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0. A simple experiment



—

A simple experiment

Take photos of a gray scale test ramp

O]

Advice: use a short exposure time and high ISO value



A simple experiment

Shot #1




A simple experiment

Cross-section




A simple experiment

Shot #2




A simple experiment

Shot #3




A simple experiment




A simple experiment

Shot #5




A simple experiment

TAKE MANY MORE SHOTS, AND THEN AVERAGE THEM ALL
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A simple experiment

TAKE MANY MORE SHOTS, AND THEN AVERAGE THEM ALL
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A simple experiment

Scatterplot: average vs realization

pointwise
realization

pointwise average



A simple experiment

SUBTRACT THE AVERAGE OF ALL SHOTS FROM ANY OF THE SHOTS
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A simple experiment

SUBTRACT THE AVERAGE OF ALL SHOTS FROM ANY OF THE SHOTS
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A simple experiment 15

FOR EACH PIXEL, COMPUTE
SAMPLE MEAN AND SAMPLE STANDARD DEVIATION
W.R.T. THE VARIOUS SHOTS

/

—

%

I

NOISE IS STRONGER WHERE THE AVERAGE IMAGE IS BRIGHTER:
STANDARD-DEVIATION IS A FUNCTION OF MEAN

SIGNAL-DEPENDENT NOISE



A simple experiment 16

33ms Cameraphone V

0 0.1 0.2 /,L 03 0.4 0.5

analysis of raw data from cameraphone CMOS sensor (F&al.SensJ2007)



1. Rudiments of Noise Modeling
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Additive White Gaussian Noise (AWGN) model ¥

z(z) =y(z) +of(x) z€X

y: X =Y CR unknown original image (deterministic)
c€(x) ii.d. zero-mean random error

z: X—=ZCR observed noisy image (random)

reXCZ coordinate in the image domain

o €RT standard deviation of o§(x)

&(x) normal random variable F {{(z)} =0 var{{(z)} =1
E{z(x)} =y (z) expectation
std{z(z)} = ostd{&(z)} =0 standard deviation

! Often z,£ are used to denote the random variables/processes (when dealing with the
model) as well as their realizations (when dealing with the algorithm).



Additive White Gaussian Noise (AWGN) model ¥




Additive White Gaussian Noise (AWGN) model %

white:

var {F (c€)} = constant (noise power spectrum is flat)

This nomenclature is perhaps misleading.

What we demand is o&(z) to be independent and identically distributed.
identically distributed:
Prio€(z1) < =Prlo€(zs) < VceR
independent:

Pro&(z1) < ] Pr[o&(z2) < d] =Pr[(c&(z1) <c)N(c&(z2) <d)] Ve, deR



Additive White Gaussian Noise (AWGN) model #

independence implies whiteness:

F(of)(w) = Y e ™ ot(a)

rzeX

var {F (c€) (w)} = Z ’672”‘“’0’2 var {c€(x)} =

rzeX

= Z var {o€(z)} [=0?|X| because identically distributed]
reX

We can have Gaussian white noise that is not i.i.d.!!

How? It suffices to have independent but non identically distributed errors.



Various examples of Gaussian white noise

ramp Cameraman

They are all three Gaussian and white, but only
the i.i.d. one is what is typically assumed as AWGN.

=
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Colored noise 23
Noise is colored when the noise power spectrum is markedly not flat.

The band with larger variance determines the “color”.

white red blue horizontal

Typically modeled by kernel convolution operator against white noise:

Fl®§) F(v) F(§)
var{Fv®&)} = |F )| var{F(€)}



Homoskedasticity vs. Heteroskedasticity 2

The noise 7 is homoskedastic if different noise samples have same variance:
var {n (z')} = var {n (z")} Va',2" € X
otherwise it is heteroskedastic and different noise samples can have different variance:

var {n (z)} # var {n (")}  for some 2’2" € X.

heteroskedastic




Standard-deviation map 25
Let z(z)=y(z)+n(z), =€ X, with n heteroskedastic noise.

Whenever the variance var {n} is deterministic, it makes sense to break 7 into two

factors:
n = std {n}¢
std{n}: X — RT standard-deviation map (deterministic)
E:X—R homoskedastic noise (random)

std{¢}(z) =1 VaxeX

n std {n}



Signal-dependent noise 26

The 7 noise is signal-dependent when the distribution of 7 (z) has some parameter that
depends on y (z) :

Prin(z) < = F(gyx), VeeXandVceR
with F functionally independent of z.

The most significant situation arises when the variance of 1 depends on y,
i.e. when the standard-deviation map becomes a function of y:

2(z) = y(z) +o(y(x)&(z), =X,

oc:R—R*" standard-deviation function or curve (deterministic),
&(x) random variable E{{(z)} =0 var{¢(z)} =1.

Here £ is homoskedastic noise with unitary variance.
The distribution of £ () may depend on y (x), but what most matters is its variance.



Multiplicative noise 2T

Multiplicative noise is special case of signal-depedent noise where the mean is the direct
scaling parameter of the noise distribution.

2(2) = y(@) - Ny (), weX,

Mmult Lid. noise, E {nmult (iE)} = 13 std {nmult (iE)} =cC.

Rewrite in additive signal-dependent form:

2(x) = y@) +y@) M (@) — 1) =
= y(z) +y()(z) =
= y(@)+o(y(@)&(e),
where 0: R —RT, o:yr— cly|
and §(z) = sign{y (2)} ¢ ¢ (z) = sign{y ()} ¢~ (M () — 1)

We have E{&(z)} =0, var{&(z)} =1.



Poisson distributions

Poisson distributions are discrete integer-valued distributions with non-negative

real-valued parameter (mean) 6 >0
9°

z~P(0) Prz=¢lf) =e7* vl

¢eN

p(0) = E{z0y =0
o%(0) = wvar{z|0} =0=pu(0)

mean and variance coincide and are equal to the parameter 6

Matlab code: z = poissrnd(theta)

6
signal-to-noise ratio (SNR): 1) =

o

S
|

o
2k
==
7
£]

_l’_

®
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Poisson distributions 29

a0) 1
0.5/
c0 1 3 4
() =0
6=0.5 =1 =5
06 0.4
0.15
04 0.2 \ 0.1
0.2 \ 0.05
%0 22 % o0 5 %5o0s51015

e S

Discrete Poisson P (6) (blue) and continuous normal approximation N (6,6) (red)



Normal approximation of Poisson 30

¢
z ~ P (0) means the probability of z Pr[z = ¢|§] = 670%, ¢(eN

1

2~ N (u, 02) means the probability density of z is p (§|u, 02) = e 202 , ¢eR.

PO) — N(6,0)

60— 400

Matlab code: z =z + sqrt(theta).*randn(size(theta))



Normal approximation of Poisson

0.251- -
0.2 -

0.151- -

01k .
N / ‘ ‘ ‘ —Hm“h\ |
0 |

-10 0 2 10 20 40 60

05

008 | e —
-10 0 2 10 20 40 60

“p.d.f” (top) and c.d.f. (bottom) for P () and N (6,6), 6 = 2,10,20,40.
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Scaled Poisson distributions 32

Scaled Poisson distributions with scale parameter y > 0 and mean 6 > 0

¢x
zx ~ P (0x) Pr[z:§|9]:eex%, (x €N, 6€e]0,+0).

