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ABSTRACT

A novel deconvolution technique for blurred observations
corrupted by signal-dependent noise is presented. Deblur-
ring is performed with a transform-domain inverse-Þltering
applied locally, on a sliding block of adaptively-selected
pointwise varying size.
Simulation results demonstrate a good quality of the

proposed method, which is versatile and which can be easily
combined with other transform-domain processing.

1. INTRODUCTION ANDMOTIVATION

In this paper we propose a new transform-based deblurring
technique for a broad class of signal-dependent noise ob-
servations. It is based on regularized inverse Þltering in
local block-transform domain, where the size of the block
is adaptively selected. The LPA-ICI algorithm [11, 15] is
exploited in order to select the size in pointwise-adaptive
manner [8, 16].
The use of an adaptive-size block is of crucial impor-

tance. Firstly, it improves the sparsity of the signal rep-
resentation in the transform domain, signiÞcantly increas-
ing the effectiveness of coefÞcient shrinkage (e.g. hard-
thresholding, Wiener Þltering). At the same time, it also
enables a simpler and more direct noise modelling. In par-
ticular, special approximate calculations are developed in
order to deal efÞciently with the signal-dependent noise in
the transform domain. The resulting image deblurring algo-
rithm is simple yet very effective.
The presented method can be considered as a gener-

alization of the denoising technique [8] to the following
model for blurred and noisy observations.

1.1 Signal-dependent noise model

Given an original image y : X → R, we consider its noisy
blurred observations z (x), x ∈ X ⊂ Z2, where the expecta-
tions E{z(x)} = (y~ v)(x)≥ 0 are given as the convolution
of y against a blurring kernel v , known as the point-spread
function (PSF). The degradation in z has a stochastic and
a deterministic component. The stochastic errors (noise)
η(x) = z (x)− (y~ v)(x) are assumed as independent and
the variance of the observations z(x) is modeled as

σ 2z (x)= var{z(x)} = var{η(x)} = ρ(E{z(x)}), (1)
ρ being a given positive function called the variance func-
tion.
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It is practical to express this observation model in the
additive form

z = y~v+η, η = n!ρ(y~v), (2)
where η and n are two noise processes which have
zero mean and are, respectively, heteroskedastic and ho-
moskedastic with unit variance. The actual distribution of
the noise might be unknown. Typically, η and n are non-
Gaussian (i.e. n (·) +∼N (0,1)) and, although homoskedas-
tic, n is spatially variant (i.e. n (x1) +∼ n (x2) for some
x1,x2).
The most important example of the above model is

given by the Poissonian blurred observations which de-
scribe the acquisition of photons coming through a non-
focused lens system:

χz ∼P (χ y~v) . (3)
The parameter χ ∈ R+ can be used to model the so-called
quantum efÞciency of the photonic sensor. For this partic-
ular case, we have σ 2z (x) = var{η(x)} = χ−1 (y~v)(x),
ρ (·)=

" ·
χ

#
, and η = n!χ−1y~ v .

The observation model (2) can be represented in fre-
quency domain as

Z = YV +F (η),
where F stands for the Fourier transform operator and cap-
ital letters are used to indicate the Fourier transform of the
corresponding small-case functions. Throughout the paper
we will assume an orthonormal Fourier transform. For the
discrete case, convolutions and translations will be implic-
itly assumed to be circular. Let us observe that, because of
the independence of η, the noise addend F (η) has constant
variance equal to -ρ(y~ v)-1, but in general it is not inde-
pendent (otherwise η would be also constant).
The problem is to reconstruct the true image y from the

noisy blurred observations z. In this paper we restrict our-
self to the non-blind case, i.e. we assume that both the PSF
v and the variance function ρ are known. In the case of
Poissonian observations, the problem is known as Poisso-
nian deblurring.

1.2 Deblurring in transform domain

Given a frame
$
ψ(i)

%
i and its dual

$
ψ̆
(i)%

i , we can represent
the original signal using the usual analysis-synthesis form

y =
&

i

'
y, ψ̆(i)

(
ψ(i). (4)

Let us now be given not y but its blurred (noise-free) obser-
vation y~ v .
There are essentially two strategies which can be fol-

lowed starting from Equation (4).



