Our experiments demonstrate the effectiveness of the pursued
approach and of our weighted loss function.

1. INTRODUCTION

Physical processes governed by nonlinear equations can often be ac-
curately reproduced via numerical simulations. In most cases, the
corresponding inverse problems admit no analytical solution that can
be used for an efficient inversion. However, simulating the direct
process enables generating vast training sets, which are in princi-
ple limited only by computational resources, and that can be used to
train machine learning models to efficiently solve the corresponding
inverse problems. This approach has been successfully pursued in
diverse domains like medical imaging [1, 2], electromagnetic imag-
ing [3] and geosteering [4], where deep learning models have proved
to effectively solve signal processing problems provided abundant
training data and no prior to invert the process.

In this paper, we adopt neural networks to solve an inverse prob-
lem in photonics, namely predicting the pulse parameters generat-
ing a target supercontinuum spectrum. Supercontinuum light results
from the propagation of a high-power pulse in a nonlinear optical
fiber [5], and achieves broader spectra than the traditional monochro-
matic laser sources. Over the past few years, supercontinuum gener-
ation has been an extensive subject of research, due to the wide range
of applications in high precision metrology, high resolution imaging
or remote sensing. Supercontinuum spectra are routinely generated
in the laboratory and validated by simulations, as the process can
be accurately modeled via the nonlinear Schrodinger equation or its
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generalized version [6], thus implemented in numerical software. In-
verting the generation process is key to optimize the spectrum to
match a target or to feature desired properties. Unfortunately, this
is not straightforward as the nonlinearity characterizing the gener-
ation process prevents us from formulating an analytical solution.
Moreover, the computational cost of simulating the supercontinuum
generation limits the feasibility of traditional iterative inversion al-
gorithms.

We frame supercontinuum generation as an inverse problem in
a formal setting (Section 2), which we solve by means of neural
networks. In particular, we present (Section 3) two different neu-
ral network architectures to solve this inverse problem: a fully con-
nected (FC) model and a Convolutional Neural Network (CNN) de-
signed to process one-dimensional signals. The major contribution
of this paper is a weighted loss function specifically designed to
guide the training process towards the minimization of a spectral
error. Most remarkably, the proposed solution is based on a general
principle, thus can potentially boost other machine learning models
solving multivariate regression problems where the regression qual-
ity is measured in the signal domain and that requires generating sig-
nals via a computationally expensive simulation. In our experiments
(Section 4), we train and test our models over a dataset produced by
a generator implementing numerical simulations of the propagation
process and we show that our neural networks yield very accurate pa-
rameters estimates on these spectra. Moreover, we show that the pro-
posed weighted loss function is beneficial, as the networks trained to
minimize it achieve a lower spectral error with respect to networks
trained with a traditional parameter loss. Moreover, the proposed so-
Iution generalizes rather well to spectra that have not been generated
via numerical simulations, but are mixtures of Gaussians locating
peaks at different wavelengths.

Similar inverse problems on signals have been solved by train-
ing neural networks, but these adopt a standard loss in the parameter
domain [1, 2], or prior information [3]. Particularly interesting to
our work is [4], where the loss function measures the distance in
the signal-domain by invoking multiple times the generator during
training. Solutions to the specific inverse problem of supercontin-
uum generation are based on genetic algorithms [7, 8, 9, 10, 11],
and perform an iterative search of the solution by repeatedly gen-
erating candidate spectra and then moving the prediction towards
the parameters minimizing a spectral error metric. Our neural net-
works are trained using a pre-generated set of spectra, but without
invoking further spectra generation during training, which would be
prohibitively expensive. Our experiments show that the proposed
weighted loss function effectively acts as a surrogate of the error
over the spectra, leading to parameter estimates and spectra that bet-
ter match the target characteristics.
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Fig. 1: Left: three spectra generated via the simulation G as in (1) for the values of y in the legend. These parameters modifies significantly
the number of peaks, their magnitude and the wavelength range of these spectra. Right: a close-up view showing oscillations in the spectra.

2. PROBLEM FORMULATION

We denote the supercontinuum generation process as
G:Y—=>¥yCX (1

where )) C RP is the set of parameters characterizing the pulse prop-
agation, Xy is the set of supecontinuum spectra that can be gener-
ated via G, contained in the set © C L*(R) of arbitrary spectra. Our
focus is on the inverse problem of predicting the parameters y € Y
yielding a target spectrum o € 3, which has no analytical solution.