1
Discrete taking values that are nonnegative integer multiples of —.

p(®) = E{zl0} =0
0
o2 (0) = wvar{z|f} = X
mean is equal to the parameter # and coincides with the variance times x.
0
The scale parameter y controls the relative strength of the noise: SNR % =/x0.
o

Matlab code: z = poissrnd(chix*theta)/chi

Normal approximation for large 6: 2z ~ N (0,60/x)

Matlab code: z =z + sqrt(theta/chi).*randn(size(theta))



Scaled Poisson distributions

X:O.1,9=2 X:1,9:2 X:1070:2
0.3

0.2

0.1

0.15
0.04 0.4
0.1
0.02 0.05 0.2
oL— 0
240-20 0 20 40 0 0 <1o 20 0 5C 10

small x is detremental when 6 varies on a narrow range of values



Poissonian noise

Lety: X - Y CR™ original image (deterministic, possibly unknown)
x>0 scaling factor

z(@)x ~P(xy(z)), VzelX.

Elz(@)x}=xE{z (@)} =xy(z) = E{:(@)}=y(),
var {z (z) x} = x*var {z (2)} = xy (z) = var{z(2)} ==—.
This can be rewritten in the usual form as

z(a:):y(x)—i—,/%f(a:), Vr € X,

where E{{(z)} =0 and var{{(z)} = 1.
The term ,/ﬂxﬂf (x) is the so-called Poissonian noise.




Scaled Poisson observations
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Scaled Poisson observations
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Scaled Poisson observations
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Scaled Poisson observations
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Scaled Poisson observations
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Scaled Poisson observations
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One-parameter families of distributions 41

A one-parameter family of distributions D = {Dy} is a collection of distributions, each of
which is identified bit the value of a univariate parameter 8 € © C R.

Let z € Z C R be a random variable distributed according to a one-parameter family of
distributions D = {Dy} .

For each individual § € ©: Dy is a distribution, z|6 ~ Dy, z|0 € Zy CZ

1 (0) = E{z]0} conditional expectation of z expressed as function of 6.
o () =std{z]6} conditional standard deviation of z expressed as function of 6.

Poisson example:
©=[0,400) CR
Dy is one Poisson distribution with parameter 8 € ©
Zp=1{0,1,2,...} =N
() =10
c(@)=20



One-parameter families of distributions: examples 42

| Do [ ()] o () |
Poisson
Prlz=¢|0) = e %, CEN, 0 € [0, +00) | o ] NG

Scaled Poisson (scale y > 0)

4
Pr(z = ¢lo] = e XX (x €N, 0 €0, +00) ‘ 0 ‘ £

Binomial (n trials)

Priz=¢0]= ()0 (1-0)" "¢ CEN, 0€0,1] | né | \V/no(1—0) = \/Mﬂiﬁll
Scaled binomial (n trials, scale n)

Prlz=£10] = ()0 (1-0)""<, (e 0€(01] ‘ 0 ‘ |/ ea=e
Negative binomial (exponent k)

Priz = ¢lo) = G (52)° (k)

k 0(6+k
= ooy (o%% ,CGN,OG[O,Jroo)‘ 0 ‘ \/4,%1

Scaled negative binomial (exponent k, scale x > 0)

Pr {Z: élfﬂ — Db (Wek)C (ﬁk»_e) L CEN, 0 €[0,+00) ‘ ‘ \/e<e+k> u(e)wX(i)xM)

Multiplicative normal (scale xy > 0)

(C—0)2x2
pdf [2[0] () = go5=e 207 ‘ 0 ‘ x

Doubly censored normal with standard-deviation s (6)
pf (2101 (¢) =  (555) 60(9) + 75 2 (658) xiou + (1 - 2(354)) 601 = ©)




Multiplicative Gaussian noise pdf [z|0]({) (x=1) *




Multiplicative Gaussian noise pdf [z|0] (() (x =10) #




Poisson-Gaussian noise 45

Each observed pixel intensity value z (x), € X, is composed of a scaled Poisson and an
additive Gaussian component:

z () = ap () +n (z),

where p (z) ~ P (y(x)), y (¢) is the unknown noise-free pixel intensity, o > 0 is a gain or
scaling parameter, and n (-) ~ N (0,0?).

Poisson-Gaussian noise is defined as
n(x)=z()—ay(z).

Signal-dependent standard deviation:
std{z (z) |y (2)} = Va?y (z) + o2,



Rician-distributed data 46

Let z ~ R (v, 0) be the realization of a random variable with Rician p.d.f. with
parameters v > 0 and o > 0,

z 2242 v
plvio) = e 5 1 (5), =20, (1)

where I,, denotes the modified Bessel function of order n.

Equivalently, z = \/(C,J/ +on,)% + (v + on,)?,
where ¢, and ¢; are arbitrary constants such that 0 < ¢,,c; <1 = 072, + cf, and
Ny, ~ N (0, 1).

Observation model for magnitude magnetic resonance (MR) images/volumes:

z(z) ~R(v(z),0), z€X CZ d=2,3 (pixel or voxel coordinates).
v: X — RT is the unknown original (noise-free) signal
z: X — RT is the raw magnitude MR data.



47

The one-parameter family of Rician p.d.f.’s R (v, 1) for v € [0, 5] .

The parameter o is assumed as fixed. Thus, z is treated as distributed according to a
one-parameter family of Rician distributions, parametrized with respect to v: R (-, o).
Assuming o =1 is not a serious restriction: z ~ R (v,0) iff Az ~ R (Av, o) VA > 0.
Thanks to this scaling we can carry out all analysis for ¢ = 1, and then apply it to other
cases 0 > 0 upon simple linear rescaling of data and parameters.

Given f : RT — R, we have that var {f (2) |v,0} = var {fx (w) [\v, Ao}, where
z~R(v,0), w=Az~R (o) and fy (w) = f(w/\) Yw € RT.



Mean and variance of Rician data 48

The mean and variance of z ~ R (v, o) are, respectively,

s V2
p=E{zlv,oc} =0 §L<_F)’ (2)
2 _ _ 9.2 2 7T‘72L2 v
s* =var{z|v,0} =20+ v 5 ~252 | (3)

where L (z) = e*/? [(1 —z) Iy (—%) — 21, (-£)].

For large values of v we have
2 4

E{z|y,a}m+%, var {zlv, 0} ~ 0? = 7. (4)

Two crucial issues follow from (2) and (3):
(3) implies that the noise variance is not uniform over the data.
the expectation (2) differs essentially from the parameter of interest, namely v.

