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DESIGN OF I1IR FILTERS AS A TAPPED
CASCADED INTERCONNECTION OF IDEN-
TICAL ALLPASS SUBFILTERS

e This material is based on the article T. Saramaki
and M. Renfors, ”A novel approach for the design
of IIR filters as a tapped cascaded interconnec-
tion of identical allpass subfilters,” in Proc. IEFEE
International Symposium on Circuits and Sys>

tems (Philadelphia, PA), pp. 629-632, May 1987.

e This article is very theoretical and not very easy
to go through. However, this article is included in

the end of this pile of lecture notes.

e The purpose of these notes is to make it easier

for the reader to grasp the main idea.

e When reading this material, it is worth picking up
the part of lecture notes on Digital Filtering II
which is entitled Design of Recursive Filters Using

Allpass Filters as Building Blocks.



BACKGROUND

e As mentioned in the above-mentioned lecture notes,
it is worth implementing recursive digital filters as

a parallel connection of two allpass filters.

e These filters are also called wave lattice digital fil-
ters when the allpass filters are impelemented in a

certain way.

e Some of the benefits of these filters are the follow-
ing:

e The filter of order N can be implemented by

using only N multipliers and N delay ele-

ments.

e When both allpass sections are implemented as
a cascade of first- and second-order sections,
the overall implemention becomes very modu-
lar. This is very beneficial for VLSI and signal

processor implementations.

e This means that similar building blocks with
just different coefficient values can be used.

The same block is easy to copy and then just
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to change the coefficient values.

e The finite wordlength properties (output noise,

limit cycles, coefficient sensitivity) are good.
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Why Then to Develop New Structures?

e When the stopband attenuation of our filter is rel-
atively high (80-120 dB), the number of bit re-
quired for the coeflicient values to keep the overall
response within the given limits may exceed the

number of bits available in signal processors.

e To avoid the costly multiplier elements in VLSI
implementations, it is desired that all the co-
efficient values are representable as few powers
of two; the multiplications can be performed as

shifts and additions.

e These are the basic reasons for introducing the
new structures to be considered in the next trans-

parency.



- 5 —

Proposed Filter Structures

e The building blocks A(z) and B(z) in the struc-
tures shown below are stable allpass filters. In the
following, it is assumed that the order of B(z) is

lower.

e The first structure is used for the design purposes

and the second one for the implementation pur-

poses.
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How to Derive and Analyse the Proposed
Structure?

e Consider a nonlinear-phase FIR filter

G(w) =) anJw™, (1)

where the a(n)’s are the tap coefficients in the
first strucure of the previous page.

e The next step is to use the substitution
w™ = A(2)/B(2), (2)
where A(z) and B(z) are our allpass filters in the

structures of the previous page.

e This gives

H(z) = aln][A(z)/B(z)]" (3)

n=0
e By multiplying the above transfer function by
[B(2)]V yields

(4)
¢ What happened? Answer: This is the trans-
fer function of the first structure of the previous

page.



-7 -

How to interpret the above result?

Let us denote the frequency responses of our all-

pass filters A(z) and B(z) by
A(e?) = 194)  B(el¥) = /98, (5)

Based on Egs. (3) and (4), H(e’*) is expressible

as
N

H(e) = [ejNQbB(W)HZa[n]e—jn[fﬁB(w)_ﬁbA(w)]]. (6)

n=0
The corresponding amplitude response |H (e/*)|

can be written as
N

|H ()| = ]Za[n]e‘jn[@(w)_“(”ﬂl. (7)

n=0
On the other hand, the amplitude response of our
nonlinear-phase FIR filter with transfer function

given by Eq. (1) is expressible as (w = &’*)

G =) aln]e ™). (8)

By comparing the above two equations, it is ob-

served that |H(e’*)| can be obtained from |G(e’*)



using the substitution
= ¢p(w) — pa(w). (9)
e That is,

|H (/)| = |G(ePBW)=0a@)]y| (10)
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Introductory Examples

e Before stating the simultaneos conditions for the
allpass filters and the additional tap coefficients

a(n) we consider introductory examples.

e Our nonlinear-phase FIR filter is of order N = 4
and its impulse response coefficients are a(0) =
0.20316651, a(1) = 0.52407075, a(2) = 0.37100043,
a(3) = —0.02787074, and a(4) = —0.07796693.

e The amplitude response |G(e’*!)| of this filter os-
cillates within 1 4+ 6, in the region [0, €,] and

within §; and zero in the region [2;, 7] with
0, = 0.0076, 4, = 0.00076 (11a)
and

(2, = 0.23680867w, €, = 0.9293940507.  (11b)

e The amplitude response for the above filter are

depicted in the following two transparencies.

e This is a special nonlinear-phase FIR filter. Later
in these lecture notes we explain how to design

this filter.



