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ABSTRACT

An adaptive spatio-temporal algorithm for video denoising
is presented. The local polynomial approximation (LPA) is
exploited in order to design 3D directional Þltering kernels.
For each speciÞed direction in the 3D space-time domain,
an �optimal� scale (size of the kernel�s support) is selected
using the intersection of conÞdence intervals (ICI) rule. In
this way a pointwise adaptive spatio-temporal estimator is
constructed. Experimental results show an advanced per-
formance of the proposed method with a good noise atten-
uation and nearly perfect edges and change-point preserva-
tion.

1. INTRODUCTION

Noise is usually present in a video sequence because of
transmission over noisy channels or acquisition with poor
quality devices. Besides unpleasant visual effects, that some-
times can seriously compromise the perceiving and inter-
pretation of the content, the main and most affecting prob-
lem is the degradation of the result of further processing
such as video compression, segmentation, motion estima-
tion. When addressing the problem of restoring a corrupted
video sequence, the goal is to Þnd a denoising scheme that
can guarantee good performances of video processing al-
gorithms and also a satisfactory visual quality. Since deal-
ing with 3D data set, a good approach should take into ac-
count both spatial and temporal dimensions, so to exploit
the spatial and temporal correlation in the video. Neverthe-
less, constraints of real-time implementation make all the
efforts go in the direction of simple separable Þlters. Al-
though they reach the required computational speed, these
Þlters cannot suppress noise sufÞciently well without intro-
ducing disturbing artifacts such as blurry edges or smooth-
ing away salient characteristics like details and texture. The
loss of these elements can heavily affect not only the further
video processing, but also the subjective perception, since
they encode a great amount of visual information contained
in image sequences.

Recently, a novel accurate technique was developed [7].
It is based on a directional discrete approximation of the im-
age intensity using the nonparametric regression technique
called LPA. The neighborhood of this approximation is lo-
cally shape and size adaptive. The intersection of conÞ-
dence intervals (ICI) rule [3, 4] is exploited for this adapta-
tion, in order to Þnd the largest local vicinity of the point of
estimation where the estimate Þts best to the data [5, 6, 7].
It is assumed in the algorithm proposed in [7] that the

local neighborhood is a starshaped set, which can be ap-
proximated by some sectorial segmentation with K non-
overlapping sectors. These estimators are equipped with
univariate scale parameters deÞning the size of the supports
in the sector. The ICI rule is appliedK times, once for each
sector, in order to Þnd the optimal pointwise adaptive scales
for each sector�s estimates. These are then combined into
the Þnal one using an adaptive convex fusing.
In this paper we develop this idea and algorithm to 3D,

where time is the third dimension completing the 2D space
of the image frame. In this way, we build an anisotropic 3D
denoising Þlter for video.
Although this general approach has been extended also

to a more general class of noise processes and non-linear
estimators [8], all the results presented in this paper concern
the Gaussian observation model

z (x) = y (x) + n (x) , x ∈ R3,

where y is a video intensity function and n ∼ N (0, σ2) is
additive white Gaussian noise. Here x = (x1, x2, x3), with
x1, x2 being the spatial coordinates and the third coordinate
x3 being interpreted as time or frame number.

2. PARTITION OF 3D NEIGHBORHOOD AND
FILTERING

A partition of the neighborhood in the 3D space can be done
in different ways. Here we discuss the partition based on
spherical coordinate system. Figure 1 illustrates the mean-
ing of the spherical angular coordinates θ andϕwith respect



Fig. 1. Spherical coordinates: the angle θ lies in the spatial
frame plane while ϕ is the angle measured from the tempo-
ral axis.

to the cardinal spatial and temporal coordinates: θ is the an-
gular coordinate of a polar system in the frame plane, while
ϕ is the temporal angular coordinate. Thus, purely tempo-
ral directions are obtained for ϕ = 0modπ; purely spatial
directions are obtained for ϕ = π/2modπ, n ∈ Z. So,
referring to the frame plane, direction along axis x1 is ob-
tained for ϕ = π/2 and θ = 0, while direction parallel to
axis x2 is obtained for ϕ = π/2 and θ = π/2.