The former problem is addressed by the (forward) variance-stabilizing transformation
applied to the data before prior to filtering, wheareas the latter is addressed by the
inverse transformation applied upon filtering, which is designed so to directly provide an
estimate of v out of the filtered transformed data.



E{zlv,1} —v

1.3

Mean of Rician data

1.2
1.1
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Standard-deviation of Rician data

std{z|v, 1}

0.75

i

5
OBT

8

9

10 11

12

13 14 15



Rayleigh pdf [2|0] (¢)




Doubly censored normal (clipping from below and above }?
c0=04,0=0 0=04,0=02 o=04,0=06

0 4 0 0
05 0 05 1 15 -05 0 05 1 15 -05 0 05 1 1.5

0=04,0=1 0=04,0=15 o=04,0=2

0.5

0
1.5 -05 05 1 15

y 0 P
-05 0 05 1 15 -05 05 1

Underlying normal p.d.f. (uncensored) drawn in red



300 400

original

Doubly censored normal as 53
a model for clipped noisy data

added AWGN and then clipped

(F&al. TIP2008, F.SigPro2009)



Raw data as clipped signal-dependent observations 54

Z(z) = max {0, min {z(x),1}}, reX cCz?

2(x) =y(@) + o(y(z)) {(z)

y: X —>YCR unknown original image (deterministic)
o(y(z))&(x) zero-mean random error
oc:R—R*" standard-deviation function (deterministic)
&(x) random variable E{{(z)} =0 var{{(z)} =1
y(z)=E{z(z)} expectation

o(y(z)) = std {z(z)} standard deviation



Raw data as clipped signal-dependent observations °°

Z(z) = max {0, min {z(x),1}}, reXcCz?

gy(z) = E{z(z) |y(z)} expectation
G:[0,1] - Rt standard-deviation function (of expectation)
a(y(z)) =std{z(z) |y(z)} standard deviation



Modeling raw-data signal-dependence before clipping*

The random error before clipping is composed of two mutually independent parts:
o (y () €(x) =n, (y(x)) + 1, (z)

My Poissonian signal-dependent component (photonic)

My Gaussian signal-independent component (everything else)

(y(@)+n, (w(@)x ~ Plhyx), x>0
ng (x) ~ N(0,0), b>0

=

Variance is an affine function of mean.

Higher-order models (e.g., quadratic functions) are also possible and allow to better
capture nonlinearities in sensor response.



Heteroskedastic normal approximation

Z(z) = max {0, min {z(x),1}}, reX cCz?

57



(Generalized) Probability distributions o8

y=10 y=0.5 y=1
o(y) =0.04 o(y) =0.08124 o(y) =0.1077
10 6 4
4
5 2
2

Q' Q 0
-05 0 05 1.5 -0.5 0.5 1.5 -0.5 05 1 15

Before clipping : . (Cly) = @gf)(ﬁ@%)
After clipping : 9:(Cly) = 5570554 o + @ (57%) 00(O) + (1 = @ (54)) do(1 = ©)

¢ and ® are p.d.f. and c.d.f. of N (0,1)

do is Dirac delta function X[0,1] is characteristic (=indicator) function of interval [0, 1]



Expectations and variances 59

B (50 =78 ()~ (1) -1+ o cts) ~o010 13

var {Zly} = 52(5) = ® (5 ) (v* — 2y +0° (1)) +
+72 -0 (45h) (P —2py + 25 +0%(y) — 1) +
+oy) o (455) @i—y -1 —ow)o(5) 25 —1)-

These equations are “universal”, in the sense that the are valid for any variance function
o2 (y), including non-affine ones.

(F.SigPro2009)



Expectations and variances 60

y=E{zly}, o(y)=std{zly}, y=E{zly}, o(y) =std{zly}.

o — o(y) —— )] e
0.08 — — //////////
0.06 — ~ /////

0.04

"

e —

-

—

0.02

83

Standard-deviation function o (y) = +/0.01y +0.042 (solid line) and the corresponding
standard-deviation curve & (3) (dashed line).
The gray segments illustrate the mapping o (y) —

The small black triangles A indicate points (7,5 (7)) Wthh correspond to y = 0 and y = 1.

0.2 0.4 0.6 0.8 1 12 (F.SigPro2009)



0.12 T 61
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0.08

0.06

0.04(

0.02p;

Model does indeed fit the data

62

Fujifim FinePix S5600 150 1600

(F.&al. TIP2008)



Limit cases and patologies 63
j 05 : —

ost|— 0(¥) o) 5] . /
ost|—== 0 (y) : ' AN f
o S N 03 \ AN
0.3 s A 0.2 N
0.2k 4 :”’/ N [} ‘\“
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O(y) =ay, a= ]-a % O(y) = 5y —4
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05 s 05 o )(/ :
04 ™ o 04 - /'," :
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= 03y / : (F.SigPro2009)
02p e 027\ _O'(y) .
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2. Variance Stabilization
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Motivation 65

Signal-dependent errors are particularly undesirable because

e basic data analysis and processing methods (such as those studied in earlier courses),

e standard statistical procedures implemented in computing environments (Matlab, R,
Mathematica, etc.),

o off-the-shelf algorithms,

are typically designed and implemented for identically distributed errors.

Variance stabilization attempts to make the variance of the errors to be the same.



Variance-stabilization problem 66

Find a function f : Z — R such that the transformed variable f (z)
has constant standard deviation, say, equal to 1, std{f (2) |6} = 1.

such f is a variance-stabilizing transformation (VST)

f should be independent of 6

Benefits:

e the (conditional) standard deviation does not depend anymore on the distribution pa-
rameter;
e heteroskedastic z turns into a homoskedastic f (z).



Variance stabilization: heuristics
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Variance stabilization: heuristics
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Variance stabilization: heuristics
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Variance stabilization: heuristics




Variance stabilization: heuristics

72

/
a A




Variance stabilization: heuristics




Variance stabilization: heuristics
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Variance stabilization: heuristics

Classic heuristic stabilizer as indefinite integral form

f<z>=/zﬁdu<9>.

Idea: consider a local first-order expansion of f at p (6)
(i.e., assume o () locally constant),
of

Fz) = f(u(0)) + (2 = (8) 5~ (u(0)),

We have

std {f ()]0} ~ %

(1 () o (0),

then impose std {f (z) |#} = 1 and obtain the indefinite integral (5).

6]

Known and used already in the 1930’s (e.g., Tippett 1934, Bartlett 1936), often rediscovered
in signal processing (e.g., Prucnal&Saleh 1981, Arsenault&Denis 1981, Kasturi et al. 1983,

Hirakawa&Parks 2006).

Very rough, but useful as a first guess: nearly all classical stabilizers can be seen as a slight

modification of (5).



Exact variance stabilization is typically 76
impossible to achieve

Positive result: multiplicative noise
f(z) =log|z|

Negative result: Bernoulli

Binary samples z € {0,1} of the Bernoulli distribution with parameter § = E {z|0}
cannot be stabilized to the same constant variance for different values of 6:

B{g(2)16} = 09 (1) + (1= 0) g 0)
var{g (2) 0} = B {(9(:) — E{g(2) |0)* 10} = (9.0) — g (1))*6.(1—0).