Amplitude in dB
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Amplitude response for the nonlinear-phase FIR

filter G(w)

Prototype nonlinear-phase FIR filter G(w)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi
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Nonlinear-phase FIR filter G(w): Passband de-

tails

Prototype nonlinear—phase FIR filter: Passband details

1.01 g
1.008 |
1.006
1.004

1.002

Amplitude

0.998

0.996

0.994

0.992 ; :

i
0.15

0.99
0 0.05 0.1
Angular frequency omega/pi




Our examples

e Based on the above nonlinear-phase filter, it is de-

sired to design an overall filter meeting
1-6,<|H()|<1+6, for we X, (12a)
|H(e)| <68, for we X, (12a)

e We consider the following four cases:
e Lowpass: X, =0, 0.37] and X, = [0.3017, m].
e Highpass: X, = [0.77, 7| and X = [0, 0.6997].
e Bandstop: X, = [0, 0.157] U [0.857, 7| and
Xs = [0.15057, 0.8457].

e Bandpass: X, = [0.35m, 0.657] and X, =
[0, 0.3457] U [0.6557, 7).



Lowpass design

e In this case, the desired performance for the over-
all filter is achieved by properly designing A(z)
and B(z), that is, the overall amplitude response
oscillates within 1 £ 4, with J, = 0.0076 on X, =
[0, 0.37] and within 6, = 0.00076 and zero on
X =[0.301m, m].

e They are determined in such a way that their

phase responses satisfy
—Q, < ¢pp(w) — Pa(w) <Q, for we X, (13aq)
and
2 — Qs < ¢pp(w) —da(w) < Qs for w e X, (13b)

where (2, = 0.236808677 and 2, = 0.9293940507.

e Because of the periodicity of |G(e’)|, it stays
within 1+ 6, for Q € [-Q,, Q,] and within J; and
zero for Q € [Q,, 2m — ,]. See transparency 15.

e Therefore, the mapping

= ¢p(w) — da(w) (14)



~ 14 -

satisfying Eq. (13a) converts the passband perfor-
mance of |G(e’)| into that of the amplitude re-
sponse

|H ()| = G(ej[ch(w)—aﬁA(w)])' (15)
of the overall filter (see the following transparency).

Similarly, the desired stopband performance of

G(w) is converted to that of H(z).

Page 16 depicts in a larger scale the mapping ) =
op(w) — @pa(w), whereas pages 17 and 18 show the

overall response in more details.

Note that the overall filter is implementable using
the first structure of page 5. There are four iden-
tical copies of A(z) and B(z) with the five coeffi-

cients a(n) for n=20,1,---,4 given on page 9.
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Mapping a nonlinear-phase FIR filter to a low-

pass filter being implementable as a tapped

cascaded interconnection of two

pass filters.

identical all-

Prototype Filter G(w)

0 50 100
Amplitude in dB

Passband edge = 0.300*pi
Stopband edge = 0.301*pi
a =0.236809
b =0.929394

Amplitude in dB

L g —
Omega=
‘5 phiB(omega) -
S,O.S phiA(omega)
£
O = — = = | - —_ e e = e ]
0 \
0 0.5 1
omega/pi
0 Transformed
_o0! Recursive
Filter H(z)
-40¢
-60+
-80
-100 :
0.5 1

omega/pi



[phiB(omega)—-phiA(omega)]/pi
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Phase difference ¢p(w) — ¢a(w) between the all-
pass filters B(z) and A(z)

Difference in the phase responses of the allpass sections
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Angular frequency omega/pi
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Amplitude response for the overall filter H(z)

Overall filter H(z)

Amplitude in dB

0 0.1 0.2 0.3 0.4 0.5 0.6
Angular frequency omega/pi

0.7

0.8
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Passband details

Overall filter H(z):

Overall filter: Passband details
1.01 T g ! T 1
1.008_ ................................................................................................ -
1006 F -\
1004_ ........................................................................................
1.002._ .............................................................
° :
3 :
E .
;_a 1_ .............................
£ . :
<C :
0998_ RS ARARS ERRRRRRRE SR NS S
0996_ ..............................................................................................
0994_ ...........................................................................................
0992 - .................................
0.99 i ' ' |
0.05 0.1 0.15 0.2 0.25
Angular frequency omega/pi
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Another interpretation of the above mapping

The allpass filters providing the desired mapping

are given by

2 9 ~1 —2
ry — 2rpcospz™ + 2
A(z) = ’f 16
(2) kI:Il 1 — 27 cosOpzl + riz=2 (16a)
and
B(z) = —r3+ 2"t r? —2rycosf27t + 272 (16b)

- 1—7r22711 —2r4cosf4z 4 1222
where 71 = 0.99810563, 7o = 0.85341217, r3 =
0.49990410, r, = 0.98138246, 6; = 0.300166657,

0y = 0.274558897, and 64 = 0.29781677.

