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Abstract - A filtering technique for reducing the computa- 
tional complexity in FIR 5lters a t  any bandwidth is advanced. 
This technique uses a combination of multirate and comple- 
mentary filters. It is shown tha t  the resulting computational 
complexity is almost independent of the transition bandwidth 
of the filter, but depends somewhat on the  cut-off frequency. 

I. INTRODUCTION 

FIR filters have several advantages over IIR filters such as 
guaranteed stability, possibility of linear phase, and usually shorter 
necessary wordlengths. However, for narrow transition-band fil- 
ters, the high FIR filter order makes them unsuited in many 
applications. 

There are several ways of reducing the complexity of FIR fil- 
ters through the use of multistage implementations. For narrow- 
band filters, two methods are IFIR (interpolated FIR) [1],[2] and 
multirate structures [3]. For narrow transition-band filters with 
arbitrary bandwidth, these methods cannot be  used in a straight- 
forward manner. However, Jing and Fam [4] have suggested a 
very elegant technique which is able to  cope with any bandwidth. 
Their method is a combination of IFIR and complementary fil- 
tering, and leads to  a dramatic reduction in the computational 
complexity. 

The method we suggest is an extension of the theory in 141, 
where multirate techniques are included to  reduce the computa- 
tional complexity even further. I t  will be shown that the multi- 
plication rate is fairly independent of the transition bandwidth, 
but depends somewhat on the position of the transition band. 

The paper is organized as follows: First, we consider the basic 
processing structures and a procedure to  combine these to  obtain 
an efficient overall realization. Then, we work out a system for 
certain bandwidths where we apply the same filters in a repeti- 
tive manner, and give an example of this. This is followed by a 
discussion on how to,obtain arbitrary bandwidths. 

11. BASIC PRINCIPLES 

We first review the two filtering techniques upon which our 
method rely, namely complementary filters and multirate filter- 
ing. In the discussion we distinguish between two filter classes: 
narrow-band filters where the passband occupies a bandwidth 
less than fs/4 with fs being the sampling frequency and broad- 
band filters where the passband occupies more bandwidth than 

A .  Complementary Filters 

If a broad-band filter is to  be designed, we try to transform 
this into an equivalent structure containing a narrow-band fil- 
ter in order t o  easily apply decimation/interpolation techniques. 
If H ( z )  represents a broad-band linear-phase filter, we can con- 
struct an equivalent problem in terms of a narrow-band comple- 
mentary filter H c ( z )  [5] as 

fs/4. 
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Frequency responses of two complementary filters Fig. 1. 

Fig. 2. 

where z - ~  is the delay of the two filters. The lengths of these 
filters are 2D+ 1 and the impulse responses possess an even sym- 
metry. If the impulse response coefficients of H c ( z )  are hC(n) ,  
then the zerc-phase frequency responses of H ( z )  and H c ( z )  can 
be written as 

Realization of H ( z )  using H c ( z )  and a parallel delay. 

D 

n= 1 
H c ( f / f s )  = h C ( D )  + 2hC(D - n )  c o s ( 2 W / f s )  (2a) 

(2b) H ( f / f s )  = 1 - H c ( f / f s ) .  
According to  Eqn. (2b), the sum of these two zero-phase re- 
sponses is unity. Therefore, these filters are called complemen- 
tary filters. 

If it is desired to  design a broad-band lowpass filter H ( z )  with 
zero-phase response approximating unity on [0, fp] with ripple Sp 
and zero on [ Ic ,  fs/2] with ripple SS, then the synthesis is con- 
verted to  the design of a narrow-band highpass filter H c ( z )  with 
zero-phase response approximating zero on [0, fp] with ripple Sp 
and unity on [fc, f ~ / 2 ]  with ripple &, as shown in Fig. 1. The fil- 
ter structure which implements H ( z )  in terms of H c ( z )  is shown 
in Fig. 2. With this complementing technique, all filters (except 
when fc M fs/4) can be made narrowband. 
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Fig. 3. Two-rate realization of a narrow-band filter. 
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Fig. 5. Two-rate realization of a broad-band filter. 
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Fig. 4. 
nents in the narrow-band case for r = 2. 
(b) Terms in F2 (2). 

Transfer functions for the aliased and unalised compo- 
(a) Terms in Fi(z). 

B. Multirate technn‘ques 
We now consider the narrow-band case. An efficient realiza- 

tion for this case is shown in Fig. 3, where the sampling rate 
is first increased by a factor of N, then follows an anti-aliasing 
filter H ~ ( z )  and, finally, the sampling rate is reduced by a fac- 
tor of M. g(z) operates a t  the low sampling frequency fs /r ,  
where r = M I N .  After this filter, the sampling frequency is 
again increased to  the input sampling frequency through an in- 
verse operation where the filter H I ( z )  removes all the undesired 
image components. 

