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Introduction: Denoising is often addressed via sparse coding with
respect to an overcomplete translation-invariant dictionary. There are
two main approaches for dictionaries composed of translates of an
orthonormal basis. The classical approach is cycle spinning [1], which
aggregates partial estimates, each of which is sparse with respect to
a different shift of the orthonormal basis. An alternative is offered by
convolutional sparse representations [2] [3, Sec. II], which perform
a global optimization over the entire dictionary. It is tempting to
view the former approach as providing a suboptimal solution of the
latter. Here we compare the two approaches and show that, while
the global optimization produces estimates with lower bias than the
corresponding aggregation procedure, these are also characterized by
a higher variance. In practice, the computationally demanding global
optimization outperforms the simpler aggregation of partial estimates
only when images admit an extremely sparse representation w.r.t. the
dictionary, while they perform similarly on natural images.
Denoising: The input signal s∈RN is modeled as s = y + η, where
η∼N (0, σ2) and y∈RN denotes the unknown noise-free signal. We
consider denoising methods that approximate y as a sparse linear
combination of atoms from an overcomplete translation-invariant
dictionary D ∈ RN×N2

, formed as the union of all shifted copies
Di , i ∈ {1, . . . , N }, of an orthonormal basis D1 ∈ RN×N , i.e. ŷ = Dx̂
where D= ( D1 · · · DN ) ∈ RN×N2

and x̂∈RN2
.

Cycle spinning [1] separately seeks sparsity separately with respect
to each orthonormal basis Di , by solving the optimization problems

x̂i = arg min
u∈RN
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2
+ λR (u) , i ∈ {1, . . . , N } , (1)

where R (·) is a regularization term, which is typically ‖·‖0 or ‖·‖1.
The final estimate ŷaggr is obtained by aggregating the N estimates
Di x̂i :

ŷaggr =
1
N

N∑
i=1

Di x̂i = D

(
x̂T0 · · · x̂TN

)
T

N
= Dx̂aggr . (2)

An obvious but more computationally expensive alternative defines
a single estimate via a global optimization over the entire dictionary:

x̂glob = arg min
x∈RN2

1
2




Dx − s 



2
2
+ λR (x) . (3)

This problem can also formulated in a convolutional form, replacing
Dx by convolutions against M ≤ N filters:1

x̂glob = arg min
x∈RN2

1
2








M∑
m=1

dm ∗ x[m] − s
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2
+ λR (x) , (4)

where ∗ denotes the convolution operator, dm denotes the mth column
of D1, x[m] ∈RN is a subvector of x with x[m]

(
j
)
=x

(
m+( j−1)N

)
,

j ∈ {1, . . . , N }, and x[m] ≡ 0 for m > M . The final estimate is then
given by

ŷglob = Dx̂glob =
M∑
m=1

dm ∗ x̂[m] , (5)

1If D1 contains shifted versions of the same column, e.g. when DT
1 is a

wavelet basis, then the number M of filters in (4) can be smaller than N . We
rearrange the columns of D1 so that the first M ≤ N columns are all distinct
modulo shifts and discard the remaining columns from (4).

where x̂[m], typically referred to as coefficient map, is the subvector
with the representation coefficients associated with dm, i.e., x̂[m]

(
j
)
=

x̂glob
(
m+( j−1)N

)
, j ∈ {1, . . . , N }.

Experiments and Discussion: We consider both ‖x‖0 and ‖x‖1 as
choices for the regularization term R (x). The solution of problem
(1) is given by the proximal operator of λR (x), corresponding to
hard- and soft-thresholding [4], [5] for ‖x‖0 and ‖x‖1, respectively.
Problem (3) can be approached via a variety of optimization methods.
When R (x) = ‖x‖1, the problem is convex, and the convolutional
form (4) can be efficiently solved in the Fourier domain via an
ADMM algorithm [3]. When R (x) = ‖x‖0, problem (4) can be
addressed via the Iterative Hard Thresholding Algorithm [6], which
converges to a local minimum since the problem is non-convex.