The frequency response of the filter
F(z) = [A(z) + B(z)]/2 (17)
is given by
. 1. |
F(e) = —2-[67¢A(“’) + /98] =
6j<¢A(w)+¢B(W))/2_1_[e“j(¢B(w)“¢A(w)>/2 4+ ej(qu(w)—ch(w))/?].

2
(18)

Hence, the amplitude response is expressible as

[F(e7)] = | cos[(¢p(w) — dal(w))/2]. (19)
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Therefore, the conditions given by Eq. (13) are

equivalent with the conditions
1—gp§ [F(e)] <1 for weX,
F(e/)| <6, for we X,,
where
5, = 1 — cos(,/2) = 0.06838982

and

S

ds = cos(€25/2) = 0.11068033.

(20a)

(200)

(21a)

(21b)

As a matter of fact, F(z) is an elliptic lowpass

filter with passband ripple of 0.61531551 dB and

stopband attenuation of 19.118591 dB.

The following three transparencies show the phase

responses of A(z) and B(z) as well as the ampli-

tude response of F'(z).

Note that the passband and stopband regions of

F(z) and the overall filter H(z) are identical.

When comparing the ripple values of these two fil-

ters, it is observed that they are huge for F'(z).
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Phase responses of A(z) and B(z) in the low-

pass case
Phase responses of the allpass sections
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[A(z) + B(2)]/2 in

I

Amplitude response for F(z)

the lowpass case

Response for the parallel connection [A(z)+B(z)])/2
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Amplitude response for F(z) = [A(z) + B(z)]/2 in

the lowpass case

Amplitude in dB

Amplitude in dB

Passband details

0.05 0.1 0.15 0.2 0.25
Angular frequency omega/pi

Stopband details

| | | ] 1

1
0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi
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Highpass design

e In this case, the desired performance for the over-

all filter is achieved by requiring that

—Q, < ¢pp(w)—pa(w) <Q, for we X,=[0.7Tr, 7]
(22a)

and

Qs < ¢p(w) — galw) < =21 + €,

for we X,=1[0, 0.6997].
(22b)

e Note that because of the periodicity, |G(e’)
stays within 1+ ¢, for Q € [-Q,, Q,] and within
ds and zero for Q € [, —27 + Q4. See the fol-

lowing four transparencies.
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Mapping a nonlinear-phase FIR filter to a high-
pass filter being implementable as a tapped

cascaded interconnection of two identical all-

pass filters.

Prototype Filter G(w)

a \ a
0
= — - -
= a
5 Omega =
g -0.5 phiB(omega) —
phiA(omega)
_______________ -b
— ' . ' o4
-2+b g 50 100 0 05 1 7
Amplitude in dB omega/pi
Passband edge = 0.7*pi O+ Transformed
Stopband edge = 0.699*pi D _ol Recursive
a =0.236809 £ Filter H(z)
Q -40¢
b =0.929394 °
g- —60¢
<
-80}
-100 :
0 0.5 1

omega/pi



g
Phase difference ¢p(w) — ¢p4(w) between the all-
pass filters B(z) and A(z)

Difference in the phase responses of the allpass sections

[phiB(omega)-phiA(omega)]/pi
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Angular frequency omega/pi
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Amplitude in dB
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Amplitude response for the overall filter H(z)

-100
0

Overall filter H(z)

.......................................................

i

Angular frequency omega/pi

0.1 0.2 0.3 0.4 0.5 0.6 0.
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Passband details

Overall filter H(z):

Overall filter: Passband details
i
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090940y - T SEEREEREANERRE e fe N
0.9k RO T S R T
; ; ; ; |
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Another interpretation of the above mapping

e The allpass filters providing the desired mapping

are given by

2 2 ~1 —2
ry — 2rpcosfz= " + 2
A(z) = k 23
(2) g 1 —2rgcos Oz~ + riz2 (23a)
and
_ -1 .2 _ 9 0,21 —2
B(z) = 3+ 27 ] T4 COS U4z -1—22: (23D)

1 —1r22711 — 2r4cos B4zt 4 1222
where r1 = 0.99810563, r, = 0.85341217, r3 =
—0.49990410, r4 = 0.98138246, 6, = 0.699833357,
0y = 0.725441117, and 6, = 0.7021833.

e Like in the previous lowpass case, F(z) = [A(z) +
B(z)]/2 is an elliptic highpass filter with the same
passband and stopband regions as the overall fil-
ter. The passband ripple and the stopband atten-
uation are 0.61531551 dB and 19.118591 dB, re-

spectively. See the following three transparencies.



