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Abtrac t  - This paper presents an FIR fllter system capable 
of implementing virtually any practical lowpass and highpass 
filter with as little as 60-60 multiplications per sample. The  
method b based on multirate techniques and complementary 
Alters. We first give a brief presentation of the principle and 
the necessary building blocks. Then, practical design methods 
for optimitation are presented together with design examples 
and plots of the multiplication rates. Finally, aliasing and flnite 
wordlength effecb are discussed. The resulting system, while 
having a remarkably low arithmetic complexity, will usually 
require somewhat more memory than a conventional optimum 
direct-form filter and a slight increaee in the internal signal 
representations. 

I. INTRODUCTION 
Narrow transition-band FIR filters often require forbidding filter 

lengths for practical implementations. Even though IIR filters can 
offer significantly lower order, they suffer from shortcomings like 
nonlinear phase, instabilities and very large wordlength require- 
menta for the same filter specifications, and i t  is therefore desirable 
to find dternative FIR structures that  lower the processing load. 
Several methods have been deviced to  achieve this goal, most no- 
table among these are the IFIR [I] and the multirate techniques 
[2] which can both be applied only to narrow- or broadband filters, 
and the structure suggested by Jing and Fam [3] and Lim [4] which 
can cope with any bandwidth. We have earlier presented a method 
which combines the Jing-Fam method with multirate techniques 
in such a way that the overall processing will be less than for IIR 
filters when strict transtion-band requirements apply, and we have 
shown that the multiplication rate is limited to  about 50-60 per 
sample for any reasonable filter specification [ 5 ] .  

In  this paper we again present the basic principle of the method 
and go into finer details about the implementation strategies and 
optimizations. We also discuss the aliasing noise problem resulting 
from the multirate operations and present models and results for 
finite word-length effects. 

11. BASIC STRUCTURES 
To simplify the processing in narrow transtion-band low-pass or 

high-paw filters we use the following strategy: Assume that  the 
filter H ( z )  shown in Fig. 1(a) satisfies the given specifications. We 
now try to  replace this filter by a cascade of a two-port and a filter 
H l ( r )  M given in Fig. l (b) .  It is not necessary for the new system 
exactly to mimic the original filter, but it must satisfy the same 
filter requirements. The question is now: can we find two-ports 
combined with the filter H l ( z )  which will reduce the multiplication 
and addition rates while limiting the necessary filter memory? 

Before we explain the basic building blocks, we will adopt the 
terminology narrowband and broadband for filters satisfying fb < 
f , /4  and f b  > f,/4, respectively, where f b  is the filter bandwidth 
and f. is the sampling frequency. 

Two fundamental building blocks will be sufficient to  achieve 
our goal. One block transforms the problem from a narrowband 
to a broadband filter, while the other one does the opposite. If we 
manage to reduce the overall processing in going from the original 
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Implementation of an FIR filter using two-port trans- 
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Two basic building blocks for synthesizing a computation- 
al& efficient FIR filter. 

filter to  the system in Fig. l (b) ,  we can repeat the process on H l ( z )  
leaving the system in Fig. l (c)  with terminating filter H z ( z ) .  Again 
a broadband filter H l ( z )  is turned into a narrowband H z ( z )  or vice 
versa. The process can be repeated until the processing left in the 
terminating filter H i ( . )  is negligible or the total processing in the 
system is minimized. 

What  simple two-ports can implement the low-pass to high-pass 
and high-pass to  low-pass operations while restricting the system 
to remain linear phase? 

A narrowband-to-broadband two-port which uses standard mul- 
tirate techniques is depicted in Fig. 2(a). The decimation ratio 
r = M / N  must be selected such that  it leaves the terminating fil- 
ter as a broadband filter. In Fig. 3 we first show the frequency 
response of H ( z )  and a ratio 2 decimation filter (i. e. N = 1 
and M = 2) [Fig. 3(a)] and then the filter requirements for Hi(%) 
[Fig. 3(b)]. 