We consider p = 3 parameters of critical importance for the
supercontinuum generation. Specifically y is the pulse wave-
length (Ao), ¥® is its Full Width at Half Maximum (FWHM) and
y® s its peak power (Pp), while any other generation parame-
ter is fixed. We adopt a discrete representation of a spectrum o
as a vector of N = 4096 power density values s associated to an
equal number of wavelengths A, i.e. each spectrum is described by
a pair @ = (A, 5) € RY xRY. Our task is to train a ML model
M : ¥ — Y such that

M(o) = argmin [|G(y) — o, )
yey

for some suitably defined norm ||-|| that captures the main character-
istics of the spectra, while ignoring fine noise-like spurious features
such as those visible in Figure 1. To this purpose, we assume that a
training set 7 of K spectrum-parameters pairs is provided,

Tr = {(o%,yr) € Sy xY | or = G(yr) rer- A3)

3. PROPOSED SOLUTION

Our solution to the inverse problem (2), detailed in what follows,
consists of training a model M over a training set 77 to minimize
a weighted loss function Ly that approximates a spectral loss Lg
(Section 3.2). Before being input to the model, spectra are prepro-
cessed via binning and normalization operators (Section 3.1). We
train two different architectures for M (Section 3.3), whose perfor-
mance is tested in terms of a spectral loss Ls. Figure 2 illustrates the
operators and loss functions employed to train and test our models.

3.1. Preprocessing
3.1.1. Binning

To control the dimensionality of the data while also mitigating the
spurious features of the power density profile shown in Figure 1, we
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Fig. 2: Illustration of the operators and loss functions used in our
solution. A model M takes as input spectra processed via binning
(4) and normalization (5), and is trained minimizing a weighted loss
Lw (8), which serves as a surrogate for a spectral loss Ls (7). The
performance of our solution is measured in terms of L£g, which re-
quires invoking G to generate spectra. For generated spectra, one
may also consider the parameter loss Ly (6), which is however not
directly related to L.

resort to integral binning. More precisely, we integrate the spec-
tra over n disjoint and adjacent intervals I; of the same length,
I=J,1;. We define the binning operator BL:RY xRY — R" as

n

a= Bfl()\,s) = [ /I o(w)dw ] 4)

. =1
J J

where [ is the interval of integration and n is the number of sub-
intervals considered. The choice of I and n depends on the adopted
model, and is discussed in Section 3.3.

Controlling the dimensionality of the data is particularly impor-
tant for the FC models, where the number of parameters and oper-
ations grow significantly with the input dimension. Moreover, by
integrating the spectra over some fixed wavelength range R, the bin-
ning process defined above can be used to map spectra to a common
reference interval, enabling a direct comparison between spectra po-
tentially defined over different wavelength domains.

3.1.2. Normalization

We define a normalization operator N : R — [I', 0] to map the
binned spectrum @ = B () to a fixed range in dB scale:

b = N(a) = max{T',10log,,(a) — 10log,,(max(a))}, (5)

where the clipping below I' is applied as to ignore any spectral dif-
ference at insignificant power levels. We set I' = —40.
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Fig. 3: Comparison among the losses Ly (6), Ls (7) and Ly (8) as functions of the error g}”) —y(i), 1=1,2,3, on the three parameters for
a given target g, assuming that the other two components are correctly predicted, i.e. §) =39 for j 4. First, we notice that the ideal Lg
is impacted differently by errors over different parameters, while £y is independent of the error direction. Moreover, the proposed Ly well
approximates the evolution of Lg along the different error components. These plots illustrate a general behavior of these loss functions for

any y€).

