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ABSTRACT

A frequent issue in uncooled thermal cameras is the presence of a
low-frequency shading or non-uniformity (NU), where slowly spa-
tially varying changes in intensity corrupt the radiometric image.
Usual correction methods for this problem rely on motion in the
scene and are therefore unsuitable for static cameras and for restor-
ing individual images. Depending on its physical origin, the NU can
be multiplicative, additive, or in-between these two extremes. We
propose a static-image demixing method where we separate the low-
frequency component causing the NU from the underlying “true”
image. Our contribution is three-fold: 1) we propose a paramet-
ric transformation that allows a subtractive demixing regardless of
the multiplicative or additive nature of the NU; 2) we design a cost
functional to evaluate candidate estimates of the NU and of the
multiplicative/additive mixing parameter; 3) we propose an iterative
method where the NU estimate is progressively updated by optimiz-
ing a parametric perturbation with respect to the cost functional. In
spite of its simplicity, our method results in a nonparametric NU es-
timate and a nonlinear demixing. Experiments on simulated and real
thermal imagery demonstrates that it successfully removes the low-
frequency shading from static scenes. Individual iterations can be
also interleaved between frames of a video, allowing for continuous
adaptation to changes in the NU.

Index Terms— Non-uniformity, infrared, thermal imaging,
demixing.

1. INTRODUCTION

Low-frequency shading is a common problem in infrared (IR) cam-
eras. This type of non-uniformity (NU) in the images can be due
to various causes. The shape, size, and position of the housing
relative to the lens can result into shading in the corners (e.g., vi-
gnetting); when a thermal camera is located near a heat source, such
as a heater, a car engine, or direct sunlight, the images produced
by the IR camera might have shading in an area that corresponds to
the side of the sensor closer to the heat source. Furthermore, some
cameras might have imperfect gain correction that results in shading.
The low-frequency shading often obscures the actual image content
causing loss of perceptible details in the scene.

Conventional NU correction methods are either calibration-
based [1, 2, 3], or scene-based [4, 5, 6, 7, 8, 9] that rely on global
motion (e.g., panning of the camera) across multiple frames, and
may introduce burn-in artifacts when motion is lacking for prolonged
periods of time. On the other hand, some single-frame methods
tackle only high-frequency components of the NU like column noise
[10, 11]. Scene-based methods are not suitable for fixed-mount cam-
eras or for situations where only partial frames are moving (e.g.,
static surveillance or traffic monitoring cameras). Thus, there is

a need for improved NU correction techniques for reducing low-
frequency shading from static scenes and single frames.

2. PROPOSED METHOD

The proposed algorithm (patent pending [12]) is intended to separate
or demix two images – an underlying “true” IR image y and the low-
frequency component w causing the NU – from a single frame z. In
other words, we do not attempt to remove the high-frequency content
of the NU, but only its smooth component.

2.1. Observation Model
Depending on the physical nature of the NU in the image formation,
its behaviour can be modeled as additive, multiplicative, or possibly
as intermediate between these two. In the additive case, the demix-
ing would be naturally carried out as a subtraction. Interestingly, in
the multiplicative case, rather than performing the demixing as a di-
vision, one can operate in a logarithmic range and again demix via a
subtraction. These facts motivate us to find a way to encompass both
cases within a single model and to develop a demixing strategy that
can accommodate for both cases, unlike conventional methods that
focus on either of these behaviours. To this end, we define a unified
image observation model for the image z : X → R as

z = A−1
(
elog(A(y))+w

)
= (1)

= A−1
(
A(y) ew

)
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where X ⊂ Z2 denotes the set of pixel coordinates on which the
images z, y, and w are defined, and

A(u) = a1u + a2 , A−1(u) =
u − a2

a1
, u ∈ R , (4)

are an affine transformation of the image intensities and its inverse.
The mixing with w described by (1)-(3) can be additive or mul-

tiplicative, depending on the coefficients a1, a2. It is clear from (3)
that for a2

a1
= 0 (linear A) we have a multiplicative NU as the prod-

uct of y by ew . Multiplicative NU can occur also modulo a generic
affine transformation, as in (2). The additive NU case can be appre-
ciated from the Maclaurin expansion of (3) with respect to w,
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which becomes z ≈ y + a2
a1

w for
�� a2
a1

�� � |y |. This condition can be
interpreted as the range of A(y) being distributed over an interval
where the curvature of the logarithm is negligible, i.e. where log can



be treated as an affine mapping. Thus, A controls the degree of
multiplicative or additive behavior of the NU.

