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ABSTRACT
One of the promising recent directions in nonparametric re-
gression concerns the spatially adaptive estimation, which
can be treated as an extended model selection problem where
the basis as well as the basis supports are selected simulta-
neously. Our research group at the Department of Signal
Processing, Tampere University of Technology, has been ac-
tive in this novel Þeld starting from 2002. The results ob-
tained with application to different image and video process-
ing problems are very positive and completely support the
optimism following from general speculations about adap-
tive nonparametric modelling. In this paper we review and
discuss some theoretical and practical aspects of estimation
with varying spatially adaptive supports. SpeciÞcally, we
consider the evolution from the LPA-ICI (local polynomial
approximation - intersection of conÞdence intervals) algo-
rithms to the most recent transform-based nonlocal meth-
ods.

1. INTRODUCTION

Let us refer to a couple of popular approaches exploited in
image processing.
(1) Parametric models, usually linear, can be given explicitly
as a series over basis functions φk in the form

y(x) =
!
k

ckφk(x). (1)

While the standard polynomials do not Þt for modelling �in
large� of the so-called �natural� images, the wavelets and
frames enabling localization of the estimates are quite effi-
cient tools [41]. It was found in further developments that
in many applications this sort of methods suffer from typical
artifacts causing serious degradation of imaging and cannot
compete with advanced modern techniques. A valuable al-
ternative appeared in the form of the redundant representa-
tions where multiple estimates are generated for each image
segment and the Þnal estimate is calculated by aggregation
of these partial estimates in to the Þnal one (e.g. [8], [9]).
(2) Variational models formalize image reconstruction as an
optimization problem

�y = argmin
y

"
1

σ2
||z − y||2 + µ · pen(y)

#
, (2)

where the Þrst item of the criterion is a Þdelity term corre-
sponding to the Gaussian noise hypothesis and the second
one is a penalty modelling the smoothness of y, with µ be-
ing a regularization parameter. Usually it is a functional of
the derivatives of y. There are many versions of this sort
of methods. One of the most popular is the total-variation
minimization where the penalty is calculated as the total
variation of y [44], [43]. Accurate mathematics developed
for these methods make them attractive. However, a limi-
tation of this sort of formulation follows immediately from

(2), where a constant regularization parameter µ is used.
It can be illustrated that by using a varying regularization
parameter µ(x) we can dramatically improve denoising [48].
The nonparametric (local parametric) modelling can be

addressed to the limitations of both above mentioned ap-
proaches. First of all, it works locally, as opposed to the
localization in (2) achieved through a regularization para-
meter which is invariant and the same for all image points.
Secondly, the model localization relaxes dependence of esti-
mation on the basis function in (1) and using the adaptive
neighborhood allows to get the parametric modelling for the
area where this modelling accurately corresponds to y(x). In
its modern development, all nonparametric regression meth-
ods are spatially adaptive using varying spatially adaptive
supports. We treat this sort of estimation as an extended
model selection problem where the support selection is con-
sidered as an embedded element of the estimation model.
One of the promising recent directions in nonparametric

regression modelling concerns the model selection treated as
an extended problem, where the basis as well as the basis
supports are selected simultaneously. In an adaptive version
of this approach, the selected basis as well as the supports
can be varying and even pointwise varying. In this formula-
tion, we arrive to the novel class of adaptive estimates which
are able to demonstrate improved and sometimes extraordi-
nary performance.
In this paper we follow the evolution of our ideas and tech-

niques from the straightforward local polynomial approxi-
mations with adaptive varying size symmetrical supports to
shape-adaptive anisotropic support estimates. Further de-
velopment goes to the transform-domain estimates produc-
ing multiple neighborhoodwise estimates aggregated into the
Þnal estimate by a special weighting. Our best results are
achieved in the Þeld of nonlocal-means [2] style algorithms,
using grouping and the so-called collaborative Þltering. The
quality demonstrated by this type of the algorithms is be-
yond ability of most alternative techniques. We illustrate
also our most recent development: a nonlocal algorithm with
the grouping based on pointwise-adaptive anisotropic neigh-
borhoods. Throughout the paper, our focus is on the de-
velopment of the adaptivity in terms of data-driven support
selection as the leading feature of the presented algorithms.

1.1 Observation model and main notation
In what follows we consider noisy observations z of the form

z (x) = y (x) + η (x) , x ∈ X, (3)

where y : X → R is the original grayscale image, η is i.i.d.
Gaussian white noise, η (·) ∼ N $

0, σ2
%
, and x is a spatial

variable belonging to the image domain X, which can be
a subset of either Z2 (discrete domain) or R2 (continuous
domain). Given a function f : X → R, a subset U ⊂ X,
and a function g : U → R, we denote by f|U : U → R
the restriction of f on U , f|U (x) = f (x) ∀x ∈ U , and by



g|X : X → R the zero-extension of g to X,
&
g|X

'
|U
= g

and g|X (x) = 0 ∀x ∈ X \ U . The characteristic (indicator)
function of U is deÞned as χU = 1|U|X . We denote by |U |
the cardinality (i.e. the number of its elements) of U . The
symbol �~� stands for the convolution operation.

2. LOCAL POLYNOMIAL APPROXIMATION
WITH ADAPTIVE SCALE SUPPORTS

The presented approach is based on the Intersection of ConÞ-
dence Intervals (ICI) rule for pointwise-adaptive estimation.
Originally, the method has been developed for 1D signals
[25, 29]. The idea was generalized for 2D image processing,
where adaptive-size quadrant windows have been used [31].
The main intention of these techniques is to obtain, in a

data-driven way, the largest local neighborhood of the esti-
mation point in which the underlying parametric model Þts
the data.