Ezact stabilization is not possible for Poisson, Binomial, and most other families used in
applications.

In practice, we deal with either approximate or asymptotic stabilization.



Classical variance stabilization for Poisson 7

1.4 T

12 2E A—
’ — \\
VZ+VzZ+1 —
1 T —
P L R E——
08 \ /\,/ NEES
‘ —\ 2
wd () 10) ] S Wi
, 43
0.4
02r
00 0‘5 1 15 2 2‘.5 3 35 4 4.5 5
E{z0} =0

F(2) =7 Hadu(0) = [* Jzdu(0) = 2//z.
Bartlett 1936:  24/z+ 3

Anscombe 1948:  2,/z+ 2 (Anscombe attributes it to A.H.L. Johnson)
Freeman&Tukey 1950: /z++/z+1

In the same way stabilizers were derived for the Binomial and Negative Binomial distrib-
ution families (“angular” transformations based on the arcsin and hyperbolic arcsin).



Variance stabilization for Poisson and related 8

Murtagh, Starck, and Bijaoui, 1995: Generalized Anscombe transformation (GAT) for
Poisson-Gaussian noise.

GAT is a family of VSTs parametrized by the Poisson gain « and the Gaussian std o:
2 Jaz+2a2 402, 2> 30— =
fa,a (Z) = 3 2
0, < —fa— =
Asymptotically accurate stabilization for large y:  var {fa.»(2) |y} =1+ O(y~2)
Poor stabilization for small y.

Fryzlewicz, Nason, et al. 2004-2008: wavelet-Fisz transforms that return spectra having
approximately constant variance.

Zhang, Fadili, and Starck, 2008: Generalization of Anscombe for filtered (i.e. for linear

combinations of) Poisson-Gaussian variates.

All these results enjoy some form of asymptotic optimality, but good stabilization for small
6 is never achieved.



(zla)

ola

Generalized Anscombe transformation ()

(a)

4 5

E{zly}

Stabilized standard deviation.
obtained with the GAT in (a)

GAT for 0 = 0.357 (a = 1) (b)
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Variance stabilization: three milestone works 80

e Curtiss 1943: general asymptotic theorems are proved (and later Bar-Lev&Enis 1990:
alternative formulation)
— gave theoretical support to empirical stabilizers that were already used (and also to
others yet to appear).

e Efron 1981: existence of transformations for exact variance stabilization and/or perfect
normalization.
— formalizes sufficient conditions for existence of exact stabilizers (“general transfor-
mation families” framework), and provides their analytical expressions.
— results are nonparametric and nonasymptotic.
— difficult to use in practice (assumes too much smoothness and invertibility of para-
metrized mappings).

e Tibshirani 1986: AVAS procedure for regression
— approximate variance stabilizing transformations are iteratively computed by recur-
sive application of the integral stabilizer (iterative refinement of the stabilizer)
— developed for data-driven application, hints about potential use for random vari-
ables.
— nonparametric and nonasymptotic.



Exact stabilization for general 81
transformation families (Efron 1981)

Exact stabilization is possible at least for some special classes of distribution families.

General scaled transformation family:
z=g"" (p(0) +q(0)w),
where w ~ N(0,1) and g, p and ¢ are smooth functions.

General transformation family has ¢ (9) = q.

Let z follow a general transformation family, pdf [z]|6] be the conditional p.d.f. of z, and
¥ (#) = med{z|0} be the conditional median of z given 6. The exact VST f can be
computed as:
 pdf [2]0] (¢
f (2 :/ %dﬁ (integration w.r.t. median),
where ¢ is the p.d.f. of the standard normal A/(0,1).



Optimization of VSTs: Motivation 82

e It is typically impossible to achieve simultaneously good stabilization for all parameter
values (see Freeman & Tukey): thus, when a stabilizer appears to be better than another
for some values of the parameter, it is likely that for other values it is actually worse.
In this sense, there might be no “best stabilizer”.

e There is no universal objective criterion for assessing the goodness of a stabilizer. Simply
demanding std {f () |8} to be as close as possible to 1 is vague and ambiguous.

e Common stabilizing transformations are often based on coarse asymptotics, developed
between the 1930’s and 1950’s without leveraging any numerical optimization.

(F.2009)



Variance stabilization as a minimization problem 83

Let

er(0) =y (0)—c
be the local error because of inexact stabilization (where locality is intended by the condi-
tioning on ) and define a global cost functional as

F(f) = / e (6)] do. (6)

We may formulate the variance stabilization problem as the solution of
argmin F (f) (7)
f

Variance stabilization is exact only when F (f) = 0 for some f.

Minimization needs to be constrained to some particular class of functions, such as strictly
monotone, Lipschitz, smooth functions, etc.



Variance stabilization as a minimization problem 84

We have seen that it makes little sense to aim at ezact variance stabilization simultaneously
for all parameter values.

We consider a separable weighted cost functional (stabilization functional) of the form
P = [ w0 0)we (es (0) . (®)

where the weight functions wy and w, provide different weighting for the different values
of 6 and different stabilization errors ey (6), respectively.

In particular, we design special weights w, that favor approximate stabilization while ig-
noring very large stabilization errors.



Stabilization functional 85

Let vy < 1, vh,rf >0, 7] >, 7' > 1/, oy,00 > 1 be some real constants and x_ be the
characteristic (indicator) function of a set - .

We define the weights we as
we (ef (0)) = [ (e (0)) €5 (0)],
where
er(0) = o7(0) —c=max{—r{,min{rl,es (0)}},
o7 (0) = max{c—rn min{c+r] o5 (0)}},
and with the function ¢ given by

2 (on—1)
€f — T(l
14 (ef) = Yu - X[0,+00) (ef) [1 - ( ! ) ] X(foo,rL") (ef) + X[TL’\,Jroo) (ef) +

er+1\?
M X (0,0 (€1) ll - (#)

(o1—1)

X(=rfoo) (1) T X (o0, -r(] (&)




Stabilization functional 86

The clipped argument €5 (#) cannot distinguish stabilization errors larger than r{’,r/, while
the multiplication against the function ¢ increases the order of the stabilization errors from
1 to o1,0,. Note that for a positive (resp. negative) argument, the function ¢ has a zero of
order o, — 1 (0] — 1) at zero and becomes constant (with quadratic-smooth joint) equal to
Yu () starting from 77, (7).

Thus, the cost functional F (f) takes the form
P = [ w00 (0) o (57 0)) 77 ()] db.
A

quadratic
—_ C 'yl quadratic

The function ¢.