3.2. Loss Functions

The inverse problem (2) is a multivariate regression problem,
where we want to predict a parameter vector y € R” from the
1-dimensional signal o. A straightforward choice for a regression
loss function is the Mean Absolute Error (MAE)

Ly =~ |y

A1) y(i)|7 (6)
p

i=1

where y and ¢ are the true parameters and the regression estimates,
respectively. However, when training our models minimizing Ly,
we ignore the corresponding spectral information, namely, how
much error on the parameters estimate impacts the shape of the
corresponding spectra. As we stated in Section 2, we want our
models to predict parameters generating spectra matching the main
characteristics of the target instead of focusing on the fine details of
the power density profile. To this purpose, we adopt the binning and
normalization operators defined in the previous sections to define a
loss function capturing the spectra. We define the ideal loss function
Lg as the MAE over the binned and normalized spectra:

Ls(b,b) = %Z b =519, (7)

=1

where b = N'(BE (X, 5)) and b = NV (BE (X, 3)) are the projections
of target and estimated spectra to a common domain and r =60. The
wavelength range R is chosen to encompass nearly all of the energy
of the spectra belonging to the dataset. The choices of R and r are
further discussed in Section 4.1.

We observe that the target of the minimization of £g and Ly
is the same. In fact, for a given sample (o,y) € Xy x ), the
loss function Lg(b,-) achieves its minimum when b =b, since
Ls(b,b) = 0, and it is attained also when § = y, as this condition
in turn realizes the minimum of Ly (y, -). Nevertheless, using a dif-
ferent loss function has an impact on the minimization path followed
during the training procedure. In fact, as shown in Figure 3, the loss
function Ly is isotropic with respect to the parameters, i.e. the im-
pact of each parameter on the loss function is the same.Instead, Lg
is anisotropic, as each parameter can have a different impact on the
generated spectra. Therefore, we expect Ls to be more effective
at estimating parameters corresponding to spectra that match the
relevant characteristics of the target.

3.2.1. Proposed Weighted Loss as Nonparametric Local Polynomial
Approximation

If we were to train a neural network minimizing Lg, during each
epoch of the training process we would have to invoke the gener-
ator G for each predicted parameter vector. Unfortunately, this is
a very time-consuming operation, preventing us to adopt the ideal
loss L as a training loss. As a surrogate for the ideal loss, we
propose a weighted loss function Ly consisting of a nonparamet-
ric multivariate polynomial approximation of Ls. Specifically, for
each training sample (o, yx) € Tr, k=1, ..., K, we consider the
binned and normalized bx = N (Bf (o)) ER” and we define the
weighted loss function as

R 1 p " 2 1/2
owweo) = [ 3L ul G -] ®)
=1

where gy, is the model prediction and wy, € R? are local polynomial
coefficients defined by solving the following optimization problem:

K 2
wy = argmin{ E e*aHyl*kaQ .

w 1=1
. . . 2
. [ﬁs(bk,bz)zf lew(l)(yl(l)*yz(;)f] }, ©)

where a > 0 controls the spread of a Gaussian window that localizes
the fit to the ideal loss with respect to the deviation on the parame-
ters. Figure 3 shows that Ly locally approximates Lg better than
Ly in the neighborhood of the correct estimation.

3.3. Adopted models

This section presents the proposed models, detailing their architec-
tures and the performed data pre-processing steps.

3.3.1. Fully Connected Model

The first model we present is the fully connected neural net-
work. From each spectrum (A, s), we extract a feature vector
by computing its binned and normalized version over the unique
wavelength range R defined above with n =60 intervals, namely
b= N(BE(A, s) € R, Moreover, in order to provide rele-
vant information to the network, we append the peak value of
the binned spectra (before normalization) to the vector, yielding
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Fig. 4: Architecture of the (a) FC and (b) CNN models. Each layer
uses a ReLU activation function as nonlinearity. The output layers
are both characterized by linear activations.

a 61-dimensional feature vector. The adopted FC contains about
200000 trainable parameters and its architecture is reported in Fig-
ure 4(a).

3.3.2. Convolutional neural network

The second model consists of a 1D convolutional neural network
(CNN) processing spectra as 1D signals. Since CNNs can process
high-dimensional data with fewer trainable parameters than tradi-
tional fully connected neural networks, we employ a less coarse pre-
processing step, where binning is performed with n=1024 bins, and
we do not apply any normalization. In particular, we preprocess each
spectrum o in its wavelength range Ix = [min (A), max (\)] and
the binned spectrum is computed as @ = B2, (X, s). Finally, since
we use a different I for each spectrum, we also append the wave-
length range I to the latent representation returned after the convo-
lutional block. The CNN contains about 96000 trainable parameters
and its architecture is reported in Figure 4(b).