2.1 Local Polynomial Approximation (LPA)

The Local Polynomial Approximation (LPA) (e.g., [11],[40])
is a technique which is applied for nonparametric estimation
using a polynomial data Þt in a sliding window. The poly-
nomial order m and the window function w characterize the
LPA. SpeciÞcally, for a point x, the LPA estimate �y (x) of
y (x) given the noisy signal z is deÞned as

�y (x) = �p (x) ,

�p = argminp∈Pm

(
X

w (x− v) (z (v)− p (v))2 dv,

where Pm are the polynomials of order m. In other words,
at every point x, the LPA provides the value �p (x) of the best
Þtting polynomial �p of order m, with the window w (x− ·)
determining the localization of this Þt.
The LPA estimates are easily calculated by convolution

against a kernel g = wφΦ−1 [1 0 · · · 0]T , where w= diagw is
the diagonal matrix composed by the weights w, φ is a vector
ofm+1 polynomial functions (basis) φn =

vn

n!
, n = 0, . . . ,m,

and Φ= φTwφ is the Gramian matrix (formed by the inner
products of the basis elements against each other).
Starting from a basic window function w, one can obtain

LPA�s of different bandwidths/scales using scaled windows
wh = w (·/h), where h ∈ R+ \ {0} is the scale parameter.
The corresponding kernels are denoted as gh. The support of
the window w (x− ·), or equivalently of the kernel gh (x− ·),
is the estimator�s support. It is common practice to use com-
pactly supported window functions. In this case, by using
a basic window w of unit length, we obtain that h coin-
cides with the length of the window wh. Hence, window
length (size), scale, and bandwidth become interchangeable
concepts.
The choice of the scale parameter is crucial when dealing

with noisy data, because it controls the amount of smooth-
ing introduced by the local approximation. A large h cor-
responds to a larger window and therefore to smoother es-
timates, with lower variance and typically increased estima-
tion bias. A small h corresponds to noisier estimates, less
biased, and with higher variance. Thus, the scale parame-
ter h controls the trade-off between bias and variance in the
LPA estimates.
In practice, the use of a Þxed order m can be relaxed,

and polynomial order mixtures [4],[12] are most often used,
deÞning LPA kernels of the form gh =

)
m αh,mg

[m]
h , where

g
[m]
h is an LPA kernel of order m and the coefficients αh,m ∈
R are such that

)
m αh,m = 1.

Figure 1: The Intersection of ConÞdence Intervals (ICI) rule.

2.2 Intersection of ConÞdence Intervals (ICI) rule
The Intersection of ConÞdence Intervals (ICI) rule [25, 29]
is a criterion used for the adaptive selection of the size
(length/scale) of the LPA window. The aim is to achieve
a balance between the bias and the variance such that the
pointwise mean square error (MSE) is minimized.
Let x be a Þxed estimation point/pixel. The LPA es-

timates �yhj (x) =
$
z ~ ghj

%
(x) are calculated for a set

H = {hj}Jj=1 of increasing scales h1 < · · · < hJ . The
goal of the ICI is to select among these given estimates*
�yhj (x)

+J
j=1

an adaptive estimate �yh+(x) (x), h
+ (x) ∈ H,

such that �yh+(x) (x) is close to an �ideal� estimate �yh∗(x) (x)
which minimizes the MSE with respect to the variation of
the scale h (note that h∗ (x) does not necessarily belong to
H). Roughly speaking, the estimate �yh+(x) (x) is the �best�
among the given ones.
The ICI rule is as follows:
Consider the intersection of conÞdence intervals Ij =,j
i=1Di, where

Di =
-
�yhi (x)− Γσ�yhi (x), �yhi (x) + Γσ�yhi (x)

.
,

σ�yhi (x) = std {�yhi(x)} is the standard deviation of �yhi (x),
and Γ > 0 is a threshold parameter. Let j+ be the largest
of the indexes j for which Ij is non-empty, Ij+ 6= ∅ and
Ij++1 = ∅. The adaptive scale h+ (x) is deÞned as h+ (x) =
hj+ and the adaptive estimate is thus �yh+(x) (x).
An illustration of the ICI is given in Figure 1. The

standard-deviations of the LPA estimates can be easily cal-
culated from the =2-norm of the corresponding kernel as
σ�yhj (x) = std

*
�yhj (x)

+
= σ

//ghj//2. Since the scales are in-
creasing, the standard-deviations are decreasing and the con-
Þdence intervals shrink as j increases. Therefore, in the in-
tersections we are testing estimates with progressively lower
variance. The rationale behind the ICI is that the estima-
tion bias is not too large as long as the intersections are
non-empty. In practice this means that the ICI adaptively al-
lows the maximum level of smoothing, stopping before over-
smoothing begins. Asymptotically, the LPA-ICI adaptive
estimator allows to get a near-optimal quality of signal re-
covery [25].
Overall this pointwise-adaptive algorithm searches for a

largest local vicinity of the point of estimation where the
estimate Þts well to the data. The estimates �yhj (x) are cal-
culated for a set of window sizes (scales) and compared. The
adaptive scale is deÞned as the largest of those for which es-
timate does not differ signiÞcantly from the estimators cor-
responding to the smaller window sizes. The above intersec-
tion of conÞdence intervals (ICI) rule is one of the versions
of the general result known known as the Lepski�s approach
(e.g. [39], [42]). Several algorithms are developed, based on



Figure 2: Approximation of an ideal starshaped anisotropic
neighborhood using adaptive sectors.

Figure 3: Anisotropic local approximations achieved by com-
bining a number of adaptive-scale directional windows. The
examples show some of these windows selected by the direc-
tional LPA-ICI for the noisy Lena and Cameraman images.

this sort of adaptive estimators: denoising [31, 29, 30] is the
main, and most natural application, but also deconvolution
and derivative estimation are problems where the adaptation
can play a signiÞcant role in order to achieve an improved
restoration performance.

