
1

Sparse overcomplete denoising:
aggregation versus global optimization
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Abstract—Denoising is often addressed via sparse coding with
respect to an overcomplete dictionary. There are two main
approaches when the dictionary is composed of translates of
an orthonormal basis. The first, traditionally employed by tech-
niques such as wavelet cycle-spinning, separately seeks sparsity
w.r.t. each translate of the orthonormal basis, solving multi-
ple partial optimizations and obtaining a collection of sparse
approximations of the noise-free image, which are aggregated
together to obtain a final estimate. The second approach, recently
employed by convolutional sparse representations, instead seeks
sparsity over the entire dictionary via a global optimization. It is
tempting to view the former approach as providing a suboptimal
solution of the latter. In this letter we analyze whether global
sparsity is a desirable property, and under what conditions the
global optimization provides a better solution to the denoising
problem. In particular, our experimental analysis shows that
the two approaches attain comparable performance in case of
natural images and global optimization outperforms the simpler
aggregation of partial estimates only when the image admits an
extremely sparse representation. We explain this phenomenon by
separately studying the bias and variance of these solutions, and
by noting that the variance of the global solution increases very
rapidly as the original signal becomes less and less sparse.

Index Terms—Sparse Representations, Overcomplete Repre-
sentations, Convolutional Sparse Coding, Denoising

I. INTRODUCTION

Sparse representations [1] have a long and successful his-
tory in image reconstruction applications, stretching back to
the classical wavelet shrinkage denoising technique [2], [3].
Denoising is often performed by computing a sparse repre-
sentation of the noisy image w.r.t. an overcomplete dictionary.
For dictionaries composed of all translates of an orthonormal
basis, there are two main approaches. The classical approach
is cycle spinning [3], which aggregates partial estimates each
of which is sparse w.r.t. a different translate of the basis. An
alternative is offered by convolutional sparse representations
[4], [5], [6, Sec. II for a comprehensive review], involving a
global optimization over the entire dictionary.

Intuitively, the global optimization might be expected to
yield representations that are better suited for denoising.
Consider the case of an image that admits a very sparse
representation w.r.t. one of the orthonormal bases among the
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shifted copies in the dictionary: the global optimization would
yield a very sparse estimate by activating only few atoms from
that particular basis, while cycle spinning would aggregate all
partial estimates from other shifted bases too, which might not
be as sparse.

However, convolutional sparse representations have only
recently begun to attract attention for solving image restoration
problems [7]–[10], showing an advantage over aggregation on
problems like impulse noise removal [11], but their properties
are still not thoroughly understood. Surprisingly, white-noise
denoising, arguably the simplest of all reconstruction prob-
lems, has been briefly mentioned in a few works addressing
other issues [5], [12], [13], but has yet to receive comprehen-
sive attention in the convolutional sparsity literature.

Our goal is to address this absence by investigating the
recent convolutional sparse representations in a careful com-
parison against the now-classical method of wavelet cycle
spinning. Our analysis is primarily meant to assess under what
conditions it is more effective to solve the computationally
expensive joint optimization yielding a global estimate in
convolutional sparse models, rather than aggregating multiple
partial estimates as in cycle spinning.

Our results show that the expected superiority of solutions
from global optimization is limited to their lower bias, while
their variance is often larger than that resulting from the
aggregation of partial estimates. As such, global optimization
outperforms the aggregation of partial estimates only when
images admit an extremely sparse representation with respect
to the dictionary. In contrast, when denoising natural images,
the two approaches perform similarly, as the lower bias due to
the global optimization is entirely offset by the larger variance.

II. IMAGE DENOISING

The input noisy image s ∈ RN corrupted by additive white
Gaussian noise (AWGN) is modeled as

s = y + η , η∼N (0, σ2) , (1)

where y∈RN denotes the unknown noise-free image.
We consider denoising methods that approximate y as

a linear combination ŷ of atoms from a redundant set of
generators of RN that is formed by the union of all shifted
copies D1, . . . , DN of a given orthonormal basis D1∈RN×N :

ŷ = Dx̂ , D = (D1 · · · DN ) ∈ RN×N
2

, (2)

where x̂ ∈ RN2

is the coefficient vector. Such redundant
systems are typically used for building translation-invariant
approximations of signals and images. There are two major
approaches for solving (2), described below.
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A. Aggregation of Partial Estimates

Techniques such as cycle-spinning [3] seek sparsity w.r.t.
each orthonormal basis Di, solving a penalized problem

x̂i = arg min
u∈RN

1

2

∥∥∥Diu− s
∥∥∥2
2

+ λR(u) , i ∈ {1, . . . , N} ,

(3)
where R(·) is a regularization term promoting sparsity of x̂i.
Since each Di is orthonormal, problem (3) is equivalent to

x̂i = arg min
u∈RN

1

2

∥∥∥u−DT
i s
∥∥∥2
2
+λR(u) , i ∈ {1, . . . , N} , (4)

so that the solution x̂i is given by the proximal map [14] of
the regularization function λR(·). The final estimate ŷaggr is
obtained aggregating the N estimates Dix̂i:

ŷaggr =
1

N

N∑
i=1

Dix̂i = D

(
x̂T0 · · · x̂TN

)
T

N
= Dx̂aggr . (5)

We refer to (5) as the aggregation of partial estimates.