This contribution concentrates mainly on the case r = 2 ( N  = 
1, M = 2 ) .  In this case, the relation between the z-transforms of 
the input signal z(n) and the output signal y(n) is 

Y(Z)  = FI(Z)X(Z) + F 2 ( z ) X ( - z ) ,  (3a) 

F l ( Z )  = g ( z 2 ) H D ( 4 H r ( 4  (3b )  

F2(z) = 2(22)HD(-Z)HI(z). ( 3 4  

where 

Here, F l ( z )  is a conventional transfer function from the input to  
the output, whereas F 2 ( z ) X ( - z )  is the aliased term due to  the 
sampling rate alteration. Figure 4 illustrates the terms in Fi(z) 
and F~(z). The desired overall design with edges fp and fc  is 
achieved by selecting the passband and stopband edges of g(z) 
to  be 

and the edges of both H g ( z )  and H I ( z )  to  be 
f p  = f p ,  L = f c  (4) 

fp = fp, fY = fs/2 - fc .  ( 5 )  

Because of the periodicity, k(z2) has, in addition to  the pass- 
band [0, fp] and the transition band [ fp, fc], an extra transition 
band [fs/2- f c ,  fs/2- fp] and an extra passband (fs/2- fp, fs/2]. 
As seen from Fig. 4(a), the terms H g ( 2 )  and H I ( z )  included in 
F~(z), preserve the lower passband region and attenuate the extra 
transition band and passband regions. The resulting passband 
ripple is at most the sum of the passband ripples of the three 

Fig. 6. 
nents in the broad-band case for r = 2. 
(b) Terms in F~(z). 

filters and the stopband ripple is on [ fc ,  fs/2 - fc] a t  most the 
stopband ripple of f i ( z 2 )  and on [fs/2 - fc ,  fs/2] the product of 
the ripples of H g ( z )  and H I ( z ) .  When considering the terms of 
F~(z) in Fig. 4(b), it is observed that H I ( z )  attenuates the u p  
per passband and transition band regions of g(z2) and H g ( - z )  
attenuates the lower ones. Therefore, the maximum value of the 
aliased components is limited by the maximum of the stopband 
ripples of the three filters. 

Since the input sampling rate of the center filter g(z) is 

Transfer functions for the aliased and unalised compo- 
(a) Terms in Fi(z). 

the relative transition bandwidth of g(z) is two times that of 
the overall filter H ( z ) .  This means that the order of k(z) is 
approximately halved as compared with H ( z )  since the order of 
an FIR filter is roughly inversely proportional to  the transition 
bandwidth. Also accounting for the reduced sampling rate, the 
expected multiplication rate in g(z) is one fourth of that of H ( z ) .  
The total multiplication count includes the processing in H g ( z )  
and H I ( z ) .  

Returning to  the broad-band case, we can combine the real- 
izations of Fig. 2 and Fig. 3 to  get the structure of Fig. 5.  Ac- 
cording to  the above discussion, H c ( z )  is narrow-band highpass 
filter with stopband edge fp and passband edge fc .  For r = 2 ,  
the input-output relation becomes 

Y ( 2 )  = 1z-D - F 1 ( 2 ) ] X ( z )  - F 2 ( Z ) X ( - Z ) ,  (7) 
where F~(z) and F~(z) are given_by (3b) and (3c). The desired 
result is obtained by designing H ( z )  to  be a lowpass filter with 
passband and stopband edges 

f p  = f s / 2  - fc ,  r;: = f s / 2  - fp (8) 
and by designing both H g ( z )  and H I ( z )  to  be highpass filters 
with stopband and passband edges 

fiD’ = f S P  - fp,  fig’ = f c .  (9) 

In this case, the periodic filter fi(z2) has two passband regions 
[O, f s 1 2 - f c ]  and [fc, fs121 and one stopband region [fs/2-fp, fpl, 
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Fig. 7 .  
ter. 

as shown in Fig. 6(a). The basic difference compared to  the above 
narrow-band case is that now H D ( z )  and H I ( z )  included in Fl(z)  
preserve the upper passband [ fc ,  fs/2] of E?(z2) and attenuate the 
lower passband and transition band regions. Correspondingly, 
the resulting passband and stopband regions of z - ~  - F~(z) 
are [0, fp] and [ fc ,  fs/2], as is desired. The passband ripple of 
z - ~  - F1(z) is a t  most the product of the stopband ripples of 
H ~ ( z )  and H I ( z )  on [0, fs/2 - fp] and at most the stopband 
ripple of f i ( z 2 )  on [fs/2 - fp,fp] .  The stopband ripple is a t  
most the sum of the passband ripples of the three filters. When 
considering the terms of F 2 ( z )  in Fig. 6(b), the basic diffrerence 
compared to  the above narrow-band case is that now H I ( z )  at- 
tenuates the lower passband and transition band regions of E?(z2) 
and H ~ ( - z )  attenuates the upper ones. Also, in this case, the 
sampling frequency of the center filter is half of the sampling rate 
of the overall filter and the relative transition bandwidth is two 
times that of the overall filter. 