The identities (1)-(2) formalize how these different types of NU
can all be expressed in additive form through a logarithm. Specifi-
cally, we can define the transformed image as

z̃ = log (A(z)) = log (A(y)) + w , (6)

and demix by estimating w and subtracting it from z̃.

2.2. Normalization to unit range

For numerical purposes, it is convenient to recast the above model
with respect to an image normalized to the [0, 1] range of intensities.
Let us denote by

Nz (u) =
u −minX {z}

maxX {z} −minX {z}
, u ∈ R ,

N−1z (u) = u (maxX {z} −minX {z}) +minX {z} , u ∈ R ,

the forward and inverse normalization operators respectively, and let
z̄ = Nz (z). Then, z̃ (6) can be rewritten as

z̃ = log
(
A

(
N−1z (z̄)

))
= log (c1 z̄ + c2) , (7)

where the coefficients of the composition of A and N−1z are

c1 = a1(maxX {z} −minX {z}) , c2 = a2+a1 minX {z} . (8)

We can then normalize z̃ (7) to the [0, 1] range as

Nz̃ (z̃) =
log (c1 z̄ + c2) − log (c2)
log (c1 + c2) − log (c2)
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2.3. Parametric transformation

Based on the above, we process normalized frames z̄ = Nz (z)
through the parametric transformation fq : [0, 1] → [0, 1], q ∈ R,
defined as

f0(u) = u , fq(u) =
log

(
q2u + 1

)
log

(
q2 + 1

) , q , 0 . (10)

Applying fq to z̄ is equivalent to mapping the range of z onto a
portion of the logarithmic curve, as determined by the parameter q,
which thus controls the degree between additive and multiplicative
behaviour of the NU. In particular, if q2= c1

c2
then fq (z̄)=Nz̃ (z̃) (9),

which means that the transformation fq (10) can reproduce (6) for
any given A, provided a suitable choice of q ∈ R. From Figure 1 it
can be seen that the transformation approaches linearity as |q | → 0,
which by (8) corresponds to

�� a2
a1

��→ +∞, thus enabling the additive
behavior of the NU as per (5).

Our approach is then to perform the signal demixing as the sub-
traction fq(z̄) − v, for a choice of q that makes the NU additive.
Thereafter the image is transformed back into the linear range by
inverting (10),

f −10 (u) = u , f −1q (u) =
eu log (q2+1) − 1

q2
, q , 0 ,

and then to the original range by N−1z . Indeed, if v = Nz̃ (w) and
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Fig. 1. Parametric transformation fq (10) for different values of the
parameter q.
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,
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) )
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2.4. Algorithm
In general, separating the NU from an image is an under-determined
problem which in principle can have infinite arbitrary solutions.
Some constraints must be introduced in order to obtain a meaning-
ful and stable solution. For this purpose, we make the following
assumptions:

1. an ideal noise-free IR image is typically piecewise flat;

2. the NU is smooth, without sharp transitions or edges.

These conditions aim at removing only the low-frequency shading,
without affecting image details or the low-frequency content of the
underlying scene. They provide us with the design of a cost func-
tional whose minimum corresponds to a suitable solution of the
demixing problem. Specifically, to promote the piecewise regularity
of the demixed image, we want its total variation (TV) semi-norm
to be small, i.e. we aim at minimizing the `1-norm of its gradient.
Secondly, to promote the smoothness of the NU, we attempt to min-
imize the `2-norm of the Laplacian of v. It is clear that it is not
possible to minimize both to zero simultaneously, therefore the solu-
tion must find a balance between them. Consequently, we define the
cost functional as

Fz(q, v) = TV2
(
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)
+ λ E2
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)
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are, respectively, the TV semi-norm and the energy of the Laplacian,
and n is the number of pixels in the image. The parameter λ is used to
balance the two addends in (12). We scale the gradient and Laplacian
in (13) by the derivative of the transformation function, f ′q(z̄), in a
pixelwise manner; this is done in order to minimize the quantitative
influence of the slope of fq onto the cost functional (12).