B. Global Optimization

An obvious, but more computationally expensive alternative
defines a single estimate by solving a global optimization that
jointly considers all the possible shifts of D1 :

x̂glob = arg min
x∈RN2

1

2

∥∥Dx− s
∥∥2
2

+ λR(x) . (6)

This problem can be formulated in an equivalent convolutional
form [5], replacing Dx by convolutions against M≤N filters:

x̂glob = arg min
x∈RN2

1

2

∥∥∥∥ M∑
m=1

dm ∗ x[m] − s

∥∥∥∥2
2

+ λR(x) , (7)

where ∗ denotes the convolution operator, dm denotes the mth

column of D1 that is used as a linear filter in the convolution,
x[m]∈RN is a subvector of x with x[m](j)=x(m+(j−1)N),
j ∈ {1, . . . , N}, and x[m] ≡ 0 for m >M . The number of
filters, M , involved in the convolutional representation (7) can
be smaller than N in cases where D1 contains shifted versions
of the same column, e.g., when DT

1 is a wavelet basis. In
these cases, we keep only those M ≤ N columns of D1 that
are distinct modulo shifts, thus that correspond to different
convolutional filters. The final estimate is then given by

ŷglob = Dx̂glob =

M∑
m=1

dm ∗ x̂[m] , (8)

where the coefficient map x̂[m] is the subvector gathering the
representation coefficients associated with dm, i.e. x̂[m](j) =
x̂glob(m+(j−1)N), j ∈ {1, . . . , N}.

C. Our Analysis

Our goal is to compare these two approaches, determining
whether global sparsity is a desirable property, and under
what conditions the global optimization provides a better
solution to the denoising problem. First, we primarily con-
sider convex optimization problems, adopting the `1-norm as
sparsity-promoting prior, for which a global minimum can be

computed. Second, while the global optimization approach in
the form of convolutional sparse representations has typically
been applied with learned dictionaries, to fairly compare the
two approaches we consider a wavelet dictionary D1, which is
fixed and not adaptively learned from training data. Third, to
further investigate problems (3) and (6-7), we decompose the
mean squared error (MSE) of the obtained solutions into their
squared bias and variance components. The former indicates
how well the approximation fits the underlying data y in
expectation, while the latter indicates how stable this approx-
imation is w.r.t. different realizations of the random noise η.
Finally, our analysis is performed both on natural images and
synthetically generated images admitting an extremely sparse
representation w.r.t. D.

III. OPTIMIZATION

A. Regularization Term

To promote sparsity in the solution of (3) and (6-7),
one typically adopts R(x) = ‖x‖0 or R(x) = ‖x‖1 as
the regularization term. In these cases, the proximal maps
of λR admit closed form expressions, given by hard- and
soft-thresholding [14] respectively. Since Di is orthonormal,
applying these proximal maps directly solves (3). Therefore,
when R(x) = ‖x‖0, the solution of (3) is x̂i = Hλ(DT

i s),
where the hard-thresholding operator Hλ is defined as

[Hλ(u)]j = uj · 1{|uj |>λ} , j ∈ {1, . . . , N} .

Similarly, when R(x) = ‖x‖1, the solution of (3) is obtained
as x̂i=Sλ(DT

i s), where the soft-thresholding operator Sλ is

[Sλ(u)]j = sign(uj) ·max(|uj | − λ, 0) j ∈ {1, . . . , N} .

The cost of computing ŷaggr is dominated by the forward and
inverse translation-invariant transform associated to D. For
undecimated wavelets this is O(N logN), while for a generic
D with M filters it is O(MN logN) through FFT.

Problem (6-7) can be approached via the Iterative Shrink-
age/Thresholding Algorithm (ISTA) [15], which alternates the
thresholding operator corresponding to the specific regulariza-
tion term R, with a gradient descent step on the data-fidelity
term in (6-7). The cost of each iteration of ISTA is again
dominated by the forward and inverse transform associated
to D, needed for computing the gradient. Therefore, the cost
of computing ŷglob via K ISTA iterations is K times that of
aggregation. Being the convergence linear, several iterations
are required to reach a sufficient approximation of the solution.