2.1. Spherical partition

Let ∂B3 =
©
x ∈ R3 : kxk = 1ª be the unit sphere. Intro-

duce a covering of ∂B3 and a Þnite family {Dθi,ϕi}i=1,...,K
of non-overlapping contractible bodies (in the sphere topol-
ogy) Dθi,ϕi ⊂ ∂B3 whose baricenters have spherical an-
gular components (θi, ϕi). For any given h∈R+, Shθi,ϕi =S
0≤α≤hαDθi,ϕi are the corresponding 3D conical bodies

the union of which, over all directions, Þlls the ball B3h =
{x ∈ R3 : kxk ≤ h}. These cones correspond to angular
sectors having their vertex in the origin and oriented as de-
Þned by the angles (θi, ϕi), resulting from the union of the
α-dilatedDθi,ϕi for every 0 ≤ α ≤ h.
Figure 2 illustrates such a partition. Practically, we do

not need a covering of the whole sphere, and the considered
partition can be restricted to a few narrow cones pointing
at different directions and covering only a part of the 3D
neighborhood for the considered point.

2.2. Multi-directional Þltering

Let gh,i , gh,(θi,ϕi) be compactly supported kernels such
that supp gh,i = Shθi,ϕi for all values of the scale param-
eter h. Then, the introduced anisotropic estimator has the

Fig. 2. Example of a covering of the sphere with non-
overlapping bodies (Voronoi tiling of the sphere).

Fig. 3. A sectorial approximation of the estimation neigh-
borhood: a) the best estimation set, b) the unit ball seg-
mentation, c) sectorial approximation with cones of adap-
tive length.

following generic form

�y(x) =
X

i
λi�yh,i(x), �yh,i(x) = (gh,i ~ z)(x), (1)

where λi ≥ 0,
P
i λi = 1, and the directional kernel gh,i(x)

satisÞes vanishing moment conditions:

(gh,i~1)(0) = 1, (gh,i~xt)(0) = 0, 0≤t≤m, |t| 6=0.
Here and in what follows a compact multi-index notation is
used. A multi-index t is a triplet of non-negative integers
tj , j = 1, 2, 3, t = (t1, t2, t3), where tj ≥ 0 and |t| is used
to denote the length

P3
j=1 tj . Then x

t = xt11 x
t2
2 x

t3
3 for

x ∈ R3, and 0 ≤ t ≤ m means 0 ≤ tj ≤ mj , j = 1, 2, 3.
The �yh,i(x) in (1) is the directional estimate of y(x) us-

ing the observations z from the sector Shθi,ϕi . Optimiza-
tion of h for each sector estimates gives the adaptive scales
h+i depending on (θi, ϕi). The union of the supports gh+i ,i,S
i supp gh+i ,i

, can be therefore considered as an approx-
imation of the best neighborhood in which the estimation
model Þts the data.
Figure 3 illustrates this concept, for the two dimensional

case, and shows sequentially: a local best estimation neigh-
borhood, a sectorial segmentation of the unit ball and the
sectorial approximation of the local best estimation neigh-
borhood using the adaptive scales h+i deÞning the length of



the corresponding sectors. Varying size sectors enable to get
a good approximation of any neighborhood provided that it
is starshaped body.
Formula (1) makes clear our basic intentions. We intro-

duce the directional estimates �yh,i(x), optimize the scalar
scale parameter for each of the directions (sectors) and fuse
these directional estimates into the Þnal one �y(x), using the
weights λi. Two points are of the main importance here.
First, we are able to Þnd good approximations of estimation
supports which can be of a complex shape. Second, this
approximation is composed from the univariate scale opti-
mizations on h, thus the complexity is proportional to the
number of sectors.
What follows mainly concerns applied aspects of the ap-

proach and includes:

� Design of the discrete directional kernels gh,(θi,ϕi);
� Application of the ICI rule for the adaptive varying
scale selection for each direction;

� Fusing of the directional estimates into the Þnal one
using the data-driven weights λi;

� Application examples proving a good performance of
the presented technique.