Comparing H ( z )  and W ~ ( Z )  in the example above, we realize that  
the sampling rate in H l ( z )  is lowered by T and the relative tran- 
sition bandwidth is increased by the same factor. Assuming that 
the filter length is inversely proportional to  the relative transition 
bandwidth, we conclude that the processing in H l ( z )  is lowered by 
a factor ( M / N ) '  as compared to H ( z ) .  

using a complementation technique as shown in Fig. 2(b) when the 
internal delay is exactly equal to the delay of the filter Hl(z). No- 
tice that this operation also performs a lowpass-to-highpass trans- 

The brodband-to-narrowband transformation can be implemented 
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Fig. S. Design of a narrow-band filter H ( z )  using the building 
block ofFig. 2(a) witb N = 1 and M = 2 and a broadband filter 
Hi(z). 
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Fig. 4. Frequency response of the filter H l ( z )  and the comple- 
mentary response obtained using the system in Fig. J(b) with the 
structure in Fig. 2(b) as a two-port. 

form, or vice versa. See Fig. 4. The given block requires only one 
addition per sample and leaves the sampling frequency unchanged. 

With these building blocks our main concern in system optimiza- 
tion is to  select good substructures for the decimation/interpolation 
transformations to  avoid that the processing in these structures 
surpasses the processing in the original filter. 

After studying various possible substructures, we have come to 
the conclusion that  we only need two different types of decima- 
tion/interpolation two-ports, one using decimation by 2 and the 
other decimation by 213, both constructed using half-band filters 
as discussed in the next section. 

111. HALF-BAND FILTERS 
For constructing the decimation filter H D ( z )  and the interpol& 

tion filter H , ( z ) ,  half-band filters [6] are particularly efficient. The  
transfer function of these filters can be written as  

I f ~ ( z )  = I z - ~  2 +G(zz), (1) 

where K is an odd integer and the order of G ( z 2 )  is K in z 2  or 
2 K  in z. When i t  is nsed for decimation or interpolation, this filter 
can be implemented using the commutative structures [7] shown in 
Fig. 5. T h e  delay branch z - ( ~ - ~ ) / '  can be shared with G ( z ) .  In 
the decimation case, this can be done using the transposed direct- 
form realization exploiting the coefficient symmetry of G(z) .  In 
the interpolation case, the directfrom realization is used. When 
the symmetry in the coefficients of G(z)  is exploited, we need only 
(h' + 1 ) / 2  multipliers plus a trivial multiplication by 0.5 in the 
decimation case. _Since G(z) is working in both cases at the lower 
sampling rate of fB = f 8 / 2 ,  the implementation of both H D ( z )  and 
S,(z) requires only f s ( K  + 1 ) / 2  multiplications per second. The 
half-band filters are characterized by the facts that their passband 

Fig. 5 .  Commutative structures for FIR half-band filters. (a) 
Decimator. (b) Interpolator. Note that in the interpolation cme 
the filter output must be multiplied by two to preserve the signal 
energy. 

and stopband ripples are equal and the passband and stopband 
edges are related via fat = fs /2  - fp. 

IV. DESIGN EQUATIONS 
In this section, we give the basic design equations for synthe- 

sizing the proposed filters. All what is needed is to determine the 
conditions under which a filter H ( z )  can be synthesized in terms of 
the building bloyks of Section I1 and a termination filter which we 
here denote by H ( z ) .  After knowing these conditions, we are able 
the repeat the overall synthesis procedure. First, we concentrate 
on the required passband and stopband edges of the decimator and 
interpolator filters and those of the new termination. Let H ( z )  be 
a lowpass filter with passband and stopband edges of fc * A and 
sampling rate of fa. There are the following three cases which 
require different constructions for H ( z ) :  
Case A :  fc < fa/4 and fc + A is not close to f a / 4 .  

Case B: fc > fs /4  and fc - A is not close to fs/4. 
Case C: f a / 4  is close to or inside the interval [fc - A,  fc + A]. 