We primarily consider R(x)=‖x‖1 since it makes problem
(6-7) convex and ISTA converges to a global minimum. In
this case (6-7) can also be solved at a linear rate via a specific
formulation of the Alternating Direction Method of Multipliers
(ADMM) [6], whose iterations have a cost of O(MN logN).
When R(x) = ‖x‖0 the problem is non-convex and ISTA is
guaranteed to converge only to a critical point at a linear rate.

B. High-pass filtering

In cycle spinning, as in other wavelet approximations, coef-
ficients from the coarsest level are not sparse [16]. Therefore,



3

Results on Natural Images
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Figure 1. Denoising results for R(x) = ‖x‖1. (a) Comparison between the PSNR of ŷglob and ŷaggr on natural images. Equal PSNR on the diagonal. Each
marker corresponds to results for a given image y and noise level σ. At low noise level (top-right corner) ŷaggr outperforms ŷglob, while the two achieve
similar performance as the noise gets stronger. (b) Bias-Variance decomposition of the MSE of ŷglob and ŷaggr. Dashed anti-diagonals are the MSE level
lines. The relative position of linked circles and crosses shows that although ŷglob and ŷaggr perform similarly, ŷglob features lower bias and higher variance
than ŷaggr. (c) Comparison on extremely sparse synthetic images. The horizontal axis reports the SNR of noisy image s, while the vertical axis the number
of nonzero coefficients L. The advantage of ŷglob is greatest on very sparse y (small L) and low noise (large SNR(s)). When L increases, particularly under
strong noise, the relative advantage of ŷglob degrades quickly and eventually the two estimates attain similar performance, as seen in (a).

one typically shrinks only the detail coefficients [2], [3]. This
corresponds to not regularizing the approximation coefficients
in (3). This is not a viable solution for the convolutional case,
since if we remove the coefficient map x[1] corresponding to
the approximation filter d1 from R(x) in (6-7), then x̂[1] is the
deconvolution of the noisy s w.r.t. to d1. Since this solution
leads to a poor estimate ŷglob, we do not perform sparse coding
(6-7) directly on s but rather on a high-pass filtered sh (as
commonly done in convolutional sparse coding [11, Sec. 3]),
computed by setting to 0 the approximation coefficients of the
overcomplete wavelet transform DT of s. This is equivalent to
setting sh = s−d1∗(d̄1∗s), where d̄1 denotes the conjugate
filter of d1. Hence, we exclude d1 and x[1] from the data-
fidelity and regularization terms in (6-7), and add s−sh back to
ŷglob in (8). However, the noise affecting the high-pass filtered
sh is no longer white, but rather coloured by v = δ−d1∗d̄1,
where δ is the Dirac impulse, so the power spectrum of v∗η
should be considered when denoising sh in (6-7).

IV. EXPERIMENTS

We perform denoising experiments on natural images as
well as on synthetic data that we specifically generated to
admit an extremely sparse representation w.r.t. D. We corrupt
each image y according to (1) and compute both ŷglob and
ŷaggr. Experiments are conducted with several noise variances
σ2, and for each σ2 we separately tune the penalty parameter
λ for both methods to achieve the lowest MSE, averaged over
all the considered images.

In our experiments the matrix D1 corresponds to the or-
thonormal basis of the Daubechies db3 wavelet transform
with 4 decomposition levels. To solve the convolutional sparse
coding problem (6-7) we used the MATLAB implementa-
tion of ADMM provided in the SPORCO library [17] for
R(x)=‖x‖1, while we relied on ISTA [15] for R(x)=‖x‖0.

The next two sections address R(x)=‖x‖1, while Section
IV-C is dedicated to R(x)=‖x‖0.

A. Experiments on Natural Images

We consider five test images (Lena, Barbara, Man, Pep-
pers, Cameraman), corrupted by noise with standard deviation
σ ∈ {5, 10, . . . , 40}. Each marker in Figure 1(a) represents
the PSNR (average over 50 noise realizations) achieved by
ŷaggr (vertical coordinate) and ŷglob (horizontal coordinate)
for each image and σ pair. The markers are very close to the
diagonal, indicating that the two methods attain very similar
PSNR values, and we can see that only at low noise levels,
i.e. where PSNR values are highest, the aggregation of partial
estimates slightly outperforms global optimization.

In Figure 1(b) we decompose the MSE into its squared
bias (horizontal coordinate) and variance (vertical coordinate)
components. In these plots, anti-diagonals (dashed lines) are
level lines of the MSE, and the blue circles ©©© correspond
to ŷglob, while the green ×××-marks to ŷaggr; markers corre-
sponding to the same pair (y, σ) are linked by a segment. The
relative position of linked circles and crosses confirms that the
two estimates achieve similar PSNR. Most importantly, ŷglob
features a lower bias than ŷaggr, but has a higher variance.