Iterative integral algorithm for optimizing f 87

0. Initialize
fo(2) =z (identity) or an arbitrary (non-optimal) stabilizer
f monotone increasing

Iterate the following three stages:

1. Compute statistics
Ur (0) = med { fi. (2) |0} = fi (med {z]0})
o (0) = std {fx (2) |0}

2. Compute stabilization refinement
e (2) = [7 11 (0) d[9y (0)) (integration with respect to the median)

where
. wy(0) (e (0)) e (0)
Le(®)=1-= ox (6)

e (0) =0% () — c = max {—r{, min {r],e; (6)}}
5 (0) =max {c —r{’,min{c+r, 0, (0)}},

)

3. Compose

frr1 (2) =i (fr (2))



Optimization of Poisson stabilizer (iterative integral)®
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Optimization of Poisson stabilizer (iterative integral)®

oy,0 = 1.5, 7’:\,7’1’ = 0.2, 7’:\’,7’1” =0.5, 7., =0.8
0.35 T T T
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stabilization functional F (fy) vs. iterations (log scale)

fo=+vz++Vz+1 (lower) and fo =2+/2z+ 3/8 (higher)



Optimization of Poisson stabilizer (iterative integral)™

oy,0 = 1.5, 7’:‘,7’1’ = 0.2, TL’\’,T{’ =0.5, v,,7 =0.8
6 T T

s H H
o L —oOptimizedz > fz) | i
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] S T — ]
2 5 10 15

variance-stabilizer f and the mapping F {z|0} — E{f (2) |0}
stabilization functional F'(f) = 0.1051



Optimization by iterative integral vs. direct search 9

Convergence of the iterative integral algorithm, , with monotonically decreasing cost, was
verified experimentally, up to the numerical precision of the algorithm, in extensive tests.

However, its limit may differ from the minimizer of the stabilization functional.

Further drawbacks:

— computational aspects involved in the evalutation of the integrals

— a proof of minimization seems very difficult to achieve (similar situation as for AVAS
algorithm)

A practical way to circumvent these issues is to solve the minimization by direct search,
which is particularly feasible for discrete distributions.

We use Nelder-Mead downhill simplex algorithm.



Optimization by direct search
oy,0 = 1.5, 7’:‘,7’1’ = 0.2, r:\’,rl” =0.5, v,,m =038

"[— optimized Nelder-Mead z -> f(z)
- |~~~ Expectations mapping E{z) -> E{fz)}

variance-stabilizer f and the mapping F {z|0} — E{f (2) |0}
stabilization functional F (f) = 0.096

92



Optimization by direct search: relaxing monotonicity’3

oy,0 = 1.5, r:\,rl’ = 0.2, r:\’,rl” =0.5, v,,m =08
B T T

: = Qptimized Nelder-Mead z -> f(z)
B > b - === Expectations mapping E{z} -> E{f(z)}| - .

0 5 1I0 15
variance-stabilizer f and the mapping F {z|0} — E{f (2) |0}
stabilization functional F (f) = 0.079



Optimization by direct search 9
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Optimization by direct search 95

i
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Regularization of VSTs through 96
penalization of the stabilization functional

Introduce penalty terms into the stabilization functional F (f) :

F (.f) = F;tabil (.f) + )\smooth : F;mooth (.f) + )\asympt : Fasympt (f) + )\inverse : -Finverse (f) )

where Asmooth, Ainverse, Aasympt = 0 are penalty parameters.

Constrain direct-search optimization to VSTs f for which the expectations mapping

E{z[0} — E{f(2)|0}
is strictly increasing, so to be able to define the ezact unbiased inverse Ly

Iy : E{f(2)|0} — E{z]0}.

(F.ISBI2011)

Accuracy of stabilization  Fiapi (f) = f;t::i" (std {f (2)]6} — 1)*db

Smoothness of f Fimootn (f) = f::ix (1" (2))* dz
Asymptotic Fasympt (f) = f:::ix m (f (2) = fasympt (2))* dz

.. other penalties, e.g. higher-order moments of the distribution of f (2)




Regularized VSTs for the Rician family of distributio®’
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Regularized VSTs for the Rician family of distributiof?

f(z)
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Regularized VSTs for the Rician family of distributio#’
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Regularized VSTs for the Rician family of distributio#/
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Optimization of rational polynomial VST 101

To effectively regularize the optimization, we can also seek the solution within a specific
class of functions.

Poisson-Gaussian VST optimization
Find stabilizer by optimizing the coefficients of polynomials P(z) and Q(z) in

N .
Zi:Opizl -9 P(Z) (9)
27];\10 ¢ Q(2)’
Constrain polynomials such that the VST necessarily approaches the GAT asymptotically.
In this way, the optimized VST always attains good asymptotic stabilization:

P(2) 3 9
—2z——-——0"—0as z— 400 10
ER 1o
at a rate of O(z71). For N = 3 we have
p3z® +p22® + P12+ po
o =2 5 11
fio(2) \/p322 +[p2 —p3(3/8+02)]z+1 (11)

which depends solely on {pi}?:().

(MF.TIP2014)



Optimization of rational polynomial VST for 102
Poisson-Gaussian noise
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Figure: (a) Optimized rational VST f; ,(z) and the GAT, for ¢ = 0.357
(o = 1). (b) Stabilized standard deviation obtained with the VSTs in (a).

(MF.TIP2014)
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3. Noise parameter estimation



3.1. Scatterplot methods for 104
signal-depedent noise estimation

Goal: estimate the standard-deviation function.

Approach: build a scatterplot (mean, st.dev), fit a curve.

Employ some local or nonlocal low-pass (for mean) and high-pass filtering (for st.dev.);
e.g., split image into wavelet approximation and detail coefficients.

Challenge: ignore edges or high-frequency texture

1. Partitioning of the codomain to pair mean and st.dev. estimates (conditioning)
2. Use wavelet approximation coefficients to estimate conditional expectations
3. Use wavelet detail coefficients to estimate conditional standard-deviation (use MAD)

4. Fit parametric model using nonlinear optimization to maximize posterior likelihood
(or any other fitting criterion).



Noise estimation 105
removal of strong edges and wavelet decomposition

(F.&al. TIP2008)



Noise estimation: codomain partitioning (level sets)%

"'

S

T
o

two level sets for different intervals of the codomain partition

(F.&al.SensJ2007,F.&al. TIP2008)



Noise estimation 107

conditional expectation and conditional std estimation for each level set
(red dots)

0.08

Fujfim FinePix S5600 150 1600

0.06 @

0.041-

0.02p4

(F.&al. TIP2008)



Noise estimation: fitting 108

conditional probability density:
0 ((9:,00) 5: =9) = 0 (GilT: = §) 0 (67 =) =
('"i*'ﬁ)z (51*510;{ (’"))2
21/ ¢id; Gy (M)

posterior likelihood:

£ ) =] [o(@6015 = 5) o0 ) dy

optimization:
a, l;) = argmax L (a,b) = argmin —In L (a,b) =
a,b a,b

= argmln Zln/ (9i,64) |9: = §) po (y) dy.

(F.&al. TTP2008)



Noise estimation: easy examples 109

smooth targets with full codomain



Noise estimation: easy examples 110
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Importance of a good parametric model

111

complex targets with incomplete/sparse codomain



Importance of a good parametric model 112
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3.2. Signal-depedent noise estimation using VST 113

Goal: estimate the standard-deviation function.