1.2.1 Synthesis with
$
ψ(i)

%
i

We would like to reconstruct y using the frame elements
ψ(i) in the form

y =
&

i ciψ
(i), (5)

where the coefÞcients ci are computed from y~ v . Obvi-
ously, ci =

'
y, ψ̆(i)

(
is a solution of the equation (and is the

unique solution if the frame is a basis). For a generic y, the
problem can be formally solved under the often unrealistic
hyphotesis that the blur operator is invertible. In this case
we have that'

y, ψ̆(i)
( =

)
F (y) ,F*ψ̆(i)+,= )YV, F(ψ̆(i))V

,
= (6)

=
)
y~v,F−1*F(ψ̆(i))

V

+,= (7)

=
)
y~v, ψ̆(i)~F−1* 1

V

+,
, (8)

where V is the complex conjugate of V . So the coefÞcients
ci can be calculated as the inner product between the blurred
observations and ψ̆(i)~F−1

"
1
V

#
.

1.2.2 Analysis with
$
ψ̆
(i)%

i
An alternative approach to (5) is to seek a solution of the
form

y =
&

i

'
y~ v,ψ̆(i)

(
ξ(i), (9)

where the true signal is analyzed with respect to the dual
frame

$
ψ̆
(i)%

i and synthetized with an appropriate set of re-
constructing functions

$
ξ (i)
%
i . In order to get an explicit

form for
$
ξ (i)
%
i we convolve the left and right-hand side of

the above equation against v , obtaining

y~v =
&

i

'
y~v,ψ̆(i)

(*
ξ(i)~ v

+
. (10)

This perfect reconstruction formula implies that
$
ξ (i)~v

%
i

is a dual frame of
$
ψ̆
(i)%

i . For example, ξ
(i)~ v = ψ(i),

which gives (assuming invertibility of V )

ξ(i) =F−1
"F*ψ(i)+

V

#
. (11)

1.2.3 Ill-posedness and regularization
Usually, blur operators are not invertible. In the case V has
zeros, the simplest (�naïve�) approach is to use a general-
ized inverse of V , i.e.

V−1 (·)=
-
0 if V (·)= 0
1/V (·) if V (·) += 0 .

However � even when V does not have zeros � the problem
can still remain ill-posed, with the inverse operator V−1 be-
ing unbounded. Consequently, when approaching noisy ob-
servations of the form (2), the typical strategy is to employ
regularization at some stage of the inversion procedure.
The simplest form of regularization is the following (Ti-

chonov) regularized inverse

T RI = V
|V |2+ε2 , (12)

where ε > 0 is the regularization parameter. A larger reg-
ularization parameter corresponds to a more stable but also
more biased inverse estimate. The regularization (12) has
been used extensively for deblurring, in the spatial domain

(e.g. [3],[18],[17],[6]), as well as in the transform domain
(e.g. [21], [9]). In all these approaches, the combination of
regularization with other Þltering techniques (e.g adaptive
smoothing, shrinkage, etc.) is shown to lead to an improved
inverse estimate.

1.2.4 Intermediate cases; comments; vaguelettes
In addition to the two strategies from Sections 1.2.1
and 1.2.2, there are also inÞnitely many intermedi-
ate cases. Exploiting in (4) the fact that formally'
y, ψ̆(i)

( = )
YV α,F*ψ̆(i)+V−α,, it is easy to show that$

ψ(i)~F−1 (V α)%i and .ψ̆(i)~F−1 "V−α#/i are also a
pair of frames in duality, for any α ∈ R. By using this new
pair of frames instead of

$
ψ(i)

%
i and

$
ψ̆
(i)%

i in (5) and by
varying α, one can obtain the Þrst (α = 0) and the second
strategy (α = 1), all intermediate cases (0< α < 1), as well
as other decompositions (α < 0, α > 1).
Although the two approaches might seem formally

equivalent, they become in practice very different as soon
as they are considered with respect to a predeÞned �mean-
ingful� frame.
Equation (5) implicitly assumes that

$
ψ(i)

%
i is a suit-

able frame to enable a good approximation of y. Since
the inverse operator is embedded in the analysis frame, the
approach works according to the paradigm �Þrst invert the
blur, and then approximate this inverse�.
On the contrary, Equation (9) assumes that

$
ψ(i)

%
i is

suitable to approximate y~v , with the inverse operator em-
bedded in the reconstruction frame

$
ξ (i)
%
i . Thus, it essen-

tially obeys to the paradigm �Þrst approximate the blurred
signal, and then invert this approximation�.
If not all coefÞcients are used for the reconstruction, the

two approches lead to signiÞcantly different approximations
of y.
In our work we consider frames corresponding to slid-

ing block-transforms and especially to the sliding block-
DCT transform. Earlier, these sort of approaches have
been studied with

$
ψ(i)

%
i and

$
ψ̆
(i)%

i being biorthogonal
wavelet bases: the representations (5) and (9) are respec-
tively known within the wavelet community as wavelet-
vaguelette [4, 14] and vaguelette-wavelet [1] decomposi-
tions. �Vaguelette� stands for the combination of the inverse
of the blur with the corresponding dual wavelet, such as ξ(i)
from (11). We refer the reader to [1] for a theoretically-
oriented discussion and comparison of the asymptotical risk
of estimators based on the two approaches.
Let us note that the frame

$
ψ(i)

%
i and its dual

$
ψ̆
(i)%

i
can be obviously interchanged in all the above equations.