Phase/pi
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Phase responses of A(z) and B(z) in the high-

pass case
Phase responses of the allpass sections
0 j I T T T 1 T T
phiA(omega) : :
05k N
phiB(omega)

-1.5

|
N

I
o
[8)]

|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi
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Amplitude response for F(z) = [A(z) + B(2)]/2 in
the highpass case

Response for the parallel connection [A(z)+B(z))/2

Amplitude in dB

N
o
[

N
o1

|
N
(@

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Angular frequency omega/pi
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Amplitude response for F(z) = [A(z) + B(2)]/2 in
the highpass case

Passband details

1 T T

Amplitude in dB

-1 '
0.75 0.8 0.85 0.9 0.95 1
Angular frequency omega/pi

Stopband details

Amplitude in dB

I |

! ! [
0 0.1 0.2 0.3 0.4 0.5 0.6
Angular frequency omega/pi
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Bandstop design

e In this case, the desired performance for the over-

all filter is achieved by requiring that

—Q, < ¢p(w) — pa(w) <, for w e [0, 0.157],

(24a)
Q. < ds(w) — dalw) < 27— O

for we X, =10.15057, 8445r],
(240)

21—Q), < ¢p(w)—da(w) < 27+, for w € [0.857, 7.
(24c¢)
e When Egs. (24a) and (24c) are satisfied, the over-
all filter achieves the desired passband behavior.

See the following four transparencies.

e When Eq. (24b) is satisfied, the overall filter

achieves the desired stopband behavior.



- 34 -

Mapping a nonlinear-phase FIR filter to a band-
stop filter being implementable as a tapped
cascaded interconnection of two identical all-

pass filters.

Prototype Filter G(w) Omega = phiB(omega) - phiA(omega)

N /\ 2+a

0 0.5 1
Amplitude in dB omega/pi
Passband edges = 0.15*pi, 0
0.85pi .| "I:;ransfo.rmed
Stopband edges = 0.1505"pi, £ .ecurswe
) o 40} Filter H(z)
0.8445pi =
a = 0.236809 é‘ -607
= <
b = 0.929394 _8o!
-100
0 0.5 1

omega/pi



[phiB(omega)—phiA(omega))/pi

Phase difference ¢p(w) — ¢p4(w) between the all-
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pass filters B(z) and A(z)

2.5

—h
ol

—

o
o1

Difference in the phase responses of the allpass sections

! ! ' ' ' ! ' ' ,
i i ‘ | ; i ; ; i
0.1 02 03 04 05 06 07 08 09 1

Angular frequency omega/pi



Amplitude in dB
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Amplitude response for the overall filter H(2)

Overall filter H(z)
! ! ! ! ! ! ! ! !
i . , i |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Angular frequency omega/pi
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Overall filter H(z): Passband details

Overall filter: Passband details
1.01 % ! ! ? ? % ! !
1.008 R S R -
1006 .....................................................................
1.004 .......................................................................
1'002 ........................................................................
)]
©
=2
i 1 R I SRR
g :
< - .
0'998 ......................................................................
0'996 .....................................................................
0.994 .....................................................................
0992 P ....................................................................
N R . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Angular frequency omega/pi
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Another interpretation of the above mapping

e The allpass filters providing the desired mapping

are given by

4 1,
ré — 2rpcos Ozt + 277

Alz) = k[[l 1 —2r,cosOpz=t + riz=2 (25a)
and
B(z) = fI ;rk —I;z__ll : 7“2 — 2714 CO8 94_,2;1 —1—22__227
il S O e 1 —2rqcos8427 4 1z

(25b)
where 71 = r9 = 0.99905237, r3 = r4 = 0.92380310,
rs = 0.70703897, r¢ = —r5, r7 = rg = 0.99064750,
6, = 0.15008333m, 68, = w — 01, 03 = 0.13727944~,
0, = m — 03, 07 = 0.148908387, and 6y = 7w — 65.

e Like in the previous cases, F'(z) = [A(z) + B(z2)]/2
is an elliptic bandstop filter with the same pass-
band and stopband regions as the overall filter.
The passband ripple and the stopband attenuation
are 0.61531551 dB and 19.118591 dB, respectively.