We take D1 as the Daubechies db3 wavelet basis with 4 decompo-
sition levels. Since wavelet coefficients from the coarsest level are not
sparse [7], one typically shrinks only the detail coefficients [1], [8].
This corresponds to not regularizing the approximation coefficients
in (1). This is not a viable solution for the convolutional case, since
if we remove the coefficient map x[1] from R (x) in (4), then x̂[1] is
the deconvolution of the noisy s w.r.t. to d1. Since this solution leads
to a poor estimate ŷglob, we perform convolutional sparse coding
(4) not on s but on a high-pass filtered sh computed by setting to 0
the approximation coefficients of the overcomplete wavelet transform
DT of s. Hence, we exclude d1 and x[1] from the data-fidelity and
regularization terms in (4), and add s−sh back to ŷglob in (5).

We compute global and aggregated estimates from natural images
corrupted by different amount of noise σ using the `1 regularization
in (1) and (4) and show the PSNR in Figure 1(a). For each σ

we separately tune λ in (1) and (4) to achieve the best results for
each method and regularization. The two estimates achieve similar
performance, with the aggregated estimate slightly outperforming the
global one only for small σ. To analyze this result we decompose
the mean squared error into squared bias and variance. Figure 1(b)
shows that the global optimization outperforms aggregation in terms
of bias, but exhibits a larger variance; we speculate that one of the
causes is the very high overcompleteness factor of D. When the `0
regularization is used, the global estimate also achieves a lower bias,
but suffers from an even larger variance, see Figure 1(c). Figure 1(a)
shows that in this case aggregation outperforms global optimization. It
is not clear whether such larger performance gap is due to the inherent
superiority of aggregation for functionals involving `0 regularization,
or whether it is due to computational issues: while hard-thresholding
provides the closed-form solution of (1), problem (4) is not convex
for R (x) = ‖x‖0, making it very difficult to find the global minimum.

This effect is not observed when y is extremely sparse w.r.t. D, as
in our synthetic experiments reported in Figure 2. There, when the
number of nonzero coefficients of xglob is small, the global estimate
outperforms the aggregated one in terms of SNR. However, as the
number of non-zero coefficients or the noise increases, the variance
of the global optimization increases and the two approaches become
comparable, due to the larger variance of the global estimate. Further
results and discussion can be found in [9].
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Figure 1. Comparison between the aggregation of partial estimates (1) and global optimization (4) on 5 test images (Lena, Barbara, Man, Peppers, Cameraman),
corrupted by different noise levels σ ∈ {5, 10, . . . , 40}, according to `0 and `1 regularization. The penalty parameter λ is separately tuned for each method
and regularization to achieve the best result. Each point in (a) represents the PSNR achieved by ŷaggr (vertical coordinate) and ŷglob (horizontal coordinate)
for each image and σ pair. With `1 regularization (cyan pluses +++), the two methods attain similar PSNR values under strong noise, while at low noise levels
the aggregation of partial estimates slightly outperforms global optimization. When considering the `0 regularization (red squares ���) the aggregation of partial
estimates outperforms the global minimization. In (b) and (c) we decompose the mean squared error obtained by each estimate in its squared bias (horizontal
coordinate) and variance (vertical coordinate) components. Thus, anti-diagonals (dashed lines) are contour lines of the mean squared error. Blue circles ©©©
represent global optimization and green ×××-marks the aggregation of partial estimates; markers corresponding to the same noisy image are linked by a segment.
The relative position of linked circles and crosses reveals that estimates from global optimization feature a lower bias and higher variance than those from
aggregation. This effect can be better appreciated with `0 regularization (c) than with `1 regularization (b).
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Figure 2. Comparison between the aggregation of partial estimates (1) and global optimization (4) on very sparse synthetic images, according to `0 and `1
regularization. Noise-free images of N = 128×128 pixels are synthesized as y =Dxinit where xinit contains L ∈ {1, 2, 4, 8, . . . , 4096} nonzero coefficients,
which have been randomly selected and set to 1. The variance σ2 of the additive noise η is set so that the noisy image s=y+η has SNR in {−25, . . . , 25}.
In the case of `0 regularization, we initialize algorithm [6] with the extremely sparse vector xinit used to generate the image y, since at least when L and σ
are small, we expect that the solution of (4) is close to xinit and that [6] practically approaches global minimum. In (a) and (b) we show the SNR difference
between the solutions ŷglob (4) and ŷaggr (1) when using the `0 and `1 regularization, respectively. Results are organized according to the SNR of the input
noisy image s (horizontal axis) and the number of nonzero coefficients L (vertical axis). Both plots indicate that the global optimization yields better estimates
when y is very sparse (bottom rows). As L increases, the advantage of the global estimate wanes, particularly at low input SNR values (leftmost region of
each plot).
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