Idea: Different standard-deviation functions are typically stabilized by different VSTs:
finding a VST that stabilizes the data can be equivalent to finding the standard-deviation
function.

Challenges:

— stabilization is typically inaccurate even when the standard-deviation function is
known;

— detecting noise-parameter mismatch

The generic algorithm iterates the following steps:

1. Apply VST f5 based on current estimate & of st.dev. function o.

2. Assess stabilization of f5 (2) :
If unable to improve stabilization further, the current & is the final estimate;
else, modify & and go to 1.



Riqg: Noise-level mismatch 114

1.6

1.5

1.4

1.3

std {fx(2) v, 1} V%

o (F.ISBI2011)

1

0.9r

08 .
T e
0% 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Standard deviation of the transformed data std {fx () |v, 1}, for different values of A, as
indicated by the italic numbers superimposed on the curves. Stabilizer f on page 98.

The stabilizer fy is asymptotically affine for large z, with derivative approaching % Thus,
1

std {fag (2) lov, 0} =std {fx (2) |v,1} Y (12)

In other words, for large v, the stabilized standard deviation is approximately equal to the

reciprocal of the under- or over-estimation factor.



Rice: Noise-level estimation 115

General iterative scheme based on variance stabilization aimed at estimating the value of
the o parameter from a single realization z.

Let & denote an estimator of the standard deviation ¢ of the homoskedastic noise
corrupting a signal. Popular examples for estimating o of AWGN in natural images are
the median or mean absolute deviation of the high-pass filtered signal:

Catedianap {2} = med {|H {2}[} /@7 (3/4),
Cricanap {2} = mean {|H {z}[} \/7/2,

where H {z} = z ® wp;, and wy; is a high-pass convolutional kernel having zero mean and

unit L?-norm,
2
/whi =0, /|whi| =1,

such as, e.g., a wavelet function.

(F.ISBI2011)



Rice: Iterative scheme for estimating o 116

The proposed scheme is expressed by the following recursive system:

60 = €{z},
{6k+1:é{}&k(«3)}5k, k> 0. (13)

The idea of this recursion originates from (12). The estimate &} is used to define a
variance-stabilizing transformation for z. If the estimated value 6 is correct, then the
transformation fs, successfully stabilizes the data and when € is applied to the stabilized
data it should return a value €{f5, (2)} close to 1. If the estimated value 6}, is not
correct (e.g., an under-estimate of o), then the stabilization is not accurate, being
roughly the inverse of the mis-estimation ratio, € {fs, (2)} ~ #-. Hence, we correct the
current estimate d by multiplying it with € {f5, (2)}. Observe that if € {f5 (2)} =1 for
some value &, then this ¢ is a fixed point for (13) and we want the sequence &y to
converge to such 6. The system (13) is initialized by the estimator & applied on the

non-stabilized data z.

Under very general conditions, the iterative scheme (13) is guaranteed to converge with
exponential rate to an accurate and stable estimate & of the true value o.

(F.ISBI2011)



Standard deviation contours in 17
Poisson-Gaussian noise

Let z,,, be a Poisson-Gaussian image with (true) parameters «,o.

Let B be an image block, with pp (y) being the probability density of y over this block.
Let &, 6 be (possibly erroneous) estimates of a, 0.

Consider the VST f5 5 (such as GAT or an optimized VST).

Denote the average standard deviation of fs s (24,0) Over B as

Fi (06) == €5 {fan (200)} = / std { faop (200) [y} P15 (4) .

Fp (&, 6) is a bivariate function of the parameter estimates &, 6.
Under some simplifying assumptions, the unitary standard-deviation contours

Fg(&,6) =1 are smooth curves in a neighbourhood of the true parameter values («, o).

We apply the results by devising a VST-based algorithm for estimating o and o.

(M.&F . TIP2014)



(&, 6) plane and the true parameters («, o) 118

AN

(M.&F . TIP2014)



(&, 6) plane and Fp(&,6) — 1 119

(M.&F.TIP2014)



Unitary contour of Fjp(&,0) 120

(M.&F . TIP2014)



Fg(&,6) — 1 for different blocks B 121

(M.&F.TIP2014)



Fg(é&,6) — 1 for different blocks B 122

(M.&F.TIP2014)



Intersecting contours Fj (4,6) =1 123

(M.&F . TIP2014)



Standard deviation contours: Example (GAT)

0 072 074 0!6 0.‘8 "I 1.‘2 1.‘4 1.‘6 1.‘8 é
(a) peak 120, a =1,0 =5 (b) GAT contours

Ten standard deviation contours Fg (&, ) = 1 computed from ten randomly selected
32 x 32 blocks B of the 512 x 512 image (a).



Standard deviation contours: Propositions 125

o We assume two ideal hypotheses:

1. We can achieve exact stabilization with the correct noise parameters 6:
std {fa,o (Za.0) [y} =1 Vy 2 0. (14)

2. For any VST f4 s and any choice of parameters (&, 6) and «, o, the approximation
std {fa,6 (2a.0) [y} ~ std{za,0 |y} fa 5 (E{za0ly}) (15)

holds exactly.

Proposition 1. The mean standard deviation of the stabilized image block fa s (2a.0)
can now be written as
std {za,0 |y}

std {za,6 |y}

€5 {fas (7a0)} = / ps () dy. (16)

Proposition 2. Given the assumptions in Proposition 1, Fp (&, &) has a well-behaving
(locally smooth and simple) unitary contour near the true parameter values «, o.

(M.&F . TIP2014)



Standard deviation contours: Example (GAT) 126

0 072 074 0!6 0.‘8 "I 1.‘2 1.‘4 1.‘6 1.‘8 é
(a) peak 120, a =1,0 =5 (b) GAT contours

Ten standard deviation contours Fg (&, ) = 1 computed from ten randomly selected
32 x 32 blocks B of the 512 x 512 image (a).



Standard deviation contours: Example (GAT) %7
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(a) peak 120, « =1, 0 =5 (b) GAT contours

Ten standard deviation contours Fp (&, ) = 1 computed from ten randomly selected
32 x 32 blocks B of the 1193 x 795 image (a).



Standard deviation contours: Example (Opt.VST) 12
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(a) peak 120, « =1, 0 =5 (b) GAT contours

Ten standard deviation contours Fp (&, ) = 1 computed from ten randomly selected
32 x 32 blocks B of the 1193 x 795 image (a).



Application to parameter estimation 129

e The contours Fg (&,6) = 1 corresponding to different stabilized blocks B are locally
smooth in the (&, §) plane.

Typically different blocks yield differently oriented curves intersecting each other.

The intersection has coordinates (o, o), i.e. the true parameters.

A cost functional measuring the lack of stabilization is minimized at the intersection.

(M.&F . TIP2014)



Parameter estimation algorithm 130

Initialize the estimates & and 6.
Choose M random blocks B,,,, m = 1,..., M from the noisy image 2z, ;-

Apply a VST fas (2a.0) to each block.