See the following three transparencies.
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Phase responses of A(z) and B(z) in the band-

stop case

Phase responses of the allpass sections

phiB(omega)

mega)

phiA(o

Phase/pi
A
I

_8 i ! ! i | ! i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi




Amplitude in dB
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Amplitude response for F(z) = [A(z) + B(2)]/2 in
the bandstop case

Response for the parallel connection [A(z)+B(z)]/2

10+ - -

' i | | i |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi




Amplitude in dB
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Amplitude response for F(z) = [A(z) + B(2)]/2 in
the bandstop case

Passband details

1 I T | T i 1
g T - O L S N I P P ..........
-1 } ! { | L ! ! l 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi
Stopband details
—'15 T | 1 T T 1 1 1 T

Amplitude in dB

l i i i i
0.3 0.4 0.5 0.6 0.7
Angular frequency omega/pi
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Bandpass design

e In this case, the desired performance for the over-

all filter is achieved by requiring that

=27+ < ¢pp(w)—da(w) < —=Q, for w € [0, 0.34957],

(26a)
—Q, < ¢p(w)—ga(w) <Q, for we X,=1[0.357, 0.657],
(260)
Qs < pp(w) —pa(w) <27 —Q; for w € [0.65057, 7.
(26¢)

e When Eqgs. (26a) and (26¢) are satisfied, the over-
all filter achieves the desired stopband behavior.

See the following four transparencies.

e When Eq. (26b) is satisfied, the overall filter

achieves the desired passband behavior.
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Mapping a nonlinear-phase FIR filter to a band-
pass filter being implementable as a tapped
cascaded interconnection of two identical all-

pass filters.

Prototype Filter G(w) Omega = phiB(omega)-phiA(omega)
10 _—— | S — P Ve b
_ 0.5
—————————————— & b ----a
g 0
-------------- | N
-0.5
=  E=ocAToooooo 2.
100 0 0.5
Amplitude in dB omega/pi
Passband edges = 0.35*pi, Ot Trans—
O.65pi 0 20 _formed
. © T<Y!IRecur-
Stopband edges = 0.3495*pi, £ .
. o _40lSive
a = 0.236809 ‘_é‘ -60H
= <
b =0.929394 _80
-100

0.5 1
omega/pi



— 44 -

Phase difference ¢p(w) — ¢4(w) between the all-
pass filters B(z) and A(z)

Difference in the phase responses of the allpass sections
1.5 T 1 T ! T | ! ! T

o
[6)]
T

[phiB(omega)-phiA(omega)l/pi
o
1

_15 i i I i A |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi



Amplitude in dB
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Amplitude response for the overall filter H(z)

Overall filter H(z)

...................................

-100
0

0.1

0.2

0.3

0.4

0.5

0.6
Angular frequency omega/pi

0.7 0.8 0.9 1
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Overall filter H(z): Passband details

Overall filter: Passband details
! !

1.01 T

1.008 ; :

1.006

1.004 -

1002_ ,,,,,,,,,,,,,, SN R

Amplitude

0.998 -

0.996 -

0.994 -

0.992_ ....... :
0.99 ; : ; i i ,
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Angular frequency omega/pi
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Another interpretation of the above mapping

e The allpass filters providing the desired mapping

are given by

4 _ _
T%———2rkcos€kz Ly 272

A(z) = 2
(2) g 1 — 27 cos Ozt + riz=2 (27a)
and
[ ~1 —2
re —2rpcosOrz™t + 2
B(z)=—-]]+ g (27b)

1 — 2r.cos@rz=1 + r2z—2’
e k k + 71

where r; = ry = 0.99905237, r3 = r, = 0.92380310,
rs = 0.70703897, r¢ = ry = 0.99064750, 6, =
0.349916677, 6 = m — 6, 03 = 0.362720567, 6, =
T — 05,05 = /2, 8 = 0.351091627, and 07 = 7 — 6.
e Like in the previous cases, F'(z) = [A(z) + B(z)]/2
is an elliptic bandstop filter with the same pass-
band and stopband regions as the overall filter.
The passband ripple and the stopband attenuation
are 0.61531551 dB and 19.118591 dB, respectively.