B. Experiments under Extreme Sparsity

Since the marginal performance gap between ŷglob and ŷaggr
may appear unexpected given that global optimization should
intuitively be more successful on sparse signals, we investigate
how sparse the image really needs to be for our intuition to be
correct, and whether the SNR plays any role in this question.
We synthesize a 128× 128 noise-free image y = Dx by
generating x with L nonzero components at random positions.
Then we corrupt y with AWGN with standard deviation σ such
that the SNR of the noisy image s achieves a target value τ . We
consider L∈{20, 21, . . . , 212} and τ ∈{−25,−22.5, . . . , 25},
and generate 50 realizations of y for each pair (L, τ), and 50
realizations of s for each such y.
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Figure 2. Denoising results for R(x) = ‖x‖0 (compare with Figure 1). (a) PSNR comparison between ŷglob and ŷaggr on natural images: ŷaggr clearly
outperforms ŷglob, especially under stronger noise. (b) Bias-Variance decomposition of the MSE of ŷglob and ŷaggr: ŷglob suffers from a much larger variance
than ŷaggr. (c) Comparison on extremely sparse synthetic images: again ŷglob outperforms ŷaggr and the performance gap is much larger than forR(x)=‖x‖1.

Figure 1(c) shows the output SNR difference between ŷglob
and ŷaggr when varying the number of nonzero coefficients L
and the input SNR τ . These plots indicate that when L is small,
ŷglob can achieve much larger SNR than ŷaggr thanks to its
lower bias and lower variance. However, when L increases, the
SNR gap shrinks and the variance of ŷglob becomes larger than
that of ŷaggr, especially at high noise levels. This is consistent
with the results on natural images, where the two methods
attain comparable PSNR and ŷglob features a larger variance.
In fact, natural images arguably do not admit extremely sparse
representations w.r.t. to D, and the two methods perform
similar to the cases with large L in the plots of Figure 1(c).

C. Results using `0 Regularization

Figure 2 reports the denoising results for natural and for
extremely sparse images using R(x) = ‖x‖0 regularization.
On natural images, ŷglob suffers from a much larger variance
than ŷaggr, which clearly achieves highest PSNR despite its
typically higher bias. Not surprisingly, the performance gap
increases with the noise level. By comparing the vertical
positions of the markers in Figure 1(b) with those in Figure
2(b), we can see that the variance of ŷaggr and, especially, of
ŷglob is larger when R(x)=‖x‖0 than when R(x)=‖x‖1.

The experiments on synthetic images that admit an ex-
tremely sparse representation are summarized in Figure 2(c).
To deal with the lack of convexity, we initialize ISTA [15] with
the extremely sparse coefficient vector xinit that was used to
generate y. At least when L is small and the noise is weak,
the much lower variance of ŷglob suggests that the estimate
x̂glob is very close to xinit and that [15] practically approaches
the global minimum. Thus, on the extremely sparse images,
the global optimization is confirmed to be superior to the
aggregation of partial estimates also when R(x)=‖x‖0.

V. DISCUSSION AND CONCLUSIONS

We investigate the benefit of global optimization w.r.t. over-
complete dictionaries over aggregation of partial optimizations
w.r.t. each orthogonal sub-basis, specifically comparing the

convolutional sparse representations with cycle spinning. On
the one hand, our experiments confirm that solving the global
optimization leads to estimates that are characterized by a
lower bias than the traditional aggregation of partial estimates.
On the other hand, we show that the solutions of the global
optimization are characterized by a larger variance, which
makes the two approaches comparable when the input images
are not very sparse w.r.t. the dictionary D. We speculate that
the high redundancy of D, which in case of convolutional
sparse representations always contains shifted atoms that are
highly correlated, is the primary cause of the larger variance.

Our results indicate that solving the computationally de-
manding global optimization problem only has a clear ad-
vantage when D can provide a very sparse representation
of the original image. When the representation is not very
sparse, global optimization provides comparable performance
to aggregation in the case of `1 regularization, and slightly
inferior performance in the case of `0 regularization. This
increased performance gap with `0 regularization highlights
a practical advantage of the aggregation with orthogonal dic-
tionaries: while switching from `1 to `0 regularization makes
global optimization much more difficult, such a change does
not increase the difficulty of optimizing the partial problems
involving orthogonal dictionaries. Similarly, the much higher
variance for the global solution on natural images when
switching from `1 to `0 regularization is probably due to the
non-convex nature of the optimization problem: the solutions
we obtain are typically local minima, which can be expected
to contribute to the overall increase in the variance.

It is unclear to us whether an adaptively learned dictionary
can boost the sparsity enough to guarantee an advantage to the
global optimization; the answer may be negative, as suggested
by preliminary results in [13], where aggregation outperforms
global optimization with learned dictionaries already at mild
noise levels.

Finally, the practical advantage of aggregation can be
augmented by using sparsity-adaptive weighting [18], or a
recursive procedure [19], but for simplicity we aggregate with
uniform weights as in classical cycle spinning.
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