1.2.5 Practical aspects
Pragmatically, if to be used in estimation from noisy ob-
servations, each one the two approaches has its own advan-
tages and disadvantages. In particular, assuming a prop-
erly normalized frame and independent noise with constant
variance, shrinkage of coefÞcients which are calculated di-
rectly from the blurred observations as in (10) is simpliÞed.
Note that shrinkage requires the knowledge of the standard-
deviation of each coefÞcient, which can be calculated ac-
cording to the simple formula

std{0 f,g1} =
0'
var{ f } , |g|2(,



provided the independency of the noise in f . If var{ f } is
also constant, say, var{ f } = σ 2, then

std{0 f,g1} = σ -g-2 . (13)
Thus, as far as coefÞcient shrinkage is concerned, the ap-
proach is very similar to transform-based denoising from
standard Gaussian noise. On the other hand, the convolu-
tion against the (regularized) inverse of V can cause that$
ξ (i)
%
i does not enjoy any of the good decorrelation proper-

ties of the original frame
$
ψ(i)

%
i . Thus the approximation

ability of the approach (9) can be seriously impaired.
In (5) the original frame is used for reconstruction, how-

ever, even in the simplest case of noise with constant vari-
ance, the shrinkage of coefÞcients obtained by (8) is rather
involved because the combination of dual frame with the
inverse operator.
Nevertheless in practice, since the main motivation to

use a transform-based method is its ability of to represent
the signal to be recovered with good approximation by using
only few transform coefÞcients (i.e. sparsity), the approach
from Section 1.2.1 is more appropriate, despite the calcula-
tion of the standard-deviation (required for the shrinkage) is
usually more involved.
This is especially valid for the case of signal-dependant

noise as in the observation (2), where calculation of the
standard-deviation cannot be done using Equation (13).

1.2.6 Decoupling of the transform and the inversion

As mentioned in Section 1.2.4, Equation (5) works accord-
ing to the paradigm �Þrst invert the blur, and then approxi-
mate this inverse�.
If in the term

)
YV, F(ψ̆

(i)
)

V

,
from (6) we replace the

noise-free data YV with Z and the naive inverse 1
V with

a regularized inverse (12), we obtain that the coefÞcients ci
are calculated as)

Z ,F*ψ̆(i)+ V
|V |2+ε2

,
=

)
Z V
|V |2+ε2 ,F

*
ψ̆
(i)+,=

= '
zRI , ψ̆(i)

(
,

where zRI = F−1
"

ZV
|V |2+ε2

#
is the regularized-inverse esti-

mate of y. Although, in principle, different forms of regu-
larization (e.g. different regularization parameters) could be
used for different coefÞcients, for computational reasons it
is preferable to use a unique regularized inverse zRI for all i .
In this way the calculation of the inner products is done ex-
actly as for the analysis of zRI with the frame

$
ψ̆
(i)%

i . Thus,
we come to the following approximation of y in terms of
the frame

$
ψ(i)

%
i

y 2
&

i

'
zRI , ψ̆(i)

(
ψ(i).

Note that the coefÞcients
'
zRI , ψ̆(i)

(
are noisy and some

shrinkage should be performed in order to obtain a good
estimate. The fact that the noise in zRI is not white, but
coloured through inverse Þltering with T RI (12), makes the
accurate shrinkage a very delicate and demanding issue in
the whole deblurring procedure, which will be subject of the
coming sections. Additionally, in order for this shrinkage to
be effective it is important that the frame

$
ψ(i)

%
i represents

well y: well-known transforms (e.g. DCT, wavelets, DFT,
etc.) can be used in place of

$
ψ(i)

%
i when natural images

are considered as the original signal to be reconstructed.

Finally, the estimate has the generic form&
i ϕ̂ (i)ψ

(i), (14)

where ϕ̂ are the Þltered coefÞcients obtained by shrinkage
(e.g. hard-thresholding) of

'
zRI , ψ̆(i)

(
.

1.3 The proposed approach
Our approach is based on the estimate (14) obtained not by
a unique global transform, but rather by a family of sliding
block transforms. It means that for each x ∈ X , we consider
a localized transformwhose basis elements are supported on
a block located at x . Since blocks are bigger than a pixel,
and since each pixel is contained (and thus processed) by
different blocks, the approach is obviously overcomplete.
Similarly to our denosing method [8], we use square

blocks whose size is pointwise-adaptive. This enables im-
proved adaptivity with respect both to the non-stationarity
of the noise and to the features and singularities in the im-
age. Any orthonormal transform which provides a coefÞ-
cient corresponding to the mean value of the data over its
support (i.e. a DC coefÞcient) can be directly used in the
proposed algorithm. Let us observe that the near totality (in-
cluding the DCT, the DFT/FFT, and wavelets) of transforms
used for image processing applications satisfy this require-
ment.