See the following three transparencies.
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Phase responses of A(z) and B(z) in the band-

pass case

Phase responses of the allpass sections

Phase/pi
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Amplitude response for F(z) = [A(z) + B(z)]/2 in

the bandpass case

Response for the parallel connection [A(z)+B(z)]/2
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the bandpass case

[A(z) + B(2)]/2 in

Passband details
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Simultaneous Conditions for the allpass filters

and the additional tap coefficients

We recall that the transfer function of the first
figure of page 5 is given by

N
H(z) = [B(2)]VH(z) = Y _an][A()]"[B(=)]" ",
n=0 (28)
Let the conditions for this overall filter be given
by
1-6, < |H(E)| <1+6, for we X, (29)
|H(e')| < 6, for we X, (29b)
where X, and X; may consist of several bands.

Based on the above introductory examples, the
conditions for the allpass filters A(z) and B(z) as
well as for the tap coefficients a(n) can stated in

terms of the following two transfer functions:

Gw) = a[njuw™ (30)

and

F(z) = [A(z) + B(2)]/2. (31)
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Here, G(w) containing the additional tap co-
efficients a(n) is a mnonlinear-phase FIR filter,
whereas F'(z) is an IIR filter being implementable
as a parallel connection of our two stable allpass

filters.
The simultaneous conditions are given by
1-6, < |G| <1465, for Qe€[0, Q)32a)
IG(e?N)| < 6, for w e [Q,, 7|(320)

and
16, <|F(e®)| <1 for weX, (33a)
F(e™)] <8, for we X, (33b)
where

gp =1 —cos(9,/2), 85 = cos(€2/2). (33¢)

Here, the basic problem for the given value of N

is to find a proper set of the values of 2, and ;.

The following transparencies illustrate how to de-
termine €2, and €, as well as G(w) in the desired

manner.
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Design of the nonlinear-phase FIR filter G(z)

e We utilize the Herrmann-Schiissler technique for
designing nonlinear-phase filters (see the lecture
notes on Digital Filtering II). The basic difference
is that the intermediate linear-phase FIR filter is

an extraripple filter.

Step 1: Determine

; 23, = ()

1+ (8,)% + (6)°/2
(34)

Step 2: Find the extraripple FIR filter E(w) of
order 2N in such a way that in the passband its
zero-phase frequency response oscillates exactly be-
tween 1 =+ gp and in the stopband exactly between
+6,.
e Let the number of passband ripples be L + 1
(the ripple at the edge is not included in this

number).

e Determine €, (€;) to be the last (the first)

extremal point where the zero-phase frequency
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achieves the value 1 — gp (6s).

e As an example, the following three transparen-
cies show the characteristics for the extraripple
design with ¢, = 0.0076, J; = 0.00076, N = 4,
and L+ 1=2.
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s
Step 3: Form E(w) = d,w ™ + E(w).
e For this filter, the zero-phase response os-
cillates within 1 =+ gp + 53 in the passband
0, Q)] and within 25, and zero in the stop-
band [Qg, m].
e Furthermore, it has double zeros on the unit

circle. See the following three transparencies.
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e The resulting F(w) is factorizable as
E(w) = e[0] Ey(w) Ex(2)[Es(w)[*[Es(w)]*,  (35a)

where ¢(0) is the first impulse response value and

M
1
Ei(w) = H(l — [2(rg + r_) cos O |w ™
k
k=1
+ [ré + % + 4 cos? O ]w™? (35b)
Tk
1
— [2(r, + —) cos Oplw™> + w™?),
T'k
M, |
Es(w) = H(l — 7% + ?—]w_l +w™?), (35¢)
k
k=1
M3
Es(w) = H(l — [2cos@plw™! + w™?), (35d)
k=1
Ey(w) = [1 +w 1M, (35¢)

e Fi(w) contains M; zero quadruplets at w =
rret% and w = (1/r,)e % for k=1,2,---, M.

e Fo(w) contains M, reciprocal zero pairs on the
real axis at w =7y, 1/7; for k=1,2,---, M.

e Fs(w) contains Mj zero pairs on the unit circle at

w = =% for k=1,2,---,Mj.
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e F,(w) contains M, zeros at z = —1.

e If there are L + 1 extrema in the passband (the
extrema at the cutofl point Q@ = (), is not in-

cluded), then
M1 = LL/2_‘, MQZL—Ml, (36&)
M;=|(N-L)/2|, My=N — L —2Ms, (36D)

where |x]| stands for integer part of z.
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Step 4: Form a minimum-phase filter G(w) by
picking up the zeros inside the unit circle and one

each of the double zeros on the unit circle.