C .  Multistage Realizations 
To further reduce the number of computations per input sam- 

ple, & ( z )  can be implemented using either the structure of Fig. 3 
or the structure of Fig. 5, depending on whether its edges are 
smaller or larger than fs/2. Later on, we denote the structures 
of Figs. 3 and 5 by structure I and structure 11, respectively. The 
process can be continued until the transition bandwidth of the 
center filter becomes large enough and, correspondingly, its order 
becomes small enough. The resulting overall structure is shown 
in Fig. 7, where (ai, bi) is either (1,O) or ( - 1 , l ) .  The former case 
corresponds to  the case where the center filter in the procedure 
of constructing the overall filter is narrowband. In this case, the 
delay term is not needed. In the latter case, the center filter is 
constructed using structure 11. 

D. Half-Band Decimators and Interpolators 
For constructing H I ( z )  and H D ( z ) ,  half-band filters [6] are 

particularly efficient. These filters are characterized by the facts 
that the passband and stopband edges fp and fc are related by 
fc = fs/2 - fp and the passband and stopband ripples are the 
same. This implies that every second coefficient in these filters 
is equal to  zero except for the central coefficient of value 1/2. 
Therefore, by exploiting the coefficient symmetry and assuming 
that the central coefficient is implemented without general mul- 
tiplier, we can implement with R multipliers a filter of length 

From the above relation between the passband and stopband 
edges of half-band filters, it follows that the passband edge of 
both H ~ ( z )  and H I ( z )  has to  be selected to be 

Proposed multistage multirate realization of an FIR fil- 

,. 

Q = 4 R - 1 .  (10) 

AD' = fc (11) 
for structure I. For structure 11, the half-band filter is a highpass 
filter with stopband edge f i g )  as given in (9). The input sam- 

pling rate of the kth decimation stage and the output sampling 
rate of the kth interpolation stage is 2-(k-1) times that of the 
overall filter. By exploiting the facts that only every second out- 
put of the decimator needs to  be computed and only every second 
input to  the interpolator is non-zero, the overall multiplication 
rate of an n-stage design becomes 

n 

(12) Mn = 2-(k-1)R(k) + 2-nR, 
k= 1 

where R(k) is the number of multipliers in the kth filter stage 
and R is the number of multipliers in the remaining center filter. 
It can be shown that by ignoring the aliased terms, the passband 
and stopband ripples of the overall design are a t  most 

where S is the set of stages in front of which there is an even 
number of true delay terms or no, delay terms and 6 ( k )  is the 
ripple of the kth filter stage. s  ̂ (6) is the passband (stopband) 
ripple of the center filter if there is an even number of delay terms 
in front of it. Otherwise, it is the stopband (passband) ripple. 

111. REPETITIVE STRUCTURES 
If we consider a design problem where the transition band- 

width is very small (fc - f p  = 0), certain cases lead to  very 
simple structures. Of particular interest is the case where the 
required broad-band filter has a relative cutoff frequency fc /  fs. 
After running through one of the stages of structure 11, we end 
up with E?(z) where the same relative cutoff frequency applies 
( E / A  = fc / fs) .  The condition for this to be fulfilled is that 
( fs/2 - fc)r = fc, which resolves to 

f c  = &fs, 
where r is the decimation factor. r should be chosen either as an 
integer or a rational number. 

The multiplication count per sample for an n-stage system 
can be estimated to  

where MH is the number of multiplications per sample in a single- 
filter implementation and R is the number of different multipliers 
in each decimator and interpolator. 

As a limiting case as n grows to  infinity 

Mm = R L .  
r - 1  

This is a remarkable result! It states that a zer*length transition 
band can be obtained using a finite number of multiplications per 
sample. There are, however, certain factors which obscure this 
result. According to  the considerations in the previous section, 
the resulting overall stopband attenuation does not only depend 
on the attenuation in the decimators/interpolators, but also on 
the number of stages. As a consequence, a somewhat larger R is 
necessary when more stages are added to  the structure. 
Ezample: Repetitive use of structure I I  with r = 2. An interest- 
ing example is the case when r = 2 and we apply structure I1 
in a repetitive manner. In this case, we can use highpass half- 
band filters with stopband edge of 1/3 for all the decimation and 
interpolation stages. For R = 5 (length=19), the stopband atten- 
uation is 59.5 dB, and as R is increased, the stopband attenuation 
increases approximately 10 dB per an extra multiplier. 