2. PRELIMINARIES

Before we proceed further, we present some elements and
additional notation which we use throughout the remaining
part of the paper: basic manipulations which depend on el-
ementary properties of inner product and convolution; their
relation with block transforms; the basics of the LPA-ICI
technique for adaptive block-size selection [8, 16].

2.1 Elementary manipulations
Let ψ be a real function. We denote the �direct� and
�mirror� translations of ψ as 4ψτ = ψ (·− τ) and ψ̃τ (·) =
ψ (τ −·), respectively. Trivially, ]* 4ψλ+τ = ψ̃0. Further,
given a function f we can calculate the inner product
against ψ as the convolution against ψ̃τ sampled at τ

0 f,ψ1 = * f ~ ψ̃τ +(τ) .
It is immediate to obtain that the inner products against all
(direct) translates of ψ can be obtained with a single convo-
lution against ψ̃0: Þrst we have

'
f, 4ψλ

(= " f ~]* 4ψλ+τ#(τ),
for any λ and τ ; then, by setting τ = λ, we have'

f, 4ψλ
(= * f ~ ψ̃0+(λ) . (15)

2.2 Block transforms
We denote by Bx,h a square block of size h× h located at
x . Since in practice we always deal with discrete data it is
important to clarify what we mean by �located at x�: if h is
odd it simply means �centered at x�, whereas if h is even it
means that x coincides with the point at position

* h
2 ,
h
2
+
.

Given a block Bx,h we indicate the corresponding block
transform by its basis elementsψBx,h =

$
ψ
(i)
Bx,h

%h2
i=1. These

elements are supported on Bx,h , ψ(i)Bx,h (u) = 0 u /∈ Bx,h .
For simplicity, in what follows we consider exclusively real
orthonormal block transforms,

'
ψ
(i)
Bx,h ,ψ

( j)
Bx,h

( = δ (i − j), δ



being the Kronecker delta, and in particular, we use the B-
DCT and the block wavelet transforms (however, essentially
the same algorithm can be used with biorthogonal as well
as redundant block-transforms). Therefore, given a func-
tion f , its transform coefÞcients

$
ϕ f,Bx,h(i)

%h2
i=1 are calcu-

lated using the inner product against the transform�s basis
elements

ϕ f,Bx,h(i)=
'
f,ψ(i)Bx,h

(
, i = 1, . . . ,h2.

Traditionally, block-transforms are used in sliding man-
ner with a Þxed size of the block: for all x ∈ X a block-
transform ψBx,h is used for the reconstruction of the sig-
nal within the block Bx,h and all block-transforms used for
blocks at different locations coincide upon translation. In
particular, they can all be interpreted as a translation of a
unique set of elements located in the origin,

ψ
(i)
Bx,h =

−−−−→*
ψ
(i)
B0,h

+
x , i = 1, . . . ,h2, τ ∈ Z2. (16)

Combining Equations (15) and (16) manifest the relation
between convolutional and sliding-transform signal pro-
cessing:'
f,ψ(i)Bx,h

(= 1 f,−−−−→*
ψ
(i)
B0,h

+
x

2
=
3
f ~

*̂
ψ
(i)
B0,h

+
0

4
(x) . (17)

We assume that a DC coefÞcient exists and that it is
the Þrst one of the (ordered) transform�s coefÞcients, i.e.
ϕ f,B+x (1) denotes the DC coefÞcient.

2.3 Adaptive block-size: LPA-ICI technique
In our approach we proceed in sliding manner, using local-
ized blocks of a varying size h (x)×h (x)which is pointwise
adaptive with respect to the signal. We exploit the LPA-
ICI (local polynomial approximation - intersection of con-
Þdence intervals) [15, 11] approach to deÞne the adaptive
block-sizes.
For a Þxed point x , the LPA-ICI is implemented in

the following way [8]. Given a set of pointwise LPA
estimates

$
ŷLPAh j (x)

%J
j=1 calculated on a nested sequence$

Bx,h1 ⊂ ·· · ⊂ Bx,hJ
%
of blocks located at x , we determine

a sequence of conÞdence intervals

D j =
5
ŷLPAh j (x)−5σ ŷLPAh j (x) , ŷ

LPA
h j (x)+5σ ŷLPAh j (x)

6
, (18)

where 5 > 0 is a threshold parameter and σ ŷLPAh j (x)
is the

standard-deviation of ŷLPAh j (x). The set H ={h1 < · · ·< hJ }
is commonly called the set of scales.
The ICI rule can be stated as follows: Consider the in-

tersection of conÞdence intervals I j =7 j
i=1Di and let j+

be the largest of the indexes j for which I j is non-empty,
I j+ += ∅ and I j++1 = ∅. Then the adaptive scale h+ (x)
at x and the adaptive block B+x located at x are deÞned as
h+ (x)= h j+ and as B+x = Bx,h+(x), respectively.
This basic procedure is repeated for every x ∈ X , thus

deÞning an adaptive block B+x and an adaptive scale h+ (x)
for each location in the image.