3. DIRECTIONAL LPA KERNEL DESIGN

Let us start from the standard LPA technique. Introduce
three-dimensional polynomials xk/k! = xk11 /k1! · · ·xk33 /k3!,
k1 = 0, . . . ,m1, k2 = 0, . . . ,m2, and k3 = 0, . . . ,m3.
Thus the polynomials xk/k! havem1,m2,m3 as the maxi-
mum powers with respect to the variables x1, x2, x3, respec-
tively. The vector φ(x) is composed of these polynomials
starting from the zero order term 1. The observations z are
given on the three-dimensional grid {�xs} and the estimates
are needed for a desired x. Then, the weighted least squares
criteria

Jh(C) =
X
s

wh(x− �xs)(z(�xs)− ȳh(x− �xs))2

is commonly used to calculate the non-parametric estima-
tion kernels (e.g. [1]). Here: ȳh(x) = CTφh(x), φh(x) =
φ(x/h), h ∈ R+ is the scale parameter, w is a window
function used for localization of the estimates and wh(x) =
w(x/h)/h3. Thus, we produce a Þt of the observations z
by the model CTφh(x) with unknown C. According to the
idea of the LPA, minimizing Jh(C) onC gives the vector �C,
whose elements correspond to the estimates of the function
�y
(0)
h (x) and its derivatives �y(r)h (x), r = (r1, r2, r3), in the
form

�y
(r)
h (x) = �CTφ(r)(0)(−1)|r|/hr, φ(r) = ∂(r)φ.

Assuming that the grids {�xs} and {x} are regular, iden-
tical and unrestricted, these estimates can be given in the
convolution form (e.g. [5, 6])

�y
(r)
h (x) = (z ~ g(r)h )(x), (2)

g
(r)
h (x) =

(−1)|r|
hr

wh(x)φ
T
h (x)Φ

−1
h φ

(r)(0),

Φh =
X
x

wh(x)φh(x)φ
T
h (x).

where g(r)h (x) are the estimation kernels.
There are two ways how the directional kernels can be

obtained. First, a basic kernel, g(r)h is designed for a main
direction, along the axis x1 (ϕ = π/2 and θ = 0), and
then it is rotated to the desired direction (θi, ϕi) in order to
obtain g(r)h,(θi,ϕi). In practice, for discrete data, this rotation

assumes interpolation of the kernel values g(r)h,(θi,ϕi) and can
be efÞcient only for sufÞciently smooth (not sharp) kernels.
Alternatively, the kernels are specially designed for each

desired direction (θi, ϕi). This design is not restricted by
requirements of smoothness of the kernel and can be ap-
plied in order to obtain very sharp kernels. The LPAmethod
was modiÞed to the directional LPA in order to design this
sort of sharp, well directed kernels. It comprises three in-
dependent steps. First, the support of the basic window w
is selected. This particular support is oriented in some ba-
sic direction, say ϕ0 = π/2 and θ0 = 0 (in our 3D model,
along the purely spatial direction parallel to x1 coordinate);
it is Þnite, non-symmetric, elongated and well oriented in
the main direction. Second, the basic support of w is ro-
tated to the desired direction (θ, ϕ) so to obtain a support
for this new direction. This rotation is here expressed by the
3D rotation matrix Uθ,ϕ. In practical applications, it can be
performed by any discrete rotation method such as nearest
neighborhood or linear interpolation. Third, the standard
LPA procedure is applied on the rotated support in the truly
rotated variables Uθ,ϕx. Finally the directional kernel has a
form

g
(r)
h,(ϕ,θ)(x) =

(−1)|r|
hr

wh(u)φ
T
h (u)Φ

−1
h φ

(r)(0),

Φh =
X
x∈Xθ

wh(u)φh(u)φ
T
h (u), u = Uθ,ϕx.

What makes this procedure different from any attempt to
interpolate the kernels (2) to the desired directions is that the
directional LPA preserves the normalization and the poly-
nomial smoothness of the kernels (vanishing moment con-
ditions) as well as the directionality of the kernel support.
The directional LPA kernels enable the estimates to be ac-
curate with respect to smooth polynomial components of the
signal, found along a speciÞc direction.



� Unlike many other transforms which start from the
continuous domain and then pass to the discrete one,
this technique works directly in the discrete spatial
domain and is applicable for data of any dimension;

� The designed kernels are truly multivariable, non-se-
parable and anisotropic with arbitrary widths, lengths
and orientations;

� The desirable smoothness of the kernels along and
across the main direction is enabled by the correspond-
ing vanishing moment conditions;

� The kernel support can be ßexibly shaped to any de-
sirable geometry in order to capture geometrical struc-
ture and pictorial information. In this way a special
design can be done for complex form objects;

� The smoothing and corresponding differentiating di-
rectional kernels can be designed.