In Case A ,  H ( z )  is a narrow-band lowpass filter and we use the 
building block of Fig. 2(a) with N = 1-and M = 2 .  When this 
block is cascaded with the termination H ( z ) ,  the relation between 
the z-transforms of the input signal ~ ( n )  and the output signal 
y(n)  becomes 

Here, F l ( z )  is a conventional transfer function from the input to the 
output. This transfer function must satisfy the conditions stated 
for H ( z ) .  F 2 ( z ) X ( - z )  is the aliased term due to the sampling rate 
alteration and the response of F ~ ( z )  must be small in the frequency 
range [0, fs/2]. The desired result is obtened by selecting the edges 
of H ( z )  worliing at the sampling_rate of f3 = fa/2 to be those of the 
overall filter, i.e., fc zk A with fc = fc. Because of the periodicity 
of If(.'), it has an extra passband [fa/? - ( fc - A),  f a / 2 ]  and an 
extra transition band [fa/2 - ( f c  +A), f8/2 -.( fc - A)] (see Fig. 6). 
The required passband and stopband edges for H D ( z )  and H , ( r )  
are 

h 

h 

fiD) = fc - A ,  fat = fa/2 - (fc + A ) .  (3 )  

The resulting H D ( z )  and H i ( z )  preserve the first passband region 
of G ( z 2 )  and-attenuate the extra transition band and the extra 
passband of H ( z 2 ) ,  giving the desired response for F ~ ( z ) .  In the 
case of F 2 ( 2 ) ,  H l ( z )  attenuates the second transition band and 
the second passband of H ( z 2 )  and H D ( - - z )  takes care of the lower 
ones, resulting in a small aliased term F z ( z ) X ( - z ) .  It has been 
observed experimentally that  the required stopband edge of H D ( z )  
and H l ( z )  can be selected to  be 
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Fig. 6 .  
nents in Case A. (a) Terms in Fl(z). (b) Terms in F z ( z ) .  

This is because the termination filter i ( z 2 )  provides some attenu- 
ation in the transition bands near the stopband edges. 

In C u e  E,  H ( z )  is a wideband design and we first use the build- 
ing block of Fig. 2(b) to convert the problem to the design of nar- 
rowband highpass filter. The paasband edge is f c  + A and the 
stopband edge is f c  - A. This filter can be constructed aa in Case 
A using the building block of Fig. 2(a) with N = 1 and M = 2. 
The desired result is obtained by selecting the edges of a lowpass 
H ( z )  to be fc * A, where 

Transfer functions for the aIiased and undiased compo- 

= j6/2 - f c .  (5) 

(6) 

The required HD(z)  and HI(z) are highpass filters with edges 

f f D '  = fc  + A ,  fi:) = f8/2 - j c  + Af3.  
See [5]  for detaila. 

Case A,  the passband edge has to be selected as 
Using half-band filters with properties aa discussed above, in 

S i D )  = jc + A/3 (7) 
to give the desired stopband edge. In Case B, the half-band filter is 
a highpaas design with the stopband edge f,':' as given in Eq. (6).  

In Caae C, fi /4 is either in the transition band of H ( z )  or the 
passband or the stopband edge of H ( r )  is close to f8/4. In the 
former case, we cannot use N = 1 and M = 2 a t  all. In the latter 
c w ,  the transition bands of H D ( z )  and H , ( z )  become narrow, re- 
sulting in high filter orders. To avoid this problem, one alternative 
is to use the building block of Fig. 2(a) with N = 3 and M = 2. In 
this case, the input-output relation is 

whereFl(z) and F z ( z )  aregiven by Eqs. (2b) and (2c), respectively. 
In  t b c a s e ,  the relation between the input of H D ( z )  and the output 
of H , ( z )  is the same as in Case A .  The basic difference is that  
the input sampling rate of H D ( z )  is now f: = 3f, and the input 
of H D ( z )  contains one and a half periods of the original input 
signal spectrum [see Fig. 7(a)]. The specifications for the overall 
filter consisting of the termination filter, the decimator, and the 
interpolator are the same except that  the sampling rate is now 
f: = 3f. [see Fig. 7(b)]. The second basic difference compared to  
Case A is that there are also aliased terms when finally decimating 
b. three, as shown by Eq. (ab) .  However, because of filtering, the 
components aliased from the region [f8/2, 3 f8/2] are very small [see 
Fig. 7(c)]. 