3. ADAPTIVE-SIZE BLOCK TRANSFORM
DECONVOLUTION: THE ALGORITHM

3.1 Regularized inverse
In accordance with the decoupling the regularized inverse
from the transform � discussed in Section 1.2.6 � we Þrst

produce a regularized inverse (RI) estimate zRI of y. It is
computed in the frequency domain as

zRI =F−1 (T RI Z) , T RI = V
|V |2+ε216η

, (19)

where T RI is a regularized-inversion operator, ε1 > 0 is a
regularization parameter, and 6η is the power spectrum of
the noise η. It is easy to show that for the observations (2)
the spectrum 6η is constant, equal to F

*
σ 2z
+
(0). Up to

a factor, which depends on the particular normalization of
Fourier transform, it coincides with

88σ 2z881.
The variance σ 2z = ρ(y ~ v), since y is unknown, is

estimated here directly from the noisy observations, i.e.
σ̂ 2z = ρ (|z|). Note that for the Poissonian observations
(3) the variance function is linear and thus ρ (z) = z/χ
is actually the simplest possible unbiased estimate of σ 2z ,
E {ρ (z)} = E {z}/χ = var{z}.
In what follows we make explicit use of the impulse

response tRI of the regularized-inversion operator, tRI =
F−1(T RI ). Although this inversion is naturally computed
globally, there are a number of efÞcient �sectioning� tech-
niques (e.g. [2], [24]) which allow to produce accurate ap-
proximations of this inverse by localized processing. When-
ever tRI has a fast enough decay, such sectioning techniques
can be used without producing any visible distortions.

3.2 Adaptive block-size selection

As in other LPA-ICI based deconvolution algorithms (e.g.
[18], [17], [6]), the adaptive scale selection is implemented
directly onto the regularized inverse zRI . In order for the
approach to be practical, it is fundamental to be able to
calculate the estimates

$
ŷLPAh j (x)

%J
j=1 and their standard-

deviations for all x ∈ X efÞciently. We achieve this by ex-
ploiting the zero-order local polynomial model, using uni-
form weighting over nested square blocks

$
Bx,h j

%J
j=1. In

practice, this means that the estimates ŷLPAh j are calculated as
the convolution

ŷLPAh j = zRI ~1Bh j (20)

where 1Bh j is a uniform kernel equal to h
−2
j on a square

support (block) of size hj × hj . The kernel, which is sepa-
rable, is assumed to be located at the origin 0. For a Þxed x ,
Equation (20) is equivalent to

ŷLPAhj (x)=
199Bx,h j 99

&
v∈Bx,h j

zRI(v) ,

where Bx,h j is a square block of size hj × hj located at x
and

99Bx,h j 99= h2j .
These convolutions are computed for a set H =

{h1 < · · ·< hJ } of increasing hj and with nested supports
of the kernels 1Bh j , j = 1, . . . , J . Using established termi-
nology, such hj�s are called scales, and H is thus the set of
scales.
Calculation of the standard-deviations σ ŷLPAhj

is the most

delicate issue here. Exploiting the independence of the
noise and the associativity of the convolution, one can ob-



tain from ŷLPAhj = z~ tRI ~1Bh j that
σ 2ŷLPAhj

= σ 2z ~
*
tRI ~1Bh j

+2 = (21)

= F−1
"
72
z ·F

"*
tRI ~1Bh j

+2##
, (22)

where 72
z = F

*
σ 2z
+
is the Fourier transform of the space-

varying variance of z. Again, we estimate σ 2z directly from
the observations z, thus72

z in the above formula is replaced
by 7̂2

z =F (ρ (|z|)).
The expression on the right-hand side of (22) is pur-

posely in a mixed space-frequency domain. It leads to a
signiÞcant reduction of complexity using Þrst a convolution
(against 1Bh j which has a very small support), and then a
multiplication in Fourier domain (tRI is an IIR Þlter, and so
is
*
tRI ~1Bh j

+2). Let us remark that (20) and (22) give the
estimates ŷLPAhj (x) and their variance σ

2
ŷLPAhj

(x) for all x ∈ X .
Adaptive scale (i.e. block-size) selection is achieved by

the ICI rule, where the conÞdence intervals D j are con-
structed as in Equation (18), with ŷLPAhj (x) and σ ŷLPAhj (x) given

by (20) and (22), respectively. This yields, for every x ∈ X ,
an adaptive-size block B+x = Bx,h+(x).