3. LOCAL POLYNOMIAL APPROXIMATION
WITH ANISOTROPIC SUPPORTS

3.1 Idea

Our main assumption for the design of the anisotropic es-
timator [23, 32] is that the optimal vicinity of the estima-
tion point in which the model Þts the data is a starshaped
neighborhood which can be approximated by some sectorial
decomposition with, say, K non-overlapping sectors. Such a
sectorial approximation is shown in Figures 2 and 3. This
irregular shape of these neighborhoods and their sectorial
approximation is a direct manifestation of the anisotropy of
the underlying signal or, roughly speaking, that the signal
smoothness is different at different points and along different
directions. To replicate this behavior in our estimator, we
use special directional kernels deÞned on a sectorial support.
Anisotropy is enabled by allowing different adaptive scales
for different directions. Thus, the ICI rule is exploited K
times, once for each sector. In this way, we reduce a complex
multidimensional shape adaptation problem, to a number of
scalar optimizations.
The directional estimates corresponding to the adaptive-

scale sectors are then combined into the Þnal anisotropic
estimate. The resulting estimator is truly anisotropic, and
its support can have quite an exotic shape. It is highly sen-
sitive with respect to change-points, and allow to reveal Þne
elements of images from noisy observations, thus showing a
remarkable advantage in the proposed strategy.

3.2 Implementation (Anisotropic LPA-ICI)

A collection of directional-LPA kernels {ghj ,θk}hj∈H,k=1,...,K
supported on such sectors is designed. Each kernel is char-
acterized by a direction θk and a scale parameter h. The
corresponding estimate of y is given by the convolution

�yhj ,θk = ghj ,θk ~ z. (4)

For a Þxed x, we obtain a collection*
�yhj ,θk (x)

+
hj∈H,k=1,...,K which is multi-scale and multi-

directional. For each speciÞed direction θk, the ICI rule is
used to select a pointwise-adaptive scale h+ (x, θk) ' r∗x(θk)
that approximates the radius of the ideal neighborhood U∗x .
Let �yh+(x,θk),θk be the directional adaptive-scale estimate,

�yh+(x,θk),θk(x) , (gh+(x,θk),θk ~ z) (x) ∀x (5)

and let

σ2k(x) , σ2�y
h+(x,θk),θk

(x) = var
*
�yh+(x,θk),θk(x)

+ ∀x (6)

be its variance1 . All these estimates can be fused in the Þnal
anisotropic estimate �y as follows:

�y(x) =
!
k

λ(x, θk)�yh+(x,θk),θk(x),

λ(x, θk) =
σ−2k (x))
iσ
−2
i (x),

∀x . (7)

The weights λ(x, θk) in the above convex combination are
data-driven adaptive, as σ−2k (x) depends on the adaptive
h+(x, θk). Formula (7) embeds and makes clear our basic
intentions. We introduce the directional estimates �yhj ,θk(x),
optimize the scale parameter for each of the directions (sec-
tors), and fuse the resulting directional adaptive estimates
into the Þnal one �y(x) using the weights λ (x, θk). We call
this approach the anisotropic LPA-ICI technique. The union
U+x of the supports of the kernels gh+(x,θk),θk ,

U+x =
0
k supp gh+(x,θk),θk , (8)

is regarded as an approximation of the optimal U∗x . More-
over, we note that (7) corresponds to a maximum-likelihood
estimate of y(x) given that the directional adaptive estimates
�yh+(x,θk),θk (x), k = 1, . . . ,K, are all unbiased and indepen-
dent2 .
Let us remind that being convolution kernels, the LPA

kernels gh,θk are always �centered� at the origin, therefore
U+x is always a neighborhood of the origin. The actual adap-
tive neighborhood of x, which contains the observations that
are used for estimation, is instead

�U+x =
*
v ∈ X : (x− v) ∈ U+x

+
, (9)

in other words �U+x (with tilde) is obtained by translation and
mirroring of U+x (without tilde). The optimal �U∗x is deÞned
analogously.
Figure 4 shows an ideal example for a simple geometric

image with four neighborhoods �U∗x . Figure 5 shows the cor-
responding adaptive anisotropic neighborhoods �U+x resulting
from the anisotropic LPA-ICI approach for this noisy image.
A comparison between the two Þgures shows the similarity
between the ideal and the concrete case.
Figure 6 shows the noisy observation of the Cameraman

image, (σ = 25). Figure 7 presents fragments of the orig-
inal (for comparison) and of three restored images. One is

1 In the equation (6), we treat h+ as a purely deterministic
variable. This simpliÞcation is however quite reasonable, as in
practice the adaptive h+ does not exhibit a signiÞcant variability.

2Here the independence follows from the sectors being non-
overlapping. It can be shown [12] that, for a large number of sec-
tors, the error in the directional estimates �yh+(x,θk),θk is mostly
due to variance and not to bias, as much as that these estimates
can be practically treated as unbiased ones.



Figure 4: Examples of the ideal starshaped neighborhoods
�U∗x . The Þrst subimage to the left is the true signal y, fol-
lowed by the illustrations of four different ideal neighbor-
hoods �U∗x corresponding to four different points x ∈ X.