The sampling frequency of the center filter H ( z )  is in this case 
= 3/2fs, i.e., 3/2 times that of the overall filter H ( z ) .  The 

&\antage of using r = 2/3  lies, however, in the following facts. 
First. the edges for the half-band designs of H D ( z )  and H , ( z )  are 
ji,"' = f c  + A/3 and f,:' = jL/2 - (fc + A/3) .  Therefore, the 
relative transition bandwidth is very wide, resulting in very low 
filter o rdys .  Second, the passband and stopband edges of g(z) are 
close to f i / 3  80 that the design procedure can be easily repeated 
using the building block of Fig. ?(a) with h' = 1 and M = 2. 

A 

h 
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Fig. 7 .  Filtering in Case C. (a) Periodic input signal spectrum of 
H D ( z ) .  (b) Transfer function from theinput  of H D ( z )  to the out- 
put o f H , ( z ) .  (c) Output signalspectrum o f H , ( z )  beforesampling 
rate  reduction by 3. 

It can be shown that by ignoring the aliased terms, the passband 
and stopband ripples of the overall design are a t  most 

where dk) is the ripple of the kth decimator and interpolator and 
S is the set of stages in front of which therz i s a n  even number 
of building blocks of Fig. 2(b) or no blocks. 6 (6) is the passband 
(stopband) ripple of the termination filter if there is an even num- 
ber of delay blocks in front of it. Otherwise, it is the stopband 
(passband) ripple. The simplest way to  determine the required 
ripples is to  make all the terms in the summations equal. 

V. DESIGN EXAMPLES 
As an example we consider the design of a lowpass filter with 

passband and stopband edges of 0.2s. and 0.201f6 [(0.2005 
f0.0005)f8] and passband and stopband ripples 0.001 (60-dB at- 
tenuation). The minimum order of a conventional direct-form de- 
sign to  meet these criteria is 3256, requiring 1629 multiplications 
per input sample. Using the synthesis procedure described in the 
previous sections, the first building block is selected to be the 
one in Fig. 2(a) with N = 1 and M = 2. The edges of the 
termination filter are, in terms of its sampling rate f,(') = f 6 / 2 ,  
(0.401 ~ O . O O I ) f , ( ' ) .  The passband edge for both H D ( z )  and H,(z) 
is (0.2005 + 0.0005/3)f8. The  termination filter is now wideband. 
Therefore, we use the building blocks of Figs. 2(b) and Z(a). The 
edges of the termination are (0.198 f 0.002)f.(2) where = f8/4 
is its sampling rate. H D ( z )  and H,(Z) are highpass half-band fil- 
ters with stopband edge of (0.099 + O.O01/3)f,('). Proceeding in 
the same manner, the sampling rates for the third, fourth, fifth 
and sixth terminations become f;") = f,/2k for k = 3,4,5,6. For 
the third and fifth stages, we use the building block of Fig. 2(a) 
with N = 1 and M = 2 and the passband edges of the subfilters are 
(0.198 + O.O02/3)f$') and (0.208 + O.O08/3)f$'), respectively. For 
the fourth and sixth stages, we use the building blocks of Figs. 2(b) 
and 2(a) with N = 1 and M = 2. The  subfilters are highpass 
half-band filters with stopband edges of (0.104 + 0.004/3)f,(3) and 
(0.084 + O.O16/3)f$'), respectively. If four or six stages are used, 
the edges of the remaining terminations are (0.208t0.008)f,(4) and 
(0.168 * 0.032)fi6),  respectively. 

In the case of four stages, the ripples for all the stages become 
0.0002 when determined from Eq. (9) in such a way that  all the 
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terms in the summations become equal. In the case of six stages, 
the ripples are 0.001/7. 