e This gives

G(w) = CG1(w)Ga(2)G3(w)Gy(w), (37a)

where
My
Gi(w) = [ [(1 = (2r;cosOp)w™ + rfw™?), (37b)
k=1
Go(w) = H(l — ™), (37¢)
k=1
M; R
Gs(w) = H(l —[2cosOpJw™t +w™?), (37d)
k=1
Guy(w) = (1 +w )M (37e)

e Finally, find C' in such a way that the pass-

band average becomes equal to unity.

e The resulting |G(e’)| oscillates in the pass-
band [0, ©,] between the limits 1 £ 4, and in
the stopband [, 7| between the limits §; and

ZETo.
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e This is quaranteed by selecting the ripples of
the prototype linear-phase extraripple filter ac-
cording to Eq. (34).

e Note that the above G(w) is expressible in the

form

=C H bk —I— bk ’LU_l -+ bk(2)w_2) X

N2
] [(ex(0) + cx(1)w™),
k=1
(38)
where the b,(0)’s and ¢(0)’s are equal to
unity.
e These are directly the additional tap coeffi-

cients in the second structure of page 5.

e The following transparencies show the charac-
teristics of the resulting G(w) in our example

case.

e After these transparencies, a Matlab-file ex-
tramin.m is introduced for automatically per-

forming the above procedure for us.
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Matlab-file extramin.m

Given d,, d5, N (the number of subfilters), and
L+ 1 (the number of passband extrema), this rou-
tine automatically finds out the corresponding ex-

traripple minimum-phase solution.

It gives G(w) in the form of Eq. (38), where the
bx(0)’s and c¢x(0)’s are equal to unity.

It gives also €}, and 2, as well as the ripple val-
ues for F(z), which are given by Eq. (33c).

What is left is to determine L + 1 in such a way
that the criteria for F'(z) become as mild as pos-
sible so that they can be met by the minimum fil-

ter order.

In the lowpass and highpass cases, we can use el-
liptic filters of odd order (the orders of the allpass
sections A(z) and B(z) must differ by one.)

If an elliptic filter is used in the bandpass and
bandstop cases, the order must be two times an
odd integer (the difference in the orders must be

two).
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As we noticed in the course Digital Filtering II,
there are more sophisticated design techniques for
bandpass and bandstop filters and all what is

needed is that the difference in the orders is two.

For N subfilters, we can select L + 1 between 1
and N. In most cases, L+1 =1 or L+1 =2 gives
the mildest criteria for F(z).

extramin.m saves some data in file minfir for fur-

ther use.
You can find-this-routinein—the following trans-

parencies.



% Matlab m-file (extramin.m) for determining extraripple
% minimum-phase FIR filter solutions for the given ripple
% values for the given order N and for the given number of
% ripples in the passband. The number of zeros off the unit
% circle is the number of passband ripples - 1.

% A modified Remez-routine, called remmin.m, for determing

% the starting point linear-phase FIR filter solution is called.

% Also files, called fircasam.m and firam.m, are needed.

% Tapio Saram"aki 5.3.1996

% All the files can be found in Sun's: ~ts/matlab/sldsp
clear all
close all
disp('Hi there')
disp('l am an program for designing extraripple’)
disp('minimum-phase lowpass FIR filters')
dp=input('Passband ripple=");
ds=input('Stopband ripple=');

IP=input('Number of passband ripples=');
N=input('Number of subfilters=");
den=1+dp/2-ds"2/2;
Dp=2*dp/den;Ds=(ds"2/2)/den;

NN=2"N

% Find the starting-point linear-phase FIR filter

%

% xx and yy contain the extremal points
[xx,yy,h,cut]l=remmin(NN, [Dp Ds], IP, [0 1], [1 1], 1);
cut=2"cut;
dbarp=max(yy(1:N+1))-1;dbars=-min(yy(1:N+1));
A=2/(sqgrt(1+dbarp+dbars)+sqrt(1-dbarp+dbars));
for k=1:N+1

ome(k)=acos(xx(k))/pi;
y(k)=A*A*(yy(k)+dbars);
end

%

% The value at DC for the minimum-phase design

%

MINDC=sqrt(y(1));

%

% NZ, the number of zeros on the unit circle, is N-IP-1

% NP, number of zeros off the unit circle, is IP-1

%

NP=IP-1;NZ=N-(IP-1);