We propose a greedy iterative algorithm that uses a series of
simple parametric perturbations to estimate v by minimizing the cost
functional (12). Specifically, at each iteration, we optimize both the
transformation parameter q and a parameter vector p of a parametric



perturbation Πki of the past estimate v̂i−1 of v = Nz̃ (w) :

q̂i, p̂i = arg min
q,p

Fz
(
q,Πki (p, v̂i−1)

)
, (13)

v̂i = Πki (p̂i, v̂i−1) .

We alternate between three parametric perturbations (ki ∈ {1, 2, 3}).
The first perturbation type consists in the addition of 2D Gaussian
function, or bump,

Π1 ([α, x] , v) = v + αG[x,σG] , (14)

where G[x,σG] is a 2D Gaussian function with standard deviation
(width) σG centered at position x ∈ R2. The signed amplitude is
controlled by α ∈ R. Only α and x are optimized, while σG is ran-
domly selected at each iteration, but always larger than a fixed con-
stant σmin that determines the maximum bandwidth of the NU. The
second type of perturbation is a global smoothing,

Π2 (µ, v) = (1 − µ) v + µΥ(v), (15)

where Υ is a smoothing operator and µ∈ [0, 1]. A new v is obtained
as a convex combination between the old v and a smoothed version
of itself. In order to adapt to changes in q, a global response opera-
tion is introduced, where a new v is obtained as a polynomial of the
old v. This third perturbation type is modeled as

Π3 ([s1, s2] , v) = s2v2 + s1v. (16)

Thus, for these three perturbation types, the parameter vector p in
(13) belongs to R3, R, and R2, respectively, making the minimiza-
tion feasible with standard methods such as the Nelder-Mead down-
hill simplex algorithm [13].

After each iteration, an estimate ŷi of the image y can be ob-
tained from q̂i and v̂i (13) via (11) as

ŷi = N
−1
z

(
f −1q̂i

(
fq̂i (z̄) − v̂i

) )
.

Although each iteration involves a simple parametric model, the es-
timate of v resulting from a multitude of iterations is effectively non-
parametric, as the perturbations are cascaded.

2.4.1. Numerical precision
To prevent round-off errors, one can approximate fq and f −1q for
small q (e.g., |q | ≤0.1 for single floats) as

fq (u) ≈
u
(
2q4u2 − 3q2u + 6

)
2q4 − 3q2 + 6

,

f −1q (u) ≈
q4u

(
u2 − 3u + 2

)
6

+
q2u (u − 1)

2
+ u ,

whereas for large q (e.g., |q | ≥ 1019 for single floats), setting p =
2 log (q),

fq (u) ≈
log(u(1 − e−p) + e−p)

p
+ 1 ,

f −1q (u) ≈
e−p(1−u) − e−p

1 − e−p
.

3. EXPERIMENTS

We validate our demixing algorithm on artificial as well as real long-
wavelength IR (LWIR) images. For all experiments we fix λ = 50

Fig. 2. Artificial examples of images corrupted by NU. Top-left:
ground truth y. Top-right: smooth function ω. Bottom-left: image
corrupted by an additive NU and additive white Gaussian noise, z =
y+ω+η. Bottom-right: image corrupted by a multiplicative NU and
additive white Gaussian noise, z = yeω + η. The relative standard
deviation of the noise η is 1% in both cases.

Fig. 3. Results of applying the proposed demixing algorithm to the
images at the bottom of Figure 2: Estimated ŷ (top) and ν̂ (bottom)
from the additive (left) and multiplicative (right) cases, respectively.

and let the algorithm run for 104 iterations. We set the bandwidth
parameter σmin = 0.25H, where H is the image height in pixels,
except for the experiments in Section 3.2.1, where we illustrate the
results for different values of σmin.