Ll

Compute an estimate Fg,, (&,6) = €g,, {fa.6 (?a,0)} for the standard deviation of each
stabilized block, using any AWGN standard deviation estimator €.

5. Optimize & and 6 so to minimize the difference between Fg (@, 6)2 and 1 (target
variance) over the M blocks.

e We implement the proposed approach in Matlab, using the optimized VSTs (or GAT
for comparison), and minimizing the cost functional

C(a,6) = mean |Fp, (&,6)* —1].

e ¢ is sample standard deviation of wavelet detail coefficients.
e We estimate F'g,, (&, &) from M = 2000 randomly selected 32 x 32 image blocks.

(M.&F . TIP2014)



Experiments 131

(RHWNMSE) aZEto?

Root Histogram-Weighted Normalized MSE \// \/ a2é+o2—/a%¢+62 )
]R+

Table: Average RHWNMSE (+ std) over 10 noise realizations for Piano image:
| Peak | | || Opt. VST || GAT || Scatterplot ||

2 0.5 0.2 0.042 +0.002 0.286 £+ 0.008 0.024 £ 0.009
2 2.5 | 0.2 || 0.007 £ 0.005 0.676 +0.007 0.056 0.016
10 | 0.5] 1.0 || 0.006 = 0.003 0.021 +£0.002 0.011+0.007
10 | 2.5| 1.0 || 0.005 £+ 0.004 0.013 £0.005 0.016 +0.008
30 | 05| 3.0 0.006+0.003 | 0.006 £ 0.003 0.016 +0.007
30 | 25| 3.0 || 0.005+0.003 0.008 £0.002 0.014 +0.006

e Combined with the optimized VSTs, the algorithm yields results that are competitive
with the results obtained with scatterplot method (Foi et al., 2008).
e The optimized VSTs plays an important role in the estimation performance for the
low-intensity cases.
— The GAT is inherently unable to accurately stabilize regions with low mean inten-
sity; this violates our assumption that std {fs (z¢) |y} =1 Vy > 0.
— Optimized VSTs provide highly accurate stabilization also for low intensities.
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4. Exact unbiased inversion of VST in denoising



Three steps: stabilization, denoising, and inversion!33

VSTs are often exploited for the removal of signal-dependent noise through the following
three-step procedure:

1. Noise variance is stabilized by applying a VST f to the data; this produces a signal in
which the noise can be treated as additive with unitary variance.

2. Noise is removed using a conventional denoising algorithm — denoted by ® — for additive
homoskedastic noise (e.g., additive white Gaussian noise).

3. An inverse transformation is applied to the denoised signal, obtaining the estimate of
the signal of interest.

Denoising algorithms attempt to estimate the expectation, thus,
D = ® (f(2)) can be treated as an approximation of E{f(z)|6}.




Exact unbiased inverse 134
(F.SigPro2009,M.&F.TIP2011)

Since f is necessarily a nonlinear mapping, we may have
E{f(2)|0} # f(E{z10}),
and, thus,
FTHUE{f(2)]6}) # E{2]6},
which means that the inverse transformation applied after denoising (Step 3.) should not

coincide with the algebraic inverse of f, as this would introduce bias in the estimation of
E{z|6} from the observed z.

The problem of bias in variance-stabilized denoising is solved by the exact unbiased inverse
that is defined by the mapping

Iy : E{f(2)[0} — E{2(0} = p.
This definition assumes that the mapping E{z|0} — E{f(2)|6} is invertible. In particular,
we require this mapping to be strictly increasing, or, equivalently, that F{f(z)|0} is strictly
increasing with 6. This condition supplants the traditional requirement of invertibility of
f, which instead we may allow to be nonmonotone.

Under modest hypotheses, it can be shown that Z; (D) is a maximum-likelihood estimate
of 0.



Inversion for Poisson stabilized by Anscombe 135

(M.&F . TIP2011)

Let z be Poisson distributed data.

Applying the Anscombe transform yields f(z) = 24/2z + %.
After filtering of f (z) we obtain D = ® (f (z)), which we treat as an approximation of

E{f(2)|0}.

Algebraic inverse: Za(D) = f7Y(D) = (& ) -3
Asymptotically unbiased inverse: Zp(D)= (£ ) — 4. Typically used in applications.

Exact unbiased inverse: Ic: E{f(2) |y} — E{z | y}.

We have discrete Poisson probabilities P(z|y),s

E{f(2) |y} = Zf zy—22<\/2+§ yZy

The definition of Z¢ is 1mphcit7 but we can have a closed form approximation as

1 1 /3 ., 11, 5 /3 . 1
Ic(D)%ZD2+Z\/;D1—§D2+§\/;D3—§



Inversion for Poisson stabilized by Anscombe 136

0.8
0.6
0.4
0.2
2\/3/78 14 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5
D E{z|y}=y
inverse transformations bias

(M.&F . TIP2011)



Inversion for Poisson stabilized by Anscombe 137
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= = =Exact unbiased inverse
4t -
35
3t
2
original £ 25
£
£
2 |
1.5¢
1 k
0.5[ /= \ A
50 100 150 200 250

pixel

Ansc.4+BM3D+Asy.Unb.Inv. Ansc.+BM3D+Ex.Unb.Inv. Cross section



Denoising results:

Poisson
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AVERAGE NMISE VALUES FOR THE ASYMPTOTICALLY UNBIASED INVERSE AND THE EXACT UNBIASED INVERSE, AND A COMPARISON TO THE RESULTS
OBTAINED IN [2] AND [1] WITH ALGORITHMS SPECIFICALLY DESIGNED FOR POISSON NOISE REMOVAL. THE INTENSITY RANGE OF EACH IMAGE IS

INDICATED IN BRACKETS.

[ Asymptotically unbiased inverse

i Exact unbiased inverse

Other algorithms

[ WI 1] [ BM3D [ SAFIR

[ BLS-GSM || BM3D [ SAFIR | BLS-GSM || PE-HMT [2] | MS-VST 1] |

Spots [0.03, 5.02] 2.34 1.7424 | 1.7495 2.0370 0.0365 | 0.0384 0.1871 0.048 0.069
Galaxy [0, 5] 0.15 0.1026 | 0.1110 0.1253 0.0299 | 0.0301 0.0385 0.030 0.035
Ridges [0.05, 0.85] 0.83 0.7025 | 0.7252 0.7694 0.0128 | 0.0173 0.0331 - 0.017
Barbara [0.93, 15.73] 0.26 0.0881 | 0.1178 0.1122 0.0881 | 0.1178 0.1123 0.159 0.17
Cells [0.53, 16.93] 0.095 0.0660 | 0.0683 0.0718 0.0649 | 0.0671 0.0707 0.082 0.078

(M.&F . TIP2011)



Exact unbiased inverse of Generalized Anscombe 139
Transform for Poisson-Gaussian noise

(M.&F . TIP2013)

Without loss of generality, we can fix @ =1 and use scaling for o # 1.

