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Abstract — Synthetic-aperture radar (SAR) imaging has become an efficient tool for obtaining and retrieving
useful information about surfaces of Earth and other planets. However, the formed images suffer from speckle
noise, especially if single-look observation mode is used. Then, filtering is often applied to improve image
quality and provide better estimation of radar cross-section and other parameters of sensed scenes. Recently, a
novel class of image filters has proved to be very successful in the removal of additive white Gaussian noise from
natural images; these filters are based on nonlocal image modeling, i.e. they exploit the mutual self-similarity
of image patches at different locations in the image. These filters have been shown in several benchmarks
to significantly outperform all previous techniques. In this paper, we evaluate the performance of nonlocal
filters applied to the denoising of single-look SAR images corrupted by speckle with a Rayleigh distribution,
taking advantage of exact forward and inverse variance-stabilizing transformations. Numerical simulations
demonstrate the success of this approach against several known despeckling methods.

I. INTRODUCTION

Airborne and spaceborne synthetic-aperture radar (SAR) imaging is widely used in various remote sensing (RS)
applications, both separately and in combination with optical sensors [1,2]. In the former case, polarimetric, inter-
ferometric and/or multi-frequency SAR systems are often used [1,3]. Known and widely exploited advantages of
SAR imaging are its ability to provide RS data during both day and night, in bad weather conditions and with a high
resolution (if single-look mode is applied) that is comparable to those of modern optical sensors. However, due to co-
herent processing of received (backscattered) signals, SAR images are characterized by the presence of high-intensity
speckle, which is a specific kind of multiplicative noise [1,3-8]. Speckle masks and deteriorates useful information
in images, which hinders the accuracy in estimating radar cross-section and other parameters of sensed terrains.

One way to attenuate noise in SAR data is to use a multi-look imaging mode [1]. This, however, leads to a radical
drop in spatial resolution, which is undesirable. Thus, a more common approach to enhance the SAR image quality
is to apply filtering. Although the first (and rather efficient) filters for SAR data despeckling were already proposed
about 30 years ago [5,9, 10], efforts to improve the performance of SAR image filters still continue [8, 11, 12]. The
main difficulties in designing filters for processing single-look SAR images are the multiplicative nature of the noise
and the fact that its probability density function (PDF) is asymmetric with respect to its mean. From the latter arises
the problem of how to preserve the mean level in homogeneous image regions [8] after filtering.

In general, a real-valued single-look SAR image can be represented in three different forms that can be quite
easily recalculated to each other: the so-called intensity image, the amplitude form, and the log-intensity form [1].
For visualization purposes, the second form of SAR image representation is used most often. Thus, in what follows,
we deal with the corresponding model of speckle, which can be described by a Rayleigh PDF.

The earliest SAR image despeckling methods [5,9, 10] mainly dealt with filtering in spatial domain. Later, when
orthogonal transform denoising became popular, filtering has been carried out in wavelet, discrete cosine transform
(DCT) or other transform domains [6, 7, 11]. For this group of methods, denoising itself is usually carried out as
an intermediate stage within a three-stage processing procedure where a direct homomorphic (variance stabilizing)
transformation is applied first and the corresponding inverse homomorphic transformation is applied at the last (third)
stage. In the case of speckle noise, the main goal for applying a direct homomorphic transformation is to convert
multiplicative (thus heteroskedastic) noise into homoskedastic noise that can be treated as some additive white noise.
Hence, these transformation are typically of logarithmic type. A main motivation for using this three-stage procedure
is that there are considerably more filtering techniques designed to cope with additive noise than those intended to
suppress multiplicative noise. We note that many transform-based methods can also be applied without employing
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Figure 1: (a) Plots of the exact logarithmic [16] and the approximate bounded-derivative [17] variance stabilizers f
with their respective mappings E {z|a} — E {f (z) |a} and E {z]|a} > std{f (z) |a}. (b-d) The three test images
used for the experiments.

homomorphic transformations, leveraging instead various forms of locally adaptive thresholds (e.g., as in the DCT-
based algorithm [11]).

Recently, a novel class of image filters has proved to be very successful in the removal of i.i.d. additive white
Gaussian noise (AWGN) from natural images; these filters are based on nonlocal image modeling, i.e. they exploit
the mutual self-similarity of image patches at different locations in the image. Among these novel nonlocal methods
are BM3D [13] and SAFIR [14], which are among the best existing methods for removal of AWGN. It was shown
in [15] that these filters can achieve state-of-the-art performance also in the removal of signal-dependent Poisson
noise, when applied as an intermediate stage between variance stabilization by the Anscombe transformation and a
suitable optimal inverse transformation. The goal of this paper is to evaluate the performance of nonlocal methods in
conjunction with variance-stabilizing transformations, applied to speckle removal in single-look SAR images.