3.3 Local transform-domain deblurring

It was shown in [6], that the above zero-order LPA-ICI es-
timate can be interpreted as nonparametric local maximum-
likelihood estimate. In such analysis, the zero-order mod-
eling was a formal necessity to ensure local stability of the
noise variance and thus give way to a linear inverse of the
form (19). Nevertheless, in [6] it was also shown that by
mildly relaxing the zero-order modeling and in particular
by exploiting Þrst-order or mixed-order LPA estimators, one
can achieve a better restoration performance.
In this work, we relax the polynomial modeling even

further, and utilize a (locally) complete transform to model
the signal on the adaptive-size block obtained by the zero-
order LPA-ICI. Therefore, we can preserve the assumption
of stationarity of the noise, and at the same time we can
reconstruct image details which cannot be represented ac-
curately by the basic local-constant modeling.
It is important to remind that the LPA estimate ŷLPAhj (x)

is simply the mean of the regularized inverse zRI over Bx,h j ,
and � up to a factor

!|Bx,h j | � it coincides with the cor-
responding DC coefÞcient of a DCT or DFT transform or
with the coarsest approximation coefÞcient of a full wavelet
decomposition (with the transforms supported on Bj ). Pro-
vided that the DC-term of the transform is preserved, the
reconstructed estimate from transform-domain processing
is then equivalent to the local zero-order LPA estimate plus
a number of transform subband estimates.

3.3.1 Local estimate

We construct a local estimate ŷTRAB+x of the true (noise and
blur free) image y by synthesis with the transform elements
ψB+x =

$
ψ
(i)
B+x

%
i

ŷTRAB+x =
h2&
i=1
ϕ̂ y,B+x (i)ψ

(i)
B+x

(23)

where ϕ̂ y,Bx,h are estimates of the transform coefÞcients

ϕ y,B+x =
)
y,ψ(i)B+x

,
of y. By local we mean that the estimate

ŷTRAB+x is supported on the block B
+
x .

The estimated coefÞcients ϕ̂ y,Bx,h are obtained from

the noisy coefÞcients ϕzRI ,B+x (i) =
)
zRI ,ψ(i)B+x

,
using hard-

thresholding. It is performed in the form

ϕ̂ y,B+x (i)=
:
0 if

99ϕzRI ,B+x (i)99<τσϕzRI ,B+x (i) and i>1
ϕzRI ,B+x (i) if

99ϕzRI ,B+x (i)99≥τσϕzRI ,B+x (i) or i=1 ,
where τ = γ

0
2ln
99B+x 99+1 is a size-dependent threshold

parameter which is essentially the so-called �universal�
threshold. The factor γ is a Þxed constant, invariant with
respect to the block-size. Only AC coefÞcients are thresh-
olded, hence the DC is always preserved when the transform
is inverted.

3.3.2 Standard-deviation of the coefÞcients (accurate)

While for the calculation of the coefÞcient ϕzRI ,B+x (i) it is
possible to decouple the regularized inverse from the ana-
lyis element ψ(i)B+x , this cannot be done for the calculation of
its standard deviation σϕzRI ,B+x (i). The inverse operator must
be considered here explicitly. Following the manipulations
from Sections 2.1 and 2.2, and in particular Equation (17),
we have

ϕzRI ,B+x (i) =
)
zRI ,ψ(i)B+x

,
=
1
zRI ,

−−−−−−−→"
ψ
(i)
B+0,h+(x)

#
x

2
= (24)

=
;
zRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<
(x)= (25)

=
;
z~

;
tRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<<
(x) . (26)

Here, ψ(i)B+0,h+(x)
is the i-th element of the transform sup-

ported on the block B+0,h+(x) of size h
+ (x)× h+ (x) and

located at 0 and
^"
ψ
(i)
B+0,h+(x)

#
0
is its copy mirrored about

0. From (26) it is straighforward to obtain the variance of
ϕzRI ,B+x (i) as

σ 2ϕzRI ,B+x (i)
=
σ 2z ~

;
tRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<2(x) . (27)

Observe that the same function in (27) yields also the vari-
ance of the i-th transform coefÞcient corresponding to the
same transform localized at any other position ξ += x ,

σ 2ϕzRI ,B
ξ,h+(x)(i)

=
σ 2z ~

;
tRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<2(ξ) .
Calculation of this function can be done more efÞciently in
Fourier domain as

σ 2z ~
;
tRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<2
= (28)

=F−1
72

z ·F
;tRI ~ ^"

ψ
(i)
B+0,h+(x)

#
0

<2 . (29)



The convolution (28) gives simultaneously the variance
of the coefÞcients corresponding to all possible translated

copies of the same basis function
−−−−−−−→"
ψ
(i)
B+0,h+(x)

#
u, where u is

an arbitrary translation parameter. Only the size of the block
h+ (x) and the index i of the basis element are Þxed. There
are only a very limited number of different possible block-
sizes, so these variances can be precalculated.