Figure 5: Cheese: adaptive anisotropic neighborhoods �U+x
obtained through ICI using sectorial kernels. Compare with
the ideal example shown in Figure 4.

obtained using the anisotropic LPA-ICI, the other two are
the results of translation-invariant wavelet thresholding [5].
Wavelet thresholding is performed using the best-found (or-
acle) value of the threshold parameter. Although the PSNR
values are not too different, the image reconstructed by the
anisotropic algorithm is visually much better, presenting well
deÞned edges, faithfully reconstructed details, and no notice-
able artifacts (such as the unpleasant ringing visible in the
Daubechies-wavelets estimate).
Further results and modiÞcations of this algorithm for

different applications (including gradient estimation, decon-
volution, inverse-halftoning, video denoising, and signal-
dependent noise removal) can be seen in [32, 23, 15, 33, 14,
24, 10, 14] and, in particular, in the thesis [12] and in the
book [30].

4. RECURSIVELY ENLARGING
ANISOTROPIC SUPPORTS

4.1 Idea

The idea behind this procedure [23] is to apply recursively
the anisotropic LPA-ICI algorithm, Þltering the Þnal output
�y (7) once or many times over again.
Denoting by LI the overall anisotropic LPA-ICI Þlter, this

recursion is expressed as follows: z[1] = z,
�y[l] = LI(z[l]),
z[l+1] = �y[l],

l = 1, 2, . . . . (10)

The square brackets [ ] indicate the iteration number.
Even if the ideal neighborhood U∗x is always the same for

all l, the support of the resulting kernel that is used for
integration against z(v{l}) in (10) may grow at every itera-
tion. For example, assuming that the ideal neighborhoods
do not change with l, at the second iteration the estima-
tion support with respect to the initial observations z is
supp

4
1 �U∗x (v)1 �U∗v (·)dv =

0
v∈ �U∗x

�U∗v . This is illustrated in

Figure 8, with (a) some ideal starshaped neighborhoods �U∗v
corresponding to points v belonging to, (b) the ideal neigh-
borhood �U∗x of the estimation point x, and (c) the resulting
enlarged neighborhood of x,

0
v∈ �U∗x

�U∗v , obtained by the sec-
ond iteration of the adaptive algorithm. Such sets are not
necessarily starshaped with respect to x.

Figure 6: The noisy observation of the Cameraman image,
σ = 25 (PSNR=19.97dB).

Figure 7: Denoising of the Cameraman image, σ = 25.
Clockwise from top-left: original image, anisotropic LPA-ICI
estimate, PSNR=28.1dB, translation-invariant Daubechies
wavelets (DB4), PSNR=27.4dB, and translation-invariant
Haar wavelets, PSNR=27.8dB.

4.2 Implementation (Recursive Anisotropic LPA-
ICI)

After setting the initial conditions y[0] = z and �σ[0]y ≡ σ, the
l-th recursive step of the modiÞed recursive algorithm is

�y[l] = LI(�y[l−1]), �σ�y[l] =

"!
k

&
�σ
[l]
k

'−2#−1/2
, l = 1, 2, . . . ,

where �σ[l]k = �σ
�y
[l]

h+(x,θk),θk

, �σ
�y
[l]
h,θk

= α(g2h,θk ~ �σ
2
�y[l−1])

1/2, and

α < 1 being the Þxed correcting factor, which accounts for
the correlation of the noise in the Þltered samples. Few it-
erations are usually sufficient for the algorithm to reach a



Figure 8: Some ideal starshaped neighborhoods �U∗v (a) cor-
responding to points v belonging to the ideal neighborhood
�U∗x of the estimation point x (b) and the resulting fattened
neighborhood of x,

0
v∈ �U∗x

�U∗v (c), obtained by the second
iteration of the adaptive algorithm.

Figure 9: Restored Cameraman image after three iterations
of the recursive anisotropic algorithm (PSNR=28.5dB).

numerical steady-state.
For the denoising of the noisy Cameraman (σ = 25), we

obtain a PSNR of 28.44dB at the third iteration, shown in
Figure 9). A similar result cannot be achieved by the non-
recursive algorithm.

5. TRANSFORM METHODS WITH
ADAPTIVE-SHAPE SUPPORTS

5.1 Idea

Despite the outstanding success demonstrated by these adap-
tive techniques, it must be observed that, at a local level,
such estimators are characterized by a tightly restricted num-
ber of parameters, namely the polynomial order. While the
intrinsic stability of these simple models makes their spatial
adaptation effective and robust, it also poses a signiÞcant
limit to their Þtting ability. Low-order polynomial models
appear often too rigid for satisfactorily approximating the
Þner local behaviors of natural images.
Improved approximation can be achieved by means of

higher-order models. Unfortunately, direct application of
adaptive scale-selection procedures for higher-order mod-
els fails, because of the very large variance inherent of

the higher-order estimates [28]. A number of compromises
have been proposed in the literature: for example, exploit-
ing a lower-order (usually zero-order) model in the spatial-
adaptation step and a higher-order one (Þrst- or second-
order) for the approximation and estimation; or separately
producing few spatially-adaptive approximations of different
Þxed orders (e.g. zero, Þrst, and second order) and then com-
bining them, with some (adaptive or non-adaptive) weights
(see, e.g., [4], [25]). However, the choice of the Þnal (i.e.
maximum) order remains crucial. It should be noted that if
this order is unrestricted there is no smoothing, since the
model attains a perfect Þt to the noisy observations. It
turns out that it is necessary not only to adapt with re-
spect to the spatial features in the image, but also with re-
spect to the different orders which are required to model
such various features. We solve this dilemma by decompos-
ing the higher-order models in several orthogonal comple-
ments and adaptively compose the most appropriate model
from the corresponding subspaces using conventional esti-
mators such as thresholding. This is done at a local level,
on an adaptive starshaped neighborhood deÞned via a reli-
able zero-/Þrst-order multidirectional estimator, namely the
anisotropic LPA-ICI [23, 32]. In this way, we come to point-
wise spatially- and order-adaptive anisotropic polynomial es-
timators.
We make one step further, and relax the procedure by

replacing polynomial models with more general transforms.
In particular, we concentrate on the shape-adaptive vari-
ants of the discrete cosine transform (DCT) because of their
near-optimal decorrelation ability for natural images. Low-
complexity versions of such transforms exist and can be ex-
ploited to develop fast algorithms based on the above para-
digm.
This class of algorithms differ from the above anisotropic

