
ABSTRACT
Existing image quality metrics, based on the concept of 

“structural similarity” (e.g. [1][2]) fail on particular image 
impairments. We propose the use of “similarity of adaptive 
scales” as the key indicator of structural similarity, thus merging 
scale and structure in one concept. Such adaptive scales can be 
effectively determined by a modification the intersection of 
confidence intervals (ICI) algorithm [6], originally developed for 
image restoration. We show that changes in the image structure 
are reflected into changes in the adaptive scales, and that the 
adaptive scales are more sensitive to structural changes than the 
conventional measures based on local statistics. 

We present some simulation experiments demonstrating the 
improvement over the current structural similarity measures, 
and propose a novel, adaptive-scale quality metric. This metric is 
obtained by combining a term based on adaptive-scales similarity 
with another term taking into account differences in the image 
intensity. This metric has been tested on large databases [7] with 
subjective mean-opinion scores for JPEG, JPEG2K, blur, and 
white noise degradations, showing a close agreement of the 
proposed metric with the quality as perceived by human 
evaluators.

1. INTRODUCTION
For a long time, there have been two approaches for quality 

estimation – objective, where evaluations are based on a 
mathematical model, and subjective, where the quality is 
judged by a group of human observers. In the case of full-
reference image quality assessment, the quality is expressed as 
a measure of the similarity between the “original” image 
(assumed to have perfect quality) and the test image. In order 
to have correlation with the subjective opinion, the similarity 
measure should be relevant to the processes in the human 
visual system. 

Structural features of the image are dominant in traditional 
quality metrics [4][5]. The contemporary concept of using 
“structural similarity” as quality indicator is based on the 
assumption that human vision is highly optimized for 
extracting structural information [1]. 

However, the current state-of-the-art metrics following the 
concept (e.g. SSIM in [1] and [2]) produce unsatisfactory 
results on particular image impairments – for example blur or 
sharpening. We identify the lack of proper scale-adaptivity as 
one of the reasons for such inadequacy. Indeed, modern 
models of the human perception assert that vision is 

intrinsically multiscale [3], which suggest that a “similarity of 
scales” would be an important element for full-reference 
perceptual quality evaluation. However, the use of the 
multiscale approach has been rather limited. Recent works [2] 
aimed mainly at improving the flexibility of existing 
monoscale “structural similarity” metrics with respect to 
different viewing conditions, rather than directly exploiting 
the scales as a component of the quality metric. 

In Figure 1 (a-d), we present image artifacts which have the 
same mean SSIM quality index and obviously different visual 
appearance.

2. ADAPTIVE SCALES AS STRUCTURAL 
SIMILARITY INDICATOR 

We consider a generalized version of the intersection of 
confidence intervals (ICI) rule [6] for adaptive-scale selection. 

Let Hhhg  be a collection of varying-scale smoothing 

kernels 2// hhggh , where the parameter 0h ,

known as scale or bandwidth of hg , controls the smoothing 
effect of the kernels. 

Given a signal or an image y , the kernels Hhhg  are 

used as convolutional filters yielding a collection Hhhŷ ,

hh gyŷ , of differently smoothed versions of y .
Usually, the kernel g  is a positive monomodal symmetric 
function, centered in the origin. It is always normalized such 

that 1g , ensuring preservation of the mean. 

The smoothing effect of the kernels can be quantified 
explicitly by the kernel's 2l -norm. For the particular case of 

Gaussian noise degradation, the 2l -norm of the kernel is 
exactly the amplification factor for the standard deviation of 
the noise after convolutional filtering. It is easy to verify that 

2hg  decreases as h  increases, thus a larger scale h
corresponds to a stronger smoothing. 

Given a finite ordered set of scales jhhH 1

and the corresponding J
jh xy

j 1ˆ  we determine a sequence 
J
jjD 1 of “confidence” intervals 
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where 0  is a fixed threshold parameter and x denotes a 
fixed pixel coordinate in the image domain X . The modified 
ICI rule for adaptive-scale selection can be stated as follows: 

Consider the intersection of intervals 
j

i ij DI
1

and let 

j  be the largest of the indexes j  for which jI  is non-

empty, jI  and
1jI . The adaptive scale h  is 

defined as jhh .

This is a procedure for a fixed x . It is produced for all 

Xx  and in this way we obtain a pointwise-adaptive scale 

jhh  for every pixel in the image. 

Roughly speaking, the ICI selects the coarsest scale 
estimate which is compatible with all finer scales. In practice 
this means that adaptively, for every pixel, the criterion allows 
the maximum degree of smoothing, stopping before 
oversmoothing begins. 

Let us remark that this generalized ICI concides with the 
usual ICI [6][9], as it is defined for the particular case of 
observations with Gaussian noise, provided that the standard 
deviation of the noise is incorporated into the threshold 
parameter .

In what follows we consider the most basic implementation 
of the approach, using separable uniform kernels hg on a 

a) refh b) WT c) IT d) ICIQ 

Fig. 2. Building elements of the ICIQ metric: a) Adaptive scales for the reference image, 
b) Window Term for the test image, c) Intensity Term for the test image, d) ICIQ. 

(The test image is shown in Figure 1a and its adaptive scales are shown in Figure 1e) 

a) Blur,
MSSIM=0.58; mWT=0.83 

b) Quantization,
MSSIM=0.58; mWT=0.92 

c) Salt and pepper noise, 
MSSIM=0.58; mWT=0.94 

d) Gaussian noise, 
MSSIM=0.58; mWT=0.98 

e) Blur, h f) Quantization, h g) Salt and pepper noise, h h) Gaussian noise, h
Fig. 1. Mean structural similarity index (MSSIM) and ICI Window Term (WT) of four different impairments (a-d); 

the corresponding adaptive scales (e-h). 



square support of size hh . This allows for a fast 
computation of the smoothed Hhhŷ  through a recursive 
filterbank structure. 