The EUI of GAT is constructed analogous to the EUI of the Anscombe transformation:
Lo : E{fs (2) |y,0} — E{z | y,0}.

+oc
E{f, ()| 9,0} = / p(z|4,0) dz =
+oo yey 727,;2
/ \/z—i- +02 (k'\/%r? 20 >dz.

Closed form approximation:

1 _2§\/§3l2
TRV s gy g
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Consistency of GAT+EUI at fixed input PSNR
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from pure Gaussian to pure Poisson
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Volumetric Rician denoising 141

AWGN denoising within VST framework vs. Rician denoising

Noi Filt | T |
‘O'se e [ % [ 3% [ 5% [ 7% [ 9% [ 1% | B% | 5% | 0% [ 1% |
(Noisy data) 40.00]0.97 | 30.46[0.81 | 26,02]0.66 ] 23.10[0.53 | 20.91[0.43 ] 19.17]0.36 | 17.72]0.30 | 16.48]0.25 | 13.39]0.22 | 14.42[0.19

OBNLMIDy | 4247099 |3757]0.97 | 34.73(0.95 | 32.82/0.92 | 31.420.90 | 30.32]0.87 | 29.40[0.84 | 28.610.82 | 27.91[0.79 | 27.28]0.77

Gonss | OB-NEMID-WNy | 42.52{0:99  37.75(0.97 | 35.01[0.95| 33.13[0.93 | 31.73/0.90 | 3061[0.85 | 29.68[0.85 | 28.88[0.83  28.18[0.80 | 27.35[0.78
ODCT3DA 43.78[0.99 | 37.53(0.97 | 34.89]0.95 | 33.18[0.93 | 31.01]0.91 | 30.90[0.89 | 30.07[0.58 | 29.35]0.86 | 28.73]0.85 | 25.18]0.83
PRINLM3Dy | 44.04]0.99 | 38.26(0.98 | 35.51]0.96 | 33.67/0.94 | 32.37/0.92 | 31 29]0.90 | 30.40[0.89 | 29.65]0.87 | 28.99]0.85 | 28.40]0.84

BM4D 42.09]0.99 | 38.39(0.98 | 35.95[0.96 | 34.380.95 | 33.21]0.93 | 32.28[0.92 | 31.50(0.91 | 30.82]0.90 | 30.23(0.58 | 29.700.87

(Noisy data) 40.00]0.97 | 30.49]0.31 | 26.09]0.66] 23.20/0.53 | 21.,04]0.43 ] 19.32]0.36] 17.88]030 | 16:65]0.25 | 15.57]021 | 14.60[0.18

OB-NLM3Dr 4241[0.99 | 37.45(0.97 | 34.54[0.94 | 32.51[0.91 | 30.97/0.88 | 29.71[0.85 | 28.62[0.81 | 27.64]0.78 | 26.74[0.74 | 25.91]0.70

VST + OB-NLM3D s | 42.48/0.99 | 37.45(0.97 | 34.40(0.94 | 32.26/0.91 | 30.65/0.88 | 29.34|0.85 | 28.23]0.81 | 27.25|0.78 | 26.37|0.74 | 25.57(0.71
OB-NLM3D-WMz 42.44/0.99 | 37.54/0.97 | 34.66/0.95 | 32.61]0.92 | 31.01|0.88 | 29.69]0.85 | 28.53]0.81 | 27.50/0.77 | 26.57]0.74 | 25.71|0.70
VST + OB-NLM3D-WM s | 42.53(0.99 | 37.68/0.97 | 34.75|0.95 | 32.66]0.92 | 31.06/0.89 | 29.77|0.86 | 28.68/0.83 | 27.71|0.80 | 26.84|0.76 | 26.04/0.73

Rician ODCT3Dr 42.96]0.99 | 37.38]0.97 | 34.70[0.95 | 32.90[0.93 | 31.53]0.90 | 30.410.58 | 29.48]0.86 | 28.67|0.84 | 27.95]0.82 | 27.30/0.80
VST + ODCT3Dy, | 43.74]0.99 |37.510.97 | 34.79]0.05 | 32.98]0.93 | 31.59]0.00 | 30.47[0.88 | 29.52[0.86 | 28.71|0.84 | 27.98[0.82 | 27.31|0.80
PRINLM3Dr 43.97]0.99 | 38.19(0.98 | 35.34(0.96 | 33.370.94 | 31.94[0.91 | 30.74|0.89 | 29.75]0.87 | 28.88]0.85 | 28.10[0.82 | 27.39|0.80

VST + PRINLM3D,- | 44.21[0.99 38.20]0.98 | 35.34]0.96 | 33.36]0.94 | 31.90]0.91 | 30.71[0.89 | 20.71]0.87 | 28.88]0.85 | 28.13]0.82 | 27.46]0.80

VST + BMAD 34.08[0.99 | 38.34]0.98 | 35.83(0.96 | 34.17(0-94 | 32.89]0.93 | 31.82(0.91 | 30.90/0.89 | 30.06|0.88 | 29.29]0.86 | 28.570.84

(M.&al. TIP2013)

The Rician denoising quality of a dedicated Rician (R) version of a Gaussian (N) filter
can be achieved (and sometimes even surpassed) by the same Gaussian filter endowed by
forward and inverse VSTs.
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1IHN

(F.SigPro2009)
7 PSNR=15.00dB noise parameters a =0, b= 0.22
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Denoising heteroskedaskic data using variance-stabilization and conventional
denoising algorithm for AWGN.

Main stages:

1. variance-stabilization
2. denoising (BM3D public code for AWGN from www.cs.tut.fi/ “foi/GCF-BM3D/ )

3. inversion of the stabilizer, including EUI and declipping (from E {f (2) |y} — y)

We compare two alternatives stabilizers:

fo(t)=/ttﬁd@7, b0 € [0,1]

f2000 optimization by iterative integral.
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1.3

1.28

1.26

1.24

1.22

Convergence of the iterative integral algorithm
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MI

(F.SigPro2009)
PSNR=29.37
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= | |
M INMIMINIMINYNINWI!I‘MI ]

(F.2009)
PSNR=30.67 [1.3dB gain]



Noisy raw-data image : 149

Fujifilm FinePix S9600 (green channel)
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Noise estimation

a = 0.003978 b =0.0004787

(F.&al.2008)
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0.2
std {fu (2) |}

0

(F.2009)
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(gamma-corrected)
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(gamma-corrected)



Comparison of fragments (1/3)

using fy using f2000

(all gamma-corrected)

(F.2009)




Comparison of fragments (2/3)

using foy using fa2000

(all gamma-corrected)




Comparison of fragments (3/3)

using foy using f2000

(all gamma-corrected)




Thank you! Hepatica nobilis
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Matlab codes for noise estimation, variance stabilization, exact unbiased inversion, and
for image, video, and volume filtering can be downloaded from http://www.cs.tut.fi/~foi
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