LPA-ICI in a number of fundamental aspects.
Firstly, the pointwise approximations of the signal are re-

placed by local approximations over neighborhoods (we re-
mind that in LPA-ICI algorithms the estimates are always
pointwise, meaning that each LPA is exploited to estimate a
unique pixel only).
Further, the Þxed polynomial order is replaced by an adap-

tive order (which is restricted only by the size of the neigh-
borhood where the local model is Þtted).
Finally, we exploit aggregation, in order to compensate to

the variability of these local estimates and thus to improve
the quality of the Þnal estimate.
The following Pointwise Shape-Adaptive DCT algorithm

[19] has been introduced through a number of publications,
targeting various image Þltering problems [16]-[22]. Its most
comprehensive presentation can be found in the thesis [13].

5.2 Implementation (Pointwise Shape-Adaptive
DCT algorithm)

Our approach to estimation for a point x0 can be roughly
described as the following four stage procedure.
Stage I (spatial adaptation): For every x ∈ X, deÞne a
neighborhood �U+x of x where a simple low-order polynomial
model Þts the data;
Stage II (order selection): apply some localized transform
(parametric series model) to the data on the set �U+x , use
thresholding operator (model selection procedure) in order to
identify the signiÞcant (i.e. nonzero) elements of the trans-
form (and thus the order of the parametric model).
Stage III (approximation): Calculate, by inverse-
transformation of the signiÞcant elements only, the corre-
sponding estimates �y �U+x (v) of the signal for all v ∈ �U+x .
These �y �Ux are calculated for all x ∈ X.
Stage IV (aggregation): Let x0 ∈ X and Ix0 =



5
x ∈ X : x0 ∈ �U+x

6
be the set of the centers of the neighbor-

hoods which have x0 as a common point. The Þnal estimate

�y(x0) is calculated as an aggregate of
5
�y �U+x (x0)

6
x∈Ix0

.

One key aspect in this procedure is that by demanding
the local Þt of a low-order polynomial model, we are able to
avoid the presence of singularities, discontinuities, or sharp
transitions within the transform support �U+x . In this way,
we increase the sparsity in the transform domain, improving
the effectiveness of thresholding.
Let us present in detail these various stages, with partic-

ular attention to the spatial adaptation.

5.2.1 Spatial adaptation: adaptive anisotropic neighbor-
hoods

We exploit a simpliÞed structure for deÞning the anisotropic
neighborhood U+x , where sectorial kernels are replaced by
1-D kernels and the union (8) is replaced by a hull.
Directional pointwise adaptive scales by LPA-ICI
For each of the eight directions θk =

(k−1)
4
π, k = 1, . . . , 8,

a varying-scale family of narrow 1-D �linewise� directional-
LPA convolution kernels {gh,θk}h∈H is used to obtain
a corresponding set of directional varying-scale estimates
{�yh,θk}h∈H , �yh,θk = z ~ gh,θk , h ∈ H, where H ⊂ R+ is
the set of scales. These estimates are then compared ac-
cording to the ICI rule and as a result an adaptive scale
h+ (x, θk) ∈ H is deÞned for every x ∈ X and for every
direction θk.
Shape-adaptive neighborhood structure
The anisotropic neighborhood U+x is the octagon constructed
as the polygonal hull of

*
supp gh+(x,θk),θk

+8
k=1

. Such neigh-
borhoods are shown in Figure 10. We note that, in our
particular implementation, the value of the adaptive-scale
h+ (x, θk) coincides with the length (measured in pixels) of
the directional window in the direction θk (i.e. with the
length of the support of the corresponding directional ker-
nel). Thus, in order to construct any neighborhood U+x it
suffices to know only the adaptive scales

*
h+ (x, θk)

+8
k=1

for
all x ∈ X.
We emphasize again the distinction (9) between the neigh-

borhoods U+x and �U+x . In both symbols, the subscript �x�
denotes the point for which the adaptive scales are obtained
while the �+� is used to distinguish the adaptive neigh-
borhoods from the non-adaptive ones. We remark that
neighborhoods �U+x0 , �U

+
x00 corresponding to adjacent or nearby

points x0, x00 do usually overlap unless an edge or sharp tran-
sition exists between the two points.

5.2.2 Order selection and approximation: local estimates

For every point x ∈ X, we construct a local estimate �y �U+x :

�U+x → R of the signal y by thresholding in some transform
domain,

�y �U+x = T
−1
�U+x

&
shrink

&
T �U+x

&
z|�U+x

'''
, (11)

where T �U+x is a shape-adaptive transform (e.g., the shape-
adaptive DCT) and shrink is a some shrinkage opera-
tor (e.g., hard-thresholding or Wiener Þltering). In hard-
thresholding, only the coefficients whose amplitude is larger
than a threshold are kept, all other smaller coefficients
are discarded and replaced by zeros. The sparsity (low-
complexity model) achieved thanks to the adaptive selection
of the transform support ensures that most of the energy of
the original signal is carried by only few noisy coefficients,
which are kept after thresholding, and that the many dis-
carded coefficients contain mostly noise.

Figure 11: Illustration of the shape-adaptive DCT transform
and its inverse. Transformation is computed by cascaded ap-
plication of one-dimensional varying-length DCT transforms,
along the columns and along the rows.