4. EXPERIMENTS

In this section, we describe our dataset (Section 4.1) and introduce
the metrics adopted to evaluate our neural networks (Section 4.2).
Then, in our experiments we investigate the impact of the training
set size and of the proposed loss function when training our models.
Finally, we show network performances when predicting spectra that
have not been generated from G.

4.1. Dataset

The employed dataset is generated using G with all the combina-
tion of the considered parameters varying in the ranges reported in
Table 1, yielding D = {(G(y);y) = (A, s;y) }. Following an anal-
ysis of the dataset, we define the wavelength interval R used in (7)
as [1043.7, 2675.4] nm, encompassing the wavelength region where

Minimum  Maximum Step #
Ao 1400 nm 1700 nm 10nm 31
FWHM 50fs 250 fs 10fs 21
Pp 500 W 20000W  250W 79

Table 1: Ranges for the pulse parameters belonging to the dataset D.

most of the power density of the spectra in the dataset is contained.
Moreover, we set r = 60, yielding a bin width of |R|/r ~ 27.2nm.

4.2. Metrics

We define the spectrum error as the ideal loss (7) accumulated over
the test set Te: R

Es= Y Ls(bb), (10)

(o,y)ETe

where Te is a set of parameters-spectra pairs, defined as (3). For
performance assessment only, we generate the spectra associated to
the model predictions {§} over the test set Te. We also assess the
parameter error, consisting of the MAE on the predicted parameters:

Ey: Z L"y(y7’g)7

(o,y)eTe

9= M(o). (11)

As we commented in Section 3.2, both the spectrum error (10)
and the parameters error (11) realize the minimum when the pre-
dicted parameter vector (and consequently the generated spectrum)
matches the target for every test sample.

In our study, we investigate how the performance of the consid-
ered models varies with progressively smaller training sets. To this
purpose, we uniformly split the dataset D) into F folds. Then, each
neural network and baseline is exclusively trained on fold f; and
tested on fold f(; mod F)+1, Where ¢ = 1,..., F. Hence, increas-
ing the number of folds F' yields smaller training sets. Eventually,
performance measures are averaged across all the F' folds. In our
experiments, we consider F' = 5, 10, 20, corresponding to training
sets having 10285, 5142 and 2571 samples respectively.

4.3. Employed Methods

We train both FC and the CNN to optimize the loss functions Ly
and Lw . In both cases we independently train 10 neural networks,
and at inference time we consider the model ensemble, averaging
predictions of the individual networks. Ensembles are typically used
to reduce over-fitting, and consequently improve the scores over the
metrics [12].

As a baseline model, we compare against the 1-Nearest Neigh-
bor model (1NN) using L (7) as distance function, associating the
preprocessed target spectrum to the parameter corresponding to the
closest sample in the training set.

4.4. Results

Table 2 reports the averaged spectrum error Es (10) and parameter
error E'y (11) achieved by our models in the cross-validation sce-
nario presented above. Each value in the table is the result of av-
eraging the performance of the model ensemble over F' folds, with
F € {5,10,20}. As expected, both the parameter error £y and the
spectrum error E's grow when the training set size decreases, i.e. F’
increases. Also, the proposed models perform significantly better
than the baseline 1NN, with the CNN outperforming the FC model



Ey Es AEs Ey Es AEs Ey Es AEs
INN 0.123  0.354 - 0.161 0.449 - 0.206 0.569 -
Ly 0029 0.168 0.045 0.235 0.066 0.329
FC Lw 0.032 0.156 C71%) 0047 0215 B3 o070 0311 P
Ly 0014 0.130 0.022 0.186 0.034 0.268
CNN Lw 0017 0.115 (-11.5%) 0.028 0.172 (-7.5%) 0.044 0.272 (+1.5%)

Table 2: Performance of the proposed models and baseline in terms of parameter error Fy (11) and spectrum error Es (10) for different
number of folds F' € {5, 10,20}. We report the results achieved training the models both with £y (6) and Lw (8). In parenthesis, we report

the relative spectrum error variation A E's resulting from using Ly instead of L.

in every setting. We speculate that the heavy binning of spectra em-
ployed to define the input of the FC network (see Sec. 3.3) might
discard some information useful for parameters estimation. In con-
trast, binning in the CNN is less severe and further dimensionality
reduction is learned via convolutional blocks to maximise regression
performance.