Filter Complezity 
With four stages the number of multipliers (the filter orders) 

for the decimation and interpolation stages are 11 (42), 4 (14), 11 
(42), and 4 (14). T h e  implementation of all the decimators and 
interpolators requires 16.25 multiplications per input sample. The 
minimum order of a direct-form FIR filter to  meet the criteria of 
the termination is 264. This filter requires 133 multipliers. Since 
it is working at the sampling rate of fn/16, it requires 8.3125 mul- 
tiplications per input sample. The  overall multiplication rate is 
thus 24.5625. For the first building block of Fig. 2(b), the delay 
term is z-1210 and, for the second block, z-"*. The number of 
delay elements required in implementing the overall filter is 1864, 
which is lower than that  for the direct-form design (3256). The 
delay for the unaliased component is 2462, whereas the delay of 
the direct-form equivalent is 1628. The  multiplication rate can be 
reduced by designing the termination as an IFIR filter in the form 
F(z2)C(r)  [l]. The  required orders of F ( z )  and G ( z )  are 136 and 
12, respectively. In this case, the overall multiplication rate is 21. 

When six stages are used, then the number of multipliers (orders) 
for the decimators and interpolators become 12 (46), 4 (14), 11 
(42), 4 (14), 15 (58), and 4 (14). The order of the termination is 
70. The overall multiplication rate is in this case 18.875. The  price 
paid for t he  reduction in the multiplication rate is the increased 
overall delay (3970) and the increased number of delay elements 
(2700). 

Aliasing Noise 

in the form 
When four stages are used, then the overall output can be written 

I I I I I I I I I  

0 LIN. AMP. 
1.001 r 

k=O 

so that  there is an unaliased component and 15 aliased components. 
Figure 8(a) gives, in the case where the termination is synthesized 
in the form F ( z 2 ) C ( z ) ,  lHo(d") l  in d B  (amplitude response for the 
unaliased component). Figure 8(b) ,  in turn,  gives lH6(e'")/  (solid 
line), lH8(dW)I (dashed line), and IH4(eJw)I (dot-dashed line). The  
minimum attenuations for these responses are 74 dB, 74dB, and 83 
dB,  respectively. 'For the other responses, the minimum attenuation 
is more than 86 dB. 

Another way of assessing the noise contribution due to aliasing 
is by simulation with a stochastic input. When the same stochastic 
signal is input to  a multirate filter and to the corresponding time- 
invariant filter (filter giving only the unaliased output), the aliasing 
noise can be found aa the difference between the two output signals. 
This simulation with a white input signal, yields for the 4-stage 
system using an IFIR terminating filter a signal-to-aliasing-noise 
ratio of 73.1 d B  referenced to the 0-dB output level of the signal 
passband. The  non-white noise spectrum is shown in Fig. 9. When 
comparing this figure with Fig. 8(b), i t  is seen that  the spectrum 
of Fig. 9 ie basically due to the components shown in Fig. 8(b). 

Multtpltcatton Rate a# a Function of Cut08 Frequency 
In order to examine how the multiplication rate varies as a func- 

tion of the center of the transition band, Fig. 10 is provided. It 
plots a case where the width of the transition band is O . O O l f s  and 
the passband and stopband ripples are, as in the previous exam- 
ple, 0.001. In contructing this plot, the upper allowable number of 
stages has been fixed to  be 8 and the upper limit for the overall 
delay has been two and a half times that of the direct-form equiv- 
alent (4070). As seen from the figure, the maximum number of 
multiplications per input sample is in this case 40. 

VI. FINITE WORDLENGTH EFFECTS 
Two effects of finite register length8 have to be considered in FIR 

systems: the effect of coefficient rounding on  the frequency reponse 
of the system and noise generation due to  internal signal rounding. 
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Responses for the proposed multirate filter with four dec- 
(a) Response for the unaliased 

(b)  Responses for some aliased components. 
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Fig. 8.  D F T  spectrum of the alias output signal component from 
the 4-stage system with IFlR terminal filter based on 5000 samples. 
Input signal: white noise, 0 dB. 

Coeficient Sensitivity 
When the coefficients in our system are rounded, it affects each 

individual subfilter. If the subfilter responses are preserved within 
our specification, so will the overall response. 