All the basis elements (or generators) corresponding to
the transform T �U+x need to be supported on the adaptive

neighborhood �U+x .Furthermore, in case of an orthonormal
transform, orthonormality is considered with respect to the

norm of L2
&
�U+x

'
. Thus, to each differently-shaped neigh-

borhood corresponds a different basis and hence a different
transform. The practical design of transforms for arbitrarily-
shaped domains has been subject of extensive research, with
the shape-adaptive DCT (SA-DCT) [45, 46, 34] appearing as
the most successful option. This low-complexity transform
(implemented in a separable-like manner, as shown in Figure
11) is our transform of choice for the examples shown in this
paper.
Since the anisotropic neighborhoods corresponding to

nearby points are usually overlapping, for a point x0 in the
image we have a number of estimates �y �U+x (x0), x ∈ Ix0 .

5.2.3 Aggregation: global estimate

In order to obtain a single global estimate �y : X → R de-
Þned on the whole image domain, all the local estimates (11)
are averaged together using adaptive weights wx ∈ R in the
following convex combination:

�y =

)
x∈X wx�y �U+x

|X)
x∈X wxχ�U+x

. (12)

Here, the weights wx that are inversely proportional to the
variance of �y �U+x , typically expressed by the norm of the coef-
Þcients used for the reconstruction after shrinkage ([13],[26]).
The aggregation (12) implies that for a point x0 ∈ X, the

Þnal estimate �y(x0) depends on data given in the union of
the neighborhoods

0
x∈Ix0

�U+x , as opposed to the anisotropic
LPA-ICI, where the Þnal estimate for a point depends on the
data given in the corresponding neighborhood only. In this
sense, in our aggregation the initial local estimate �y �U+x0

is

supplanted by one with much larger areas of the data in-
volved.

5.2.4 Two-stage algorithm: Hard-thresholding + Wiener Þl-
tering

This kind of algorithms is nearly always implemented using
two stages. A Þrst stage, as described above, uses hard-
thresholding as the shrinkage operator. After aggregation
(12), the estimate �y is used as a reference image for a sec-
ond stage. There, the various steps of the Þrst stage are



Figure 10: SimpliÞed implementation of the LPA-ICI anisotropic neighborhoods. �Linewise�one-dimensional directional LPA
kernels are used for 8 directions. The anisotropic neighborhood U+x is constructed as the polygonal hull of the adaptive-scale
kernels� supports (left). Thus, only the adaptive scales h+ are needed to construct the neighborhood. Some examples of the
anisotropic neighborhoods �U+x used for SA-DCT Þltering of the noisy Cameraman and Peppers images (right). Here we use
h ∈ H = {1, 2, 3, 5, 7, 9}.

Figure 12: Denoised Cameraman by the Pointwise Shape-
Adaptive DCT algorithm (PSNR=29.10dB).

repeated; however, hard-thresholding is now replaced by
empirical Wiener Þltering, with the spectra from the esti-

mate T �U+x

&
�y|�U+x

'
used for determining the attenuation of

the noisy spectra T �U+x

&
z|�U+x

'
.

Overall, these various modiÞcations with respect to the
anisotropic LPA-ICI denoising of Section 2 lead to a dramatic
improvement in quality, as can be seen by comparing Figure
12 with Figures 7 and 9.

6. BLOCKWISE NONLOCAL SUPPORTS

6.1 Idea

The blockwise nonlocal estimation means that the data are
windowed/segmented into overlapping blocks and one looks

Figure 13: A simple example of grouping in an artiÞcial im-
age, where for each reference block (with thick borders) there
exist perfectly similar ones.

for mutually similar blocks, which are collected into groups,
so that the data in these groups can be processed jointly.
In this way we arrive to the nonlocal varying adaptive sup-
port estimator where the data used in the estimation can be
located quite far from each other. This estimation can be
treated as a kind of non-local means [2],[3],[37],[35],[36].
To clarify the idea of grouping, let us consider an illustra-

tive example of blockwise nonlocal estimation of the image
in Figure 13 from an observation (not shown) corrupted by
additive zero-mean independent noise. In particular, let us
focus on the already grouped blocks shown in the same Þg-
ure. These blocks exhibit perfect mutual similarity, which
makes the elementwise averaging (i.e. averaging between
pixels at the same relative positions) an optimal estimator.
In this way, we achieve an accuracy that cannot be obtained
by processing the separate blocks independently.
However, perfectly identical blocks are unlikely in nat-

ural images. If non-identical fragments are allowed within
the same group, averaging is no longer optimal. Therefore,
a Þltering strategy more effective than averaging should be
employed.
In this and in the following section, we consider two

speciÞc nonlocal algorithms. First, an algorithm with the
square supports and, second, one with pointwise-adaptive
anisotropic supports, similar to those used in Section 5.2.
What makes these two algorithm very different from other



non-local estimators is the use of full-rank complete trans-
forms for the modeling both the blocks and their mutual dif-
ference. In this way, the developed model-selection includes
both adaptive support and adaptive order.
A detailed description of the Þrst algorithm was published

in [7]; the second one is very recent and its preliminary ver-
sion is presented in [6].

6.2 Implementation (Block-matching and 3D Þlter-
ing algorithm)
6.2.1 Block-matching

Let x ∈ X and denote by �Bx ⊂ Z2 be the square
block of size l × l �centered�3 at x. Let B be the col-
lection of all such blocks which are entirely contained in

X, B =
5
�Bx : x ∈ X, �Bx ⊂ X

6
. Equivalently, deÞne XB =5

x ∈ X : �Bx ∈ B
6
=
5
x ∈ X : �Bx ⊂ X

6
⊂ X.