Here, we want to  consider the following case. We use n 
stages of structure I1 in the structure of Fig. 7. We assume that 
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Fig. 8. Transition regions for a two-stage (dashed line) and four- 
stage (solid line) filter system based on struture-11 half-band fil- 
ters. 

the center filter filter k(z) has the same length as the decima- 
tion/interpolation filters. However, k(z) is not a half-band filter 
and requires therefore twice the number of multipliers. The total 
multiplication rate with n stages is therefore 

Mn = R 2 2 p ( k - 1 )  + 2R ' 2-n = 2R.  (17) 
k= 1 

For this particular case the multiplication rate is independent of 
the number of stages! 

Figure 8 gives the transition regions of two filters, one using 
two decimation stages (dashed line) and one with four stages 
(solid line), both composed of length 19 filters. The filters require 
10 multiplications per input sample. The memory required is 216 
and 900 for the two cases, respectively, including the internal 
storage in the subfilters. The transition bandwidths of the two 
filters are approximately 0.04 and 0.01 on a normalized scale, 
respectively. There is about a 2 dB difference in the minimum 
stopband attenuation of the two filters. 

To meet the tighter specifications, a one-stage FIR and an el- 
liptic filter would require 120 and 14 multiplications, respectively, 
if we exploit the coefficient symmetries in both cases. 

IV. ARBITRARY BANDWIDTH FILTERS 
The design technique described in Section I1 cannot be used 

when fp < fs/2 and f c  > f s / 2 .  Also, if fc  or fp is close to f s / 2 ,  
then the order of a half-band filter to meet the resulting criteria 
becomes very high because of a very narrow transition band. 
Similarly, the design procedure of Section I1 cannot be repeated 
if the edges of the center filter become close to  one fourth of its 
sampling rate. To avoid these problems, one alternative is to  use 
r = 4/3 ( N  = 3, M = 4). In this case, the decimation filter 
can be constructed using two low-order half-band filters with the 
input sampling rates of these filters being 3fs and 3fs/2. The 
advantage of this alternative is that the resulting passband and 
stopband edges of the new center filter are shifted by a factor of 
413 with respect to  its sampling rate. More details about this 
will be given in a full length paper to  be published. 

Theoretically, using r = 2 and r = 4/3 and structures I and 11, 
we can implement any lowpass filter with zero bandwidth using 
a finite multiplication rate. Figure 9 gives plots of the number 
of multiplications per input sample versus the passband edge fp 
for the case where fc fp and the number of filter stages is not 
limited. The curves are given for the cases where the minimum 
stopband attenuation of each decimation and interpolation stage 
is 120 dB (uppermost curve), 100 dB, 80 dB, and 60 d B  (lower- 
most curve). In constructing these plots, r = 413 was used when 
the cut-off frequency of the center filter was within O . g l . 1  times 
one fourth of its sampling rate. In all practical cases, the tran- 
sition bandwidth is not zero and the sampling rate of the center 
filter is after ten stages so low that its contribution to  the overall 
multiplication rate is neglibigle. Assuming that the number of 
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Fig. 9. Plots of the number of multiplications per input sample 
versus the passband edge fp for filters with zero transition band- 
width. The curves starting from the uppermost are for the cases 
where the minimum stopband attenuation for each filter stage is 
120, 100, 80, and 60 dB, respectively. 

structures I and I1 is about the same, this means, according to 
the discussion of Section 11, that the resulting stopband ripple is 
a t  most ten times that of each filter stage. The curves of Fig. 9 
give thus practical upper estimates for the overall multiplication 
rate in the cases where the stopband attenuation of the overall 
design is lower by 20 d B  and the transition bandwidth is ex- 
tremely narrow. As seen from Fig. 9,  the implementation of a 
filter having a 100-dB attenuation requires in the worst case only 
45 multiplications per input sample! 

V. CONCLUSION 

This paper has shown that the multiplication rate in FIR fil- 
ters is limited if multirate techniques are applied. Any reasonable 
filter specification can be met using of the order of 45 multipli- 
cations per sample. The price to  be paid to  obtain this is extra 
memory. One should also notice that the design procedure is 
quite simple. All the subfilter are of low order. Consequently, 
the necessary coefficient wordlengths are modest. 
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