II. RAYLEIGH NOISE MODEL AND ITS VARIANCE-STABILIZING TRANSFORMATION

Let z > 0 be a (noisy) pixel value obtained through a SAR imaging device. Then, z adheres to a Rayleigh PDF

p(z,a)= za_ze_zz/Z“Z, a>0, (1
where the expected value and variance of the random Rayleigh variable z are, respectively,
y=E{zla} =an/2, var{zla} = (4—1)ad*/2. )

Note that the PDF (1) becomes a Dirac delta for @ = 0. The goal of denoising is to estimate the underlying true
value y of the signal as accurately as possible. By defining the zero-mean Rayleigh noise as n = z — E {z|a}, we
see that the noise variance is signal-dependent, with var {n|y} = var {z|y} = var{z|a} = (4 — ) y*/x. To remove
the dependence of the variance on the signal, we can apply a variance-stabilizing transformation to the obtained
image data z. A suitably chosen transformation renders the noise variance constant throughout the entire image, thus
enabling the use of denoising strategies designed for additive homoskedastic noise. For the Rayleigh distribution, the
logarithmic transformation

() =2v6x " In(z) 3)

stabilizes the noise variance perfectly [16], with var { f (z) |a} = 1 forall a > 0. However, the direct application of the
logarithmic transformation (3) is problematic because of the unboundedness of this function. Thus, in the following
experiments, instead of (3) we use an optimized approximate stabilizer f with bounded derivative |0f (z) /oz| < 0
for all z > 0, § = 30, obtained through the numerical procedure [17]. The plots of these stabilizers are shown in
Figure 1(a).

By denoising the stabilized and transformed data, we are estimating the values of E { f(z)|a}. However, because
the stabilizing transformations are necessarily nonlinear, we have f -I(E {f(@)|a}) # E {z|a}, which shows that
if after denoising we were to compute the final estimate of E {z|a} by the direct algebraic inverse of f, the result
would generally be biased. Thus, we utilize the exact unbiased inverse Z that directly maps the denoised data (which,
assuming the denoising is successful, equals E { f(z)|a}) to the desired values y = F {z|a} [15]:

T:E{f(z)|a} —> E {z|a}. 4)



\ | BM3D [ SAFIR | NLmeans | Lee 5x5 | Lee 7x7 | DCT p=2.6 | DCT =28 [ DCT 3.0 [ DCT 3.2

Airfield [0, 85] | 43.58 | 43.22 67.86 142.24 | 144.60 50.00 45.71 44.33 44.55
Boats [0, 85] 23.83 | 23.88 46.59 103.42 | 102.62 29.29 25.82 24.48 24.29
RSA[10, 153] | 66.98 | 42.27 105.64 | 20532 | 222.12 89.37 84.83 84.69 87.31

Table 1: MSE results for BM3D [13], SAFIR [14], NLmeans [18], modified Lee filter [9], and DCT-based filter
[11]. The former three are methods designed for AWGN, applied as intermediate steps between forward variance-
stabilizing transformation and exact unbiased inverse, whereas the latter two are specifically designed for Rayleigh
observations. Intensity ranges of the three test images are indicated in square brackets. All values in the table are
computed with respect to a [0, 255] range.
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Figure 2: Enlarged fragments of the original, noisy, and filtered images by BM3D [13], SAFIR [14], NLmeans [18],
and DCT-based filter [11] (with threshold factor f minimizing the MSE).

To construct this exact unbiased inverse, it suffices to compute the values of E { f(z)|a} = fj;o f@)pzla) dz :

while in the case of (3) they equal v/67 ! (In (2a?) — ¢), where c¢~0.5772 is the Euler-Mascheroni constant [16],
for our bounded-derivative stabilizer we resort to numerical integration of the probability integral. The plots of the
mapping E {z|a} — E {f(z)|a} for these two stabilizers are drawn in Figure 1(a); the corresponding exact unbiased
inverses (4) can be visualized by transposing these plots.

[II. EXPERIMENTS

In our experiments, we consider three nonlocal denoising algorithms designed for AWGN removal, applied as
intermediate stage between forward variance-stabilizing transformation and exact unbiased inverse: BM3D [13],
SAFIR [14], and NLmeans [18]. For comparison with known methods for despeckling, we consider the refined local-
statistic Lee filter [9] (with block sizes 5x 5 and 7x7), often used in practice as well as referred to in research articles
for comparisons, and the DCT-based filter [11] (with threshold factor f=2.6, 2.8, 3.0, 3.2), that has demonstrated
rather good performance and is quite simple. As criterion we use the mean square error (MSE) computed as average
over 5 independent noise realizations for three 512 x 512 images: Airfield, Boats, and the synthetic RSA4. The images
are shown in Figure 1(b-d); the intensities of the first two images have been divided by 3, in order to produce darker
observations closer to actual RS images and with the noise distribution being with high probability within the imaging
range. The MSE results are given in Table 1, while Figure 2 shows enlarged fragments of the original, noisy, and
filtered images.



IV. CONCLUSIONS

The experiments show that BM3D and SAFIR, provided variance-stabilization, outperform the other methods for
speckle-removal. In particular, the latter demonstrates a particularly good performance in dealing with images char-
acterized by large piecewise-flat regions such as Airfield and RSA, while the former delivers better preservation of
details for more varied images like Boats. Although NLmeans has difficulties in dealing with such strong noise, it
does provide rather sharp estimates of the main structures. We note that the performance gap between NLmeans and
BM3D or SAFIR is comparable to that existing in the AWGN case. The DCT-based filter is, in spite of its simplicity,
quite competitive in terms of MSE. However, as can be seen particularly in the RSA image, it introduces visible arti-
facts due to the transform and, being a purely local method, is not able to reconstruct larger structures and patterns as
accurately as the nonlocal filters do. The refined Lee filter performs much worse than all other methods considered
here; we refer the reader to [11] and references therein for further comparisons with such classical methods.

Overall, the results are consistent with those obtained for Poisson noise reported in [15], where BM3D and SAFIR
were shown to outperform all other techniques. It substantiates that state-of-the-art methods for AWGN noise removal
can achieve state-of-the-art performance also in the removal of difficult non-Gaussian degradations, provided the
design of suitable forward and inverse homomorphic transformations. Different constraints on the variance stabilizer
for Rayleigh data will be subject of future research.
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