4. ICI ADAPTIVE SCALE SELECTION
ALGORITHM

Fig. 4. Intersection of ConÞdence Intervals (ICI) rule.

Let us remind the ICI rule technique [6, 5].
Given a Þnite set of the ordered scales H= {h1<h2<

· · · <hJ} and their corresponding varying scale kernel es-
timates

©
�yhj (x)

ªJ
j=1
, with decreasing standard deviations

σ�yh1 > · · · > σ�yhJ , we determine a sequence of conÞdence
intervals

Dj =
h
�yhj (x)− Γσ�yhj , �yhj (x) + Γσ�yhj

i
,

where Γ > 0 is a threshold parameter. The ICI rule can be
stated as follows (see Figure 4):
Consider the interesection of conÞdence intervals Ij =Tj

i=1Di and let j+ be the largest of the indexes j for which
Ij is non-empty, Ij+ 6= ∅ and Ij++1 = ∅. The optimal
scale h+ is deÞned as h+ = hj+ and the optimal scale
kernel estimate is �yh+ (x).

This is a procedure for a Þxed x. It is produced for all
x ∈ X and in this way we obtain varying adaptive scale
h+(x). The ICI procedure requires to know only the esti-
mates for different scales as well as the corresponding vari-
ances of these estimates.

5. ADAPTIVE ALGORITHM

In the developed algorithm we treat the scale parameter h
as the length size of the directional kernel and apply the ICI
rule, for data driven selection of its values for each of the
directional estimates �yh,i(x) in (1), i.e. for each direction
(θi, ϕi), and for each x. It gives the adaptive scales h

+
i (x),

which deÞne the length of the supports for different direc-
tional estimates. All these supports are then combined to
form the adaptive estimation neighborhood. Let �yh+i (x) be
the adaptive directional estimate and σ2i (x) be the variance
of this estimate; then these directional sectorial estimates
can be fused according to (1) in the Þnal one as follows:

�y(x) =
X
i

λi�yh+i
(x), λi = σ

−2
i (x)/

X
j

σ−2j (x) (3)

We use a linear fusing of the estimates with the inverse vari-
ances of the estimates as weights. This rule can be derived
from the maximum likelihood method assuming that the es-
timates to fuse are Gaussian, unbiased and independent. If
the directional kernels� supports are non-overlapping, inde-
pendency is ensured; however the LPA estimates are usually
biased.
The Þnal estimate can be written also in the following,

equivalent way:

�y(x) =

Z
g+x (x− v)z(v) dv, (4)

where g+x is the anisotropic adaptive kernel. In the case of
formula (3) this kernel is given by

X
i
λ+i gh+i (x)

. Observe
that if the directional kernels are uniform over their supports
and non-overlapping, then g+x is also uniform.
Concerning the algorithm complexity we note that it de-

pends on the fast convolution operations. The calculation
of the estimate �yh,i(x) for a given set of scales hj , j =
1, . . . , J , is a linear convolution requiring Nconv ∼ n logn
where n is the size of the signal. This procedure is repeated
JK times, where K is the number of the 3D sectors in the
estimator and J is the number of the used scales hj .

6. SIMULATIONS

As an illustrative application, we wish to recover the Akiyo
video sequence y from its noisy observation z = y + n,
where n is an additive white Gaussian noise with zero mean
and σ=20. We implemented the proposed method in the



simplest possible way, where the directional kernels are uni-
form over 1-pixel-width segments oriented along the twenty
six directions originating from the center of a cube to the
eight vertices, to the middle of the twelve sides, to the cen-
ter of the six faces. These kernels are LPA kernels of order
zero, m = [0, 0, 0]. The following set of scales was used,
H = {1, 2, 3, 5, 7, 10}. Exploiting the directional nature of
the kernel supports, we improve the adaptive scale selection
(and thus the signal estimate) using a larger threshold Γ on
the purely temporal directions, taking advantage of the high
temporal correlation between frames.
When the data are discrete, it is impossible to have non-

overlapping supports for the directional kernels, and, in prac-
tice, they are all overlapping in the origin voxel. Although
in a number of applications ([6, 7, 8, 2]) formula (3) has
been used also for origin-overlapping kernels, the larger num-
ber of directional estimates makes (3) unsuitable for the pro-
posed algorithm. Thus, in our scenario, we use a slightly
different fusing formula:

�y(x) =

³
σ−2z(x) +

X
i

³
�λi(x)�yh+i ,(θi,ϕi)

− σ−2z(x)
´´

³
�λ
Σ
(x) + σ−2

³
1−

X
i
1
´´

where �λi(x) = σ−2i (x) and �λ
Σ
(x) =

X
i
�λi(x). This for-

mula allows to obtain a Þnal estimate in the form (4) where
the anisotropic kernel g+x is uniform over the adaptive ani-
sotropic neighborhood discussed in section 2.2.
A performance comparison of the proposed algorithm

over the two-dimensional version, working on single frames,
has been done. Table 1 presents results for this comparison:
for the 2D case, Γ=0.9 gives an average PSNR of 30.32dB,
while for the 3D case, using Γ=0.7 for all directions but
the temporal ones (Γ=1.2) an average PSNR of 33.86dB is
reached. Experimental results show that not only the 3D
method outperforms the classical 2D version, but also that
despite the very simple structure of the used kernels, this
basic implementation of the anisotropic 3D Þltering yields
a very good performance.
In the performed tests, a smaller value for Γ is consid-

ered, with respect to the usual 2D algorithm, since a larger
number of directional estimators are taken into account in
the fusing. However, along the purely temporal directions,
bigger values for Γ can be chosen, taking advantage of high
stationary areas in the frames.
Figure 5 shows (a) the original version of the 41st frame

of the test sequence and (b) the corrupted one. Figure 6
shows the same frame, restored applying (a) the 2D version
of the method, obtaining PSNR=30.32dB and (b) the pro-
posed method (3D algorithm), reaching a PSNR of 33.75dB.
Visual inspection shows that edges and salient points of the
video frame are preserved better in Figure 6(b) than in (a).
The ICI adaptive scales h+i (x) represent the distribu-

tion of image features across the direction (θi, ϕi). Figure

average min min* max
noisy 22.11 21.99 21.99 22.24
2D 30.32 30.02 30.02 30.64
3D 33.86 32.97 33.45 34.38

Table 1. PSNR (dB) values of the noisy (σ=20) and restored
Akiyo sequence. Filtering is performed using the 2D and
the 3D LPA-ICI estimator. Average, minimum and max-
imum PSNR values are calculated frame by frame on the
whole (300 frames) sequence; min* is the minimum value
of PSNR obtained on the trimmed sequence from frame 10
to 291.

(a) Original (b) Noisy

Fig. 5. Frame 41 from the Akiyo sequence: (a) original and
(b) noisy observation.

(a) 2D (b) 3D

Fig. 6. Frame 41 from the Akiyo sequence: (a) restored with
2D algorithm, (b) restored with the proposed 3D algorithm.

7 shows these adaptive scales and the corresponding direc-
tional estimates for three different directions. In particu-
lar, Figure 7(a)-(b) are obtained for a purely spatial direc-
tion (left, θ=0, ϕ=π/2); Figure 7(c)-(d) are obtained for a
spatio-temporal direction (θ=3π/4, ϕ=3π/4); Figure 7(e)-
(f) are obtained for the purely temporal direction in the fu-
ture (ϕ=π). It is remarkable how the temporal directions
can give important information on the motion in the video
sequence, selecting larger adaptive scales (white areas in the
Þgure) for points that show slow motion or no motion at
all from frame to frame, and smaller scales (dark areas) for
points that move from frame to frame.
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Fig. 7. Adaptive scales h+i and directional estimates
�yh+i ,(θi,ϕi)

for the 41st frame from the Akiyo sequence: (a)-
(b) purely spatial direction (θ = 0, ϕ = π/2); (c)-(d) spatio-
temporal direction (θ = 3π/4, ϕ = 3π/4); (e)-(f) purely
temporal direction in the future (ϕ = π). Darker colour is
used in the left column to represent smaller scales. PSNR
(dB) values for the directional estimates shown in the right
column are, from top to bottom, 23.69, 23.91 and 29.56,
respectively.