For each block �Bx ∈ B, (i.e. for each point x ∈ XB), we
look for �similar� blocks �Bx0 whose range distance dz (x, x

0)
with respect to �Bx,

dz
$
x, x0

%
=
///z| �Bx − z| �Bx0///2 , (13)

is smaller than a Þxed threshold τmatch ≥ 0. Thus, we con-
struct the set Sx that contains the central points of the found
blocks:

Sx =
*
x0 ∈ XB : dz

$
x, x0

% ≤ τmatch+ . (14)

The threshold τmatch is the maximum dz-distance for which
two blocks are considered similar. In case of heavy noise,
we embed a coarse preÞltering within dz (e.g., =2-distance of
thresholded spectra). Otherwise, we can increase l.
To a Þxed �reference� block �BxR ∈ B associate a collection

(disjoint union) 7BxR of neighborhoods4 :
7BxR = 8

x∈SxR

�Bx. (15)

6.2.2 Group

Given 7BxR , we build a group by stacking together the noisy
patches z| �Bx ,

�Bx ∈ 7BxR . This group is a 3-D data array
deÞned on the square prism B × {1, . . . , |SxR |}. In compact
form, the group is denoted ZxR : 7BxR → R.
Groups are characterized by both:
¦ intra-block correlation between the pixels of each
grouped block (natural images);

◦ inter -block correlation between the corresponding pixels
of different blocks (grouped block are similar).
However, special care is needed, because:

3When l is even the center of the block can be taken as, say,
the (l/2, l/2) pixel within the block.

4The set (15) must not be interpreted as the mere union of the
blocks �Bx such that x ∈ SxR . While, for simplicity, we may write!

x∈SxR

�Bx =
"
�Bx : x ∈ SxR

#
,

a more proper notation is actually!
x∈SxR

�Bx =
"$

�Bx, x
%
: x ∈ SxR

#
⊂ X × SxR ⊂ X ×X,

because we need to distinguish between different blocks coming
from different elements of SxR .

¦ blocks are not necessary ßat or smooth but can be any-
thing;

◦ �similar� does not mean �identical�.
Thus, when approaching groups, we have the following

goals:
¦ exploit intra-block correlation whenever possible, with-
out smoothing away details;

◦ exploit similarity in the forms in which it exists, without
forcing dissimilar blocks to become identical.

6.2.3 Collaborative Þltering

With the above mentioned goals in mind, we process the
group by the so-called collaborative Þltering approach. This
term is explained as follows:
� each grouped block collaborates for the Þltering of all oth-
ers, and vice versa.
� the Þltering provides individual estimates for all grouped
blocks (not necessarily equal).

We realize the collaborative Þltering as shrinkage in a 3-D
transform domain of the form9YxR = T

3D−1 (shrink (T 3D (ZxR))) ,

where T 3D is a 3-D transform. In practice, T 3D is a separa-
ble transform obtained by composing a 2-D transform T 2D

(providing intra-block decorrelation) with a 1-D transform
T 1D (for the inter -block decorrelation of the T 2D -spectra):
T 3D = T 2D ◦ T 1D .
The group estimate 9YxR : 7BxR → R is composed of

slices with local block estimates �yx,xR : �Bx → R for each
�Bx ∈ 7BxR .
6.2.4 Aggregation

For each reference point xR ∈ X, grouping and collabora-
tive Þltering generate a group 9YxR of |SxR | distinct local
estimates of y. Overall, we have a highly redundant and
rich representation of the original image y composed of the
estimates 8

xR∈X, x∈SxR

�yx,xR , where �yx,xR :
�Bx → R.

It is important to emphasize that different groups ZxR and
Zx0R can lead to different estimates �yx,xR and �y

x,x0
R
even

when these estimates are deÞned on the same block �Bx.
Similar to Section 5.2.3, in order to obtain a single global
estimate �y : X → R deÞned on the whole image domain, all
these local estimates are averaged together using adaptive
weights wxR > 0 in the following convex combination:

�y =

!
xR∈X

!
x∈SxR

wxR �yx,xR
|X!

xR∈X

!
x∈SxR

wxRχ �Bx

.

As for (12), the weights used for the aggregation are inversely
proportional to the norm of the T 3D -coefficients used for the
reconstruction after shrinkage.

6.2.5 Two-stage algorithm: Hard-thresholding + Wiener Þl-
tering

Also this algorithm exploits two similar stages, one based on
hard-thresholding and another based on empirical Wiener
Þltering. Here, in particular, during the second stage, we
can use the estimate �y from the Þrst stage to improve the
accuracy of the block-matching, i.e. by replacing z with �y in
(13).



Figure 14: Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard
deviation 15 and zero mean. Each fragment shows a reference block marked with �R�and a few of the blocks matched to it.

Figure 15: Denoised Cameraman by the Block-Matching and
3D Þltering (BM3D) algorithm (PSNR=29.48dB).

The strength of the nonlocal blockwise modeling is largely
conÞrmed by numerous experiments [7],[47],[38]. Here, be-
cause of length limitation, we present only the result of de-
noising of Cameraman (σ = 25), shown in Figure 15. As
can be seen by a comparing this Þgure with Figure 7, Fig-
ure 9, and Figure 12, the BM3D estimate is better that the
estimates obtained by the other algorithms presented in the
previous sections.

7. SHAPE-ADAPTIVE NONLOCAL SUPPORTS

7.1 Idea

The existence of mutually-similar patches is, as illustrated
in Figure 14, a characteristic feature of natural images. Due

to this, the above BM3D algorithm can generally achieve an
excellent denoising accuracy. However, the assumption that
the block should be square is very artiÞcial. By replacing
Þxed-size block transforms with adaptive-shape transforms,
we obtain a more ßexible tool with a potential for better
denoising performance.