3.3.3 Standard-deviation of the coefÞcients (approximate)
Further, important simpliÞcation can be obtained if we as-
sume that the variance σ 2z is locally constant. In particu-
lar, we can assume that the variance of the observations z
used for the estimation within the adaptive block, denoted
as σ 2z*B+x +, is constant and equal to

ρ

399ϕz,B+x (1)99/099B+x 994 .
Thus, the standard-deviation of each transform coefÞcient
is simply

σϕzRI ,B+x (i)
= σz*B+x +

8888tRI ~ ^"
ψ
(i)
B+0,h+(x)

#
0

8888
2
. (30)

We can approximate σz*B+x + as σ ŷLPAh+(x)/
888tRI ~1Bh j 8882 (see

Equation (21)) and obtain the following approximation for
σϕzRI ,B+x (i)

:

σϕzRI ,B+x (i)
≈

h+ (x) ·σŷLPAh+(x)8888tRI~ ^"
ψ
(1)
B+0,h+(x)

#
0

8888
2

8888tRI~ ^"
ψ
(i)
B+0,h+(x)

#
0

8888
2
. (31)

Finally, as it is shown in [9], the convolutions which ap-
pear in (30) and (31) can be computed very efÞciently in a
downsampled Fourier domain (e.g. of size 32x32), with no
signiÞcant loss of accuracy. Note also that in the same con-
volutions the translation and mirroring of the convolution
kernel do not affect to the 92-norm.

3.4 Aggregation of the local estimates
For every x ∈ X , inverse transformation of the hard-
thresholded coefÞcients ϕ̂ y,B+x yields a local estimate of the
signal ŷTRAB+x : B

+
x →R supported on the adaptive-size block

B+x . Usually, blocks corresponding to adjacent pixels over-
lap, hence for a single pixel there can be multiple estimates
available.

3.4.1 Averaging with adaptive weights
In order to combine all these local estimates into a single
global estimate ŷRI , we do averaging using adaptive weights
which depends on the local statistics of the signal. How this
averaging is done can have a dramatic impact on the quality
of the Þnal estimate. As in [8], we use the following convex
combination with adaptive weightswx which depend on the
variance as well as on the size of the reconstructed local
estimates:

ŷRI =
A
x∈X wx ŷTRAB+xA
x∈X wxχ B+x

, wx = 1
σ 2
ŷTRA
B+x

99B+x 99 , (32)

where χ B+x is the characteristic function of B
+
x . In (32)

we implicitly assume that the local estimates ŷTRAB+x are zero-

padded outside their domain B+x .
We estimate the variance σ 2

ŷTRA
B+x

as the sum of the vari-

ances of all Þltered coefÞcients
$
ϕ̂ y,B+x (i)

%
i ,

σ 2ŷTRA
B+x

=
&
i
σ 2ϕzRI ,B+x (i)

.

The particular form of the weights wx is justiÞed with es-
sentially the same arguments as for the adaptive block-size
denoising algorithm from [8]. In particular, the total vari-
ance σ 2

ŷTRA
B+x

can be seen as an upper bound for the point-

wise residual-noise variance of the local estimate ŷTRAB+x (such
pointwise variance is not necessarily uniform over B+x ),
and the extra factor

99B+x 99 addresses the correlation that ex-
ists between overlapping blocks (the number of overlapping
blocks is loosely proportional to their size).
Qualitatively speaking, the weights (32) favour esti-

mates which correspond to sparser representations (little
energy is preserved after shrinkage) and at the same time
avoid that estimates with a small support (thus represent-
ing image details) are oversmoothed by other overlapping
estimates which have a large support (which usually are
strongly correlated among themselves and outnumber esti-
mates of a smaller support).

3.5 Wiener stage

The estimate ŷRI : X → R obtained from (32) can already
be considered as a satisfactory estimate of the unknown sig-
nal y. Alternatevely, it can be used as a reference esti-
mate for the second part of the algorithm, which is based
on Wiener Þltering. Although this second stage is optional,
it usually provides further improvement to the restoration
performance.
The reference estimate is used in several ways: Þrst

the regularized inverse (19) is replaced by a more accu-
rate regularized-Wiener inverse, then for the local-transform
domain shrinkage we use Wiener Þltering instead of hard-
thresholding, and Þnally the noise estimates can be im-
proved by using ŷRI ~ v instead of z inside the variance
function ρ. Let us present all these changes more in detail.

3.5.1 Regularized Wiener Inverse

The regularized Wiener inverse (RWI) zRWI is computed as

zRWI =F−1(T RWI Z) , T RWI = V |Y |2
|VY |2+ε226η

, (33)

where ε2 > 0 is a regularization parameter. Since the spec-
trum |Y |2 of the true image is unknown, the estimate ŷRI
from the RI stage is used quite naturally as a �pilot� esti-
mate in the Wiener Þltering. It means that |Y |2 in (33) is
replaced by |Ŷ RI |2.