The proposed weighted loss Ly is mostly beneficial, as it de-
creases the spectrum error with respect to the comparable models
trained with £y in almost all settings. Nevertheless, when the train-
ing set is small, the estimated polynomial coefficients are less ac-
curate, thus the weighted loss is less effective. This is particularly
apparent with the CNNs, which are very effective even when using
Ly. In fact, when F' = 20, the weighted loss seems not beneficial for
the CNNs. Finally, we remark that models trained with the weighted
loss yield a larger parameter error Fy, suggesting that the training
led to a lower point in the spectrum error surface, while not actu-
ally getting closer to the true parameters prediction in the Euclidean
sense.

The first row in Figure 5(a) reports a pair of spectra generated
via G and the corresponding FC and CNN predictions. We can no-
tice that both our models have successfully predicted the parameters
generating spectra, as they mostly overlap the target. On the second
row, we show the corresponding binned and normalized versions of
the spectra (which are used for computing the loss), for which the
same considerations hold.

4.5. Application: non-generated spectra

Experiments in Section 4.4 demonstrate that our neural networks
can successfully estimate the parameters ¢ of train pulses to pro-
vide a spectrum that is very close to a target o. However, those
experiments involve only generated spectra >y which are therefore
consistent with the generative process. Now we investigate the gen-
eralization capabilities of our neural networks, namely how good
these are when predicting parameters corresponding to spectra that
do not belong to Xy, thus that have not been produced by G. This
issue is particularly relevant for the adoption of our neural networks
in practice, as generated spectra, like those in Figure 1, exhibit rapid
fluctuations and detailed patterns that are very unlikely to emerge in
a description of an arbitrary spectral profile provided by a user or
dictated by system design or application requirements.

In this experiment, we provide a qualitative assessment of the
parameters estimation performance over a dataset H containing
spectra that have not been generated from G. More specifically, H
contains more than 45000 spectra with diverse macroscopic charac-
teristics (number of peaks, wavelength range, peak intensity), that
have been defined by fitting a Gaussian Mixture (using at most 5

mixture components) over a few spectra in 3y. These result in
coarse approximations that are akin to a possible spectrum defined
by a user. We use H only as a testing dataset; the ensemble of mod-
els M is trained over subsets of ID as in the previous experiments
but attempts now to predict parameters generating spectra as close
as possible to the ones in H.

In Figure 5(b), we report some spectra from H and the corre-
sponding predictions obtained via both the FC model and the CNN
ensembles. As expected, the predictions on H are not as accurate as
those produced on D in Figure 5(a). This can be explained by the
fact that spectra in H are much smoother than those generated by
G, which are characterized by fast oscillations. On the other hand,
the normalized spectra in the second line indicate that after binning
and normalization, the predictions are rather close to the target. This
confirms that Ly (8) is a good surrogate for Ls (7), which involves
binned and normalized spectra.

Both the employed models consist of small architectures and do
not require GPU acceleration to be trained in reasonable time. While
our main focus is on the weighted loss function rather than on opti-
mizing the employed neural architectures, it is important to empha-
size that both models allow inference of pulse parameters in a matter
of seconds. This is dramatically faster than any alternative involving
spectra generation through the simulator, as these have to generate
many test spectra at run time, each requiring several minutes.

5. CONCLUSIONS

We present two neural networks solving the inverse problem of
estimating pulse parameters for generating a target supercontinuum
spectrum. These networks are particularly effective thanks to a
weighted loss function that allows to pragmatically approximate
a surrogate of a spectrum-wise error metric; this solution is also
efficient, as it does not require generating spectra during training.

Future work goes towards adapting the proposed weighted loss
function to similar inverse problems in the signal domain, as well
as investigating new weighting schemes. One promising direction is
to employ local anisotropic and adaptive polynomial estimators such
as [13] to define adaptive localization window for the nonparametric
local polynomial fit in (9). Moreover, we are going to extend the pro-
posed solution to estimate more control parameters, and to integrate
our trained models into an actual photonic system for controlling the
laser pump and the train pulses in real time.
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Fig. 5: In the first row, a target spectrum (blue) and the corresponding spectra generated by the pulse parameters predicted via the ensemble
of FC model (red, dashed) and of CNN (black, dotted), both trained to minimize L (8) in the F'=10 settings. On the left, the target spectra
belong to the test set Te. On the right, the target spectra belong to the dataset H of Gaussian Mixture approximations.
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