Although the adaptive scales h , do not portray any 
explicit information about the actual image intensities, they 
contain significant knowledge about the structures in the 
image, accurately revealing edges, contours and intensity 
gradients, as shown in the examples in Figures 1e-1h. As an 
example we show map of adaptive scales for the image 
“Lena” in Figure 2a. Note that the values of refh are maximal 

for large smooth regions, where distortions would be most 
visible. On contrary, the values of refh are approaching 

minimum on close-to-edge regions. 
The structural similarity of two images can be evaluated by 

comparing the structural information contained in their 
adaptive scales.  We introduce a Window Term (WT), which 
is a difference map of the adaptive scales for two images. The 
WT is defined in the following way: 

xhh

xhxh
x

refXx

ref

max
1WT , Xx  (2) 

where refh and h are the maps of the adaptive scales for the 

reference image, and the test image, respectively. The values 
of WT vary from 0 (maximum difference) to 1 (no difference 
in the adaptive scales). Figure 2b shows the Window Term
between the original “Lena” image and the blurred “Lena” on 
Figure 1a. 

3. ICI-BASED QUALITY ASSESSMENT 
The WT (2) gives a pointwise estimate of the local 

structural similarity between two images. In order to obtain a 
quality index valid for the whole image domain, we propose 
to take its average, which we name mean Window Term
(mWT). 

As shown in the next section, the mWT alone is a 
sufficiently accurate indicator of the image quality. However, 

in some situations the adaptive scales are the same for visually 
different images – e.g. negative or intensity shift, as shown in 
Figure 3. In such cases, WT alone would not be sufficient for 
image quality evaluation. 

For handling such structure-preserving impairments, we 
introduce an Intensity Term (IT), 

2

D
1IT

xIxI
x ref , Xx  (3) 

where refI is the reference image, I is the test image, 

and D is the dynamic range of the images. The values of the 
Intensity Term are in the range of 0 (maximum difference) to 1 
(no difference). Figure 2c shows the Intensity Term, between 
the original “Lena” image and the blurred “Lena” on Figure 
1a.

We combine the Window Term and the Intensity Term in 
the compound term ICIQ (for “ICI Quality”): 

xWTxITxICIQ , Xx  (4) 

The ICIQ between original and blurred “Lena” is shown in 
Figure 2d. 

Finally, we define the quality index mICIQ as the mean 
value of ICIQ over the image domain. It is in the range from 
0, meaning “lowest quality” to 1, meaning “no visual 
difference”.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS 
We have compared three quality indices – mICIQ, mWT 

and MSSIM against two databases with subjective opinion 
scores – LIVE R1 and LIVE R2. For calculation of the 

TABLE II
COMPARISON OF IMAGE QUALITY ASSESSMENT MODELS OVER LIVE

DATABASE RELEASE 2. MAE: MEAN ABSOLUTE ERROR, RMS:
ROOT MEAN SQUARE ERROR

Model MAE RMS 

mICIQ 5.52 7.27 
mWT 5.58 7.36 

MSSIM 5.32 6.92 
All models are using logistic regression. 

a) Negative, 
mWT=1, mIT=0.64 

b) Mean shift, 
mWT=1, mIT=0.88 

Fig. 3. Impairments where mWT is the same as in the original image,
while the mIT is different 

TABLE I
COMPARISON OF IMAGE QUALITY ASSESSMENT MODELS OVER LIVE

DATABASE RELEASES 1. MAE: MEAN ABSOLUTE ERROR, RMS: ROOT
MEAN SQUARE ERROR

Model MAE RMS 

mICIQ 4.67 6.23 
mWT 4.84 6.45
UQI 7.76 9.90 

MSSIM 3.95 5.62 
Sarnoff 4.66 5.81 
PSNR 6.53 8.45 

All models are done using logistic regression. 



adaptive scales we used 30  and 99,,3H .
LIVE R1 and LIVE R2 are databases containing distorted 

images and their subjective evaluations [7]. LIVE database R1 
consists of 460 images with JPEG and JPEG2000 artifacts. 
LIVE database R2 consists of 982 images – the images from 
R1, and additionally ones with Gaussian blur, white noise and 
artifacts caused by errors in JPEG2000 bit stream. In Figure 4 
are shown the scatter plots and the results of non-linear 
regression fitting of logistic curves over the distortion mean 
opinion scores (DMOS) versus prediction models for LIVE 
R1 and R2 databases. 

The numerical results for LIVE database R1 and R2 are 
shown in Table I and Table II, respectively. From the tables is 
seen that while our quality index gives more appropriate 
scores than MSSIM for some image artifacts (see Figure 1), it 
also performs comparably over a broader set of image 
impairments.  

However, the most significant result is that a quality 
indicator solely based on the adaptive scales (mWT) is 
producing satisfactory results, demonstrating that similarity of 
adaptive scales is essential for satisfactory modeling of human 
quality perception. 

The simple Intensity Term, introduced in order to handle the 
cases of structure-preserving distortions, improves the quality 
index, but not significantly. Future work should improve the 
Intensity Term to better model the intensity perception of the 
human vision. 

The use of color information is also being considered. 
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Fig. 3. Scatter plots of subjective distortion mean opinion score (DMOS) versus model prediction. Lower DMOS score means better quality.
a) mICIQ for LIVE database R1, b) mWT for LIVE database R1, c) MSSIM for LIVE database R1 
d) mICIQ for LIVE database R2, e) mWT for LIVE database R2, f) MSSIM for LIVE database R2 