3.5.2 Adaptive block-sizes

The size of the adaptive blocks is calculatd as in Section 3.2.
However, in the expressions we replace zRI , T RI , tRI with
zRWI , T RWI , tRWI , respectively. The estimate of the variance
σ 2z , used in the formulas for the standard devations (21-22),
can now be computed as σ̂ 2z = ρ(ŷRI ~ v).



3.5.3 Wiener Þltering in transform domain
The local estimates ŷTRAB+x are obtained as in (23), with the
estimates of the transform coefÞcients

$
ϕ̂ y,B+x (i)

%
i given by

ϕ̂ y,B+x (i) = ωxϕzRI ,B+x (i) ,

ω(i)x =
99ϕ ŷRI ,B+x (i)99299ϕ ŷRI ,B+x (i)992+σ 2ϕzRWI ,B+x (i) , (34)

where
$
ω
(i)
x
%
i are the attenuation coefÞcients of the Wiener

Þlter.

3.5.4 Variances, adaptive weights
Calculation of the coefÞcient variances σ 2ϕzRWI ,B+x (i)

from
(34) can be done with the same formulas as in Sections
3.3.2-3.3.3, provided that zRI is changed to zRWI .
These variances are needed also for the adaptive weights

wx used for the aggregation of the local estimates. The
weights are deÞned analogously to (32), as the reciprocal
of an estimate of the total variances of the local estimate,
times the size of the adaptive block:

wx = 199B+x 99Ai
*
ω
(i)
x
+2
σ 2ϕzRWI ,B+x (i)

.

By aggregating all the local Wiener estimates, we obtain a
global Wiener estimate, which we denote by ŷRWI : X→R.

4. EXPERIMENTAL RESULTS

The above algorithm has been tested with various choices of
transforms. For the hard-thresholding (regularized inverse)
stage, it appeared that the DCT and the Daubechies wavelets
are quite effective. For the Wiener Þltering (regularized-
Wiener inverse) stage, the DCT produced the best results in
terms of objective criteria (e.g. PSNR). However, in some
cases it is possible to obtain visually more pleasant results
if the DCT is replaced by some orthogonal or biorthogonal
wavelet. Nevertheless, the differences are not signiÞcant
and in practice the considered application and algorithm�s
implementation shall determine the most suitable choice of
transforms.
For the simulation experiments presented in this pa-

per, we selected the algorithm parameters and transforms
following objective criteria rather than subjective inspec-
tion. In particular, we use Daubechies wavelets with three
vanishing moments for the hard-thresholding and the DCT
for the Wiener Þltering. Other parameters are as follows:
H={4,8,16}, 5 = 1.5, γ = 1, ε1 =0.014 and ε2 =0.040.
Standard-deviations are calculated as in Section 3.3.3.
Firstly, we compare our newly proposed method against

the Anisotropic LPA-ICI RI-RWI deconvolution algorithm
developed for Poissonian observations [6], and consider the
deblurring experiment where an image is heavily blurred
by a 9×9 �boxcar� uniform PSF and its noisy Poissonian
distributed observation are created using χ=17600, as in
Equation (3). This corresponds to a BSNR (blurred-SNR) of
32.5dB. Table 1 presents the results of the two algorithms
for a few standard test images: in terms of ISNR (improve-
ment of SNR), the new transform-based method consistently
outperforms the Poissonian Anisotropic LPA-ICI.
Figure 1 shows fragments of the Cameraman image

from this comparison. While both methods demonstrate

similar the ability in restoring the details of the image, the
estimate of the new method is more clear, with fewer peri-
odic patterns showing in the background. Image contrast is
also improved.
Figure 2 further illustrates the performance of the new

method. For this Figure, the observations are generated us-
ing a separable kernel v=[1,4,6,4,1]T[1,4,6,4,1]/256 and ac-
curately simulating the noise of the raw-data from a Nokia
cameraphone�s CMOS sensor (dim lighting conditions, with
analog gain set to 8dB). The estimates are clean, with very
few artifacts and good restoration of Þne details.

5. CONCLUSIONS AND PERSPECTIVE

The proposed method produces estimates which are good,
in terms of objective criteria as well as of visual quality.
The method is quite versatile, and can be used for a very
general class of observations with signal-dependent noise.
Any transform which provides a DC term can be utilized
for the Þltering (including fast transforms).
The transform-domain approach allows to introduce

very easily other image processing operations (e.g. com-
pression, sharpening, etc.) within a unique framework. Cur-
rent work concentrates on embedding a color interpolation
(demosaicking) algorithm within the presented deconvolu-
tion approach.
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