In the figures, all images are visualized individually normalized
to their range prior (black and white respectively being the minimum
and maximum attained value).

3.1. Artificial images
Given a piecewise constant test image y and a smooth functionω, we
generate observations corrupted by additive and multiplicative NU
respectively as z = y + ω + η and z = yeω + η, where η is additive
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Fig. 4. Evolution of the proposed algorithm on the artificial exam-
ples for the additive (blue) and multiplicative (red) cases shown at
the bottom of Figure 2. It can be seen how the algorithm eventually
determines the additive or multiplicative nature of the NU, with q̂2

respectively approaching the ground-truth values of 0 or 6.4181.

white Gaussian noise with a relative standard deviation of 1%. The
corresponding images are shown in Figure 2. Neglecting the noise η,
the observation model of Section 2 holds as follows. For the additive
case, based on (5), we have ω= a2

a1
w with an infinitely large a2

a1
and

an infinitely small w, which by (8) implies q2 = 0, i.e. a linear fq .
For the multiplicative case, by (2)-(3) we have ω = w, a2 = 0, and
a1 , 0; the specific range of z yields via (8) q2 = 6.4181. Note that
in both cases ω, w, and v = Nz̃ (w) coincide upon normalization.

The results of the algorithm are shown in Figure 3: in both cases
the algorithm effectively corrects the NU, providing accurate esti-
mates ŷ and v̂ of y and v, respectively. Observe that ŷ remain noisy,
as the procedure does not attempt to remove noise. Figures 4 and 5
show the evolution of the cost Fz(q̂, v̂), of q̂2, and of the perturbation
parameters across the iterations, demonstrating convergence to the
ideal value of q2 and vanishing of the perturbations.

3.2. Real LWIR imagery
We applied the proposed algorithm to static LWIR images where
the low-frequency NU is a common issue. The results are shown in
Figure 6 and demonstrate an effective removal of the low-frequency
NU, even in cases where the NU dominates over the image. Note
how the corrected images feature increased contrast and detail.

3.2.1. Influence of the bandwidth parameter
The selection of the maximum bandwidth of the 2D Gaussian per-
turbations, determined by σmin, is important for the effectiveness of
the demixing. As shown in Figure 7, a very small bandwidth pre-
vents the correction of the NU whereas a too large bandwidth results
in image content being treated as part of the NU.

4. CONCLUSIONS

We have proposed an image observation model that is able to en-
compass both multiplicative and additive NU. The model is linked
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Fig. 5. Optimized perturbation parameters at each iteration for the
examples at the bottom of Figure 2; blue and red plots respectively
correspond to the additive and to the multiplicative case. Top-left:
signed amplitude α of the 2D Gaussian function of Π1 (14) (x not
shown). Top-right: Π2 smoothing perturbation parameter µ (15).
Bottom: Π3 polynomial perturbation parameters s1, s2 (16).

to a parametric nonlinear transformation that permits the subtractive
removal of the NU regardless of its original nature. Furthermore,
we have designed a cost functional that provides means to evalu-
ate candidate estimates and mixing models of the NU. Finally, we
have demonstrated the effectiveness of a greedy iterative update by
a series of low-dimensional parametric perturbations that allow the
minimization of the proposed cost functional. Experiments on arti-
ficial test images and on real LWIR images show that the proposed
approach identifies the unknown mixing model and effectively cor-
rects the low-frequency NU.

Although the NU estimation may possibly be approached as a
diffusion problem [14], our implementation through the parametric
perturbations has the advantage of directly integrating the adaptive
selection of q and an explicit definition of the bandwidth σmin.

The presented algorithm is naturally applicable to video. We
remark that only the estimates of v and q are passed to the next iter-
ation, which can thus be carried out with a new frame z. Therefore,
individual (or a few) iterations can be interleaved between frames
and the process can operate continuously, adapting to the possible
variations of the NU over time.

While in this work we focused on infrared imaging, the pro-
posed approach may prove useful to many other modalities affected
by NU problems, e.g., magnetic-resonance imaging, where the low-
frequency NU is known as bias field or inhomogeneity [15].
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