In order to  compare our filters with direct-form filters, we esti- 
mate the necessary number of bits in the two systems using the 
statistical approach given in [8]. From equations (40) and (41) in 
that paper we find that  the frequency response error is with high 
probability less than 

U e -  - 2 - ( y @ T i j 7 T ,  (10) 
where t is the total number of bits and N is the filter order. We now 
solve for the numher of bits and apply the equation to both filters 

2020 



, I  
, ,  

f ' " ' 1 ' 1 ' 1  
' 0  0.1 0.2 0.3 0.4 0.5 
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Fig. 10. Multiplication rate versus the center of the transition 
band for filters m'th transition band width of0.001f8 and passband 
and stopband ripples of 0.001. 

under investigation, inserting indeces d and m for the multirate 
and direct-form filters, respectively. Assuming that  the relative 
allowable error in the stopband due to coefficient quatization is 
the same for both filters (ne = a6,a < 1) we obtain, after some 
manipulation, for the difference in the number of coefficient bits, 

f d  - 1, = 0.51Ogz(Nd/Nm) - log2(6d/6m), (11) 

where 6d and 6, are the stopband ripples. To simplify the equation 
we have here assumed that  N is large for both filters. 

Applying Eq. (11) to  compare the direct-form filter with 6d = 
0.001 order of 3256 with the terminating filter of the 6-stage design 
having 6, = 0.001/7 and order 70, one finds that the two filters 
require approximately the same number of bits. 

One may expect this result to be quite general, because on one 
hand, the multirate system has stricter inband tolerances, while on 
the other hand, the filter order of the direct-form filter is higher, 
each pulling in different directions. 

Quantization Noiae 
Space limitations do not allow a detailed noise analysis. We will 

therefore rather present a qualitative discusussion and give a SNR 
for our example compared with a direct-form filter meeting the 
same specifications. 

To evaluate the effects of representing the internal signals by a 
finite number of bits, we have employed the following model: We 
assume that all adders have a sufficient number of bits to avoid any 
significant contribution both to quantization noise and saturation 
effects. At the output of all filters and after the additions of the 
delay Line outputs and the interpolating filter outputs, there are 
scahng multipliere followed by quantizers. The scaling multipliers 
amplify the sign& aa much aa possible without bringing it to  sat- 
uration. The quantizers round the signal to the required number 
of bits. 

It ie not hard to realize that the noise at the filter oucput will 
be non-white due to the number of noise sources influencing the 
various frequency regions. The transfer function from the termi- 
nating filter and those close to it will basically have a bandpass 
character with the passband at the edge of the overall filter sys- 
tem passband. Therefore, we will expect that the noise wiil grow 
towarb  the passband edge for lowpass filters. 

In our simulation experiment we have used a white Gaussian 
zerwmean unit-variance signal source. All the signal levels have 
been acded to unit variance where applicable. The exception is 
at the external summation points where the signals to be added 
from the different branches must be scaled by exactly the same 
total amount. Assuming that  the signals at all quantization points 
are Gaussian, we fix the saturation levels a t  six times the signal 
vari an ce. 

! !  . . . .  , ,L I . . , .. ..,. .......... i ........... 1.4 .......... .j ............... .j .,......... .j ,.,........, .I ..,...,... .; .... ..... 1 
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Fig. 11. DFT spectrum of simulated quantization noise in the 
six-stage structure with 16 internal bits based on 5000 samples. 
Input signal: white noise, 0 dB. 

In our example using the above described scheme and a 16-bit 
signal representation, one obtains a 78.5 d B  signal-tsquantization 
noise ratio. In Fig. 11 the noise spectrum is shown. As expected, 
the noise level increases towards the passband edge. To reduce this 
effect, one might resort to  using more bits in the filters close to  the 
center of the structure as compared to  the other ones. 

To appreciate this result, we have compared it to  the noise in a 
direct-form design using the same input and output scaling. The  
resulting signal-to-quantization-noise is 80.4 d B  when all additions 
are performed prior to output scaling and quantization. In other 
words, to obtain the same SNR, we need a t  most one extra bit in 
our system for internal signal representation. 

VII. CONCLUSION 
In this paper we have demonstrated that  FIR filters can be im- 

plemented with low computational complexity in a structure based 
on multirate filters. A comparison with IIR filters will reveal that 
for filters with tight filter specifications these FIR structures will 
require less computations, but the delay and the memory will, of 
course, be much larger. We feel that  this is a strong demonstration 
of the efficiency possible in time-varying systems as compared to  
shift-invariant systems. 
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