7.2 Implementation (Block-matching 3D shape-
adaptive Þltering algorithm)

The main modiÞcations with respect to the above blockwise
algorithm concern with the matching and with the grouping.

7.2.1 Block-matching

The adaptive neighborhoods �U+x can be too small for reliable
matching, especially when Þltering image details. Therefore,
the matching for �U+x needs to be carried out for a superset.
In particular, we use square blocks as supersets and perform
a block-matching procedure much like the one in the block-
wise algorithm.

Let �Bx ⊂ Z2 be the square block of size (2hmax − 1) ×
(2hmax − 1) centered at x and consider the collection B
of all such blocks which are entirely contained in X,

B =
5
�Bx : x ∈ X, �Bx ⊂ X

6
. We indicate by XB ⊂ X the

set of points for which we can construct a block belonging

to B, XB =
5
x ∈ X : �Bx ∈ B

6
. To every x ∈ X we can as-

sociate a point xB ∈ XB such that the magnitude kδB (x)k2
of δB (x) = xB − x is minimal. Note that δB (x) is univo-
cally deÞned and non-zero only for x sufficiently close to the
boundary ∂X of X.

For each point x ∈ XB, we construct the set Sx of the
central points of blocks found similar to �Bx, as by (14).

7.2.2 Adaptive-shape matching

Let now xR ∈ X be a �reference� point and deÞne xδR = xR+
δB (xR). Using the result Sxδ

R
from the block-matching, we

associate to the reference point xR not only its own adaptive
neighborhood �U+xR , but a whole collection (disjoint union)



Figure 16: Shape-adaptive grouping and the forward shape-
adaptive transform used in the collaborative Þltering of the
group.

7UxR of neighborhoods having the same shape and deÞned as
7UxR = 8

x+δB (xR)∈Sxδ
R

�U+x,xR , (16)

where �U+x,xR are mirrored translates of U
+
x of the form

�U+x,xR =
*
v ∈ X : (x− v) ∈ U+xR

+
=

=
5
v ∈ X : (xR − x+ v) ∈ �U+xR

6
.

In plain words, �U+x,xR is an adaptive neighborhood of x which
differs from �U+x in that �U+x,xR uses the adaptive scales cor-
responding to the �reference point� xR and not those corre-
sponding to x itself. Obviously, �U+x,x = �U+x .

Because of this construction, all neighborhoods in 7UxR
have the same shape, which is completely determined by the
adaptive scales

*
h+ (xR, θk)

+8
k=1

at xR.

7.2.3 Shape-adaptive group

At the current reference point xR, a group is built by stacking
together the noisy patches z|�U+x,xR

, �U+x,xR ∈ 7UxR . This group
is a 3-D data array deÞned on the generalized cylinder �U+xR×5
1, . . . ,

:::Sxδ
R

:::6, as illustrated in Figure 16(left). In compact
form, the group is denoted as ZxR : 7UxR → R.

7.2.4 Collaborative hard-thresholding

Given a group ZxR , collaborative Þltering is realized as
shrinkage in a 3-D transform, T 3D , domain. Here, T 3D is
a composition of 2-D shape-adaptive transform (which is ap-
plied on each slice z|�U+x,xR

of the group), with an orthonormal

1-D transform T
1D (applied along the third dimension of the

group), as shown in Figure 16.
The remainder of the algorithm follows the general lines of

the blockwise algorithm. The reader interested in the speciÞc
technicalities can refer to [6].

This algorithm represent the latest development for what
concerns image denoising. In terms of spatial adaptivity,
the shape-adaptive nonlocal supports used here give the al-
gorithm unprecedented ßexibility. By comparing Figure 17
with Figure 15, we can see that not only the PSNR of the
shape-adaptive nonlocal algorithm is higher than its block-
wise counterpart, but also that edges and details are now
sharper and better reconstructed.

Figure 17: Denoised Cameraman by the Block-Matching
and 3D Shape-Adaptive DCT Þltering (BM3D-SADCT) al-
gorithm (PSNR=29.56dB).

8. CONCLUSIONS

In this paper we reviewed our recent developments with
demonstration of evolution of the ideas and techniques from
simple pointwise to more complex nonlocal blockwise and
anisotropic estimators. The state-of-the-art performance of
the developed algorithms is conÞrmed by multiple experi-
ments, including comprehensive comparative evaluations by
Ghent University [47] and Stanford University [38].
All developed algorithms are available from our website

http://ww.cs.tut.fi/~lasip/, thus the algorithms can be
tested.
Here we would like to mention some of the problems of

our special concern for further research.
(1) Generalized model selection problem.
According to the standard setting in mathematical statis-

tics, the model-selection problem concerns with the model
comparison, selection, aggregation, etc., with a given sup-
port which is the same for all models (e.g., [1],[27]).
Unsolved problem : consider the support as a varying el-

ement of the model and consider simultaneous selection of
the local parametric model and its support.
(2) Image modelling for nonlocal estimation.
In nonlocal estimation typically we deal with a multistep

processing: search for mutually similar blocks, grouping,
groupwise processing, aggregation of the multiple estimates.
While reasonable models and statistical procedures are de-
veloped for each one of these steps, overall the techniques
are heuristic, because composed of parts which are not com-
pletely Þtted to each other. However, the outstanding perfor-
mance of the developed algorithms gives clear evidence that
there is a model, implicitly embedded inside the algorithms,
which is meaningful for modeling natural images.
Unsolved problem : development of a statistical observa-

tion model leading to a technique where all steps such as
grouping, groupwise processing and aggregation appear as a
result of some standard statistical technique (ML, EM, etc.).
This sought model is interesting not only because it can for-
mally justify the algorithm as a whole, but especially because
it can be treated as a good model for natural images.
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