%
% For NZ odd, there is a zero at z=-1 and NU=(NZ-1)/2 zero
% pairs on the unit circle at frequencies ome(N-2*k) for
% k=1,2,...,NU
% For NZ even, there is no zero at z=-1 and NU=NZ/2 zero
% pairs on the unit circle at frequencies ome(N+1-2*k) for
% k=1,2,...,NU
% NZ1 is the number of zeros at z=-1
NZ1=1;
if 2*floor(NZ/2)==NZ NZ1=0;end
NZU=floor(NZ/2);
for k=1:NZU
OM(k)=ome(N+2-NZ1-2*k);
end
%
% For NZ1=1, there is a filter part with impulse response
% gz1(0)=gz1(1)=1
%
if NZ1==1 gZ1(1)=1; gZ1(2)=1;end
%
% There are also NU filter parts 1/2(1+w”(-2))-cos(pi*OM(K))w/(-1)
% for k=1,2,..., NU
%
for k=1:NZU
gZU(k,1)=1;gZU(k,3)=1;9ZU(k,2)=-2*cos(pi*OM(k));
end
% For NP > 0, there are zeros inside the unit circle.
% For this purpose, we use the Lagrange interpolation
% formula and the points ome(k) for k=1,...,IP for generating
% the squared-magnitude function corresponding to these zeros.
%
NIN1=0;NIN2=0;
if NP> 0
for k=1:IP
A=1;
if NZ1==1 A=2*cos(pi*ome(k)/2);end
for1=1:NZU
A=A*2*(cos(pi*ome(k))-cos(pi*OM(l)));
end
yy(k)=y(k)/(A*A);end
% Next we find the zero-phase frequency response corresponding
% to the squared-magnitude function of the filter part having



% zeros inside the unit circle
% What is now remaining is to evaluate the impulse
% response coefficints of the resulting filter.
% To do this, we evaluate the zero-phase frequency
% response of our filter at 2/l > 2(IP-1)+1 equally spaced
% frequencies and use the IFFT.
I=log2(IP);1=round(l)+1;k=2";
w=0:2*pi’k:2*(k-1)*pi/k;
B=zeros(size(w));
for k=1:1P
C=ones(size(w));
D=1;
for I=1:1P
CC=cos(w)-cos(pi*ome(l));
if ==k CC=ones(size(w));end
DD=cos(pi*ome(k))-cos(pi*ome(l));
if ==k DD=1;end
C=C.*CC;
D=D*DD;
end
B=B+yy(k)*C/D;
end
b=ifft(B);
b=real(b);
b=fftshift(b);
for k=1:2*(IP-1)+1
hh(k)=b(2(I-1)+1-(IP-1+1)+k);end
Y%
% Find the zeros inside the unit circle
Y%
r=sort(roots(hh));
rmi=[ J;
for i=1:length(r)
if abs(r(i))< 0.999, % roots inside the unit circle
rmi(length(rmi)+1)=r(i);end
end
%
% Sort the zeros according to the increasing angle
%
[Y,l]=sort(angle(rmi));
rmi=rmi(l);
Y%



%o
% For NP odd, there is a real zero at z=rmi(1) and
% NIN2=(NP-1)/2 zero pairs inside the unit circle
% pairs on the unit circle at z=rmi(2*k), rmi(2*k+1)
% for k=1,2,...,NIN2
% For NZ even, there is no real zeros and NIN2=NZ/2 zero
% pairs inside the unit circle at at z=rmi(2*k-1),
% rmi(2*k) for k=1,2,...,NIN2
% NINT1 is the number of real zeros
NIN1=1;
if 2*floor(NP/2)==NP NIN1=0;end
NIN2=floor(NP/2);
%
% For NIN1=1, there is a filter part 1-rmi(1)w/(-1)
Yo
if NIN1==1 gIN1(1)=1;gIN1(2)=-rmi(1);end
Y%
% Form NIN2 second-order filter parts
Y%
for k=1:NIN2
ang=angle(rmi(2*k));
rr=abs(rmi(2*k));
giN2(k,1)=1;gIN2(k,2)=-2*rr*cos(ang);
gIN2(k,3)=rr*rr;
end
end
%
% Determine the scaling constant scale
Y%
AA=1
if NZ1==1 AA=AA*2;end
if NZU >0
for k=1:NZU
AA=AA*(gZU(k,1)+gZU(k,3)+gZU(k,2));
end
end
if NIN1==1 AA=AA*(gIN1(1)+gIN1(2));end
if NIN2 >0
for k=1:NIN2
AA=AA*(gIN2(k,1)+gIN2(k,2)+gIN2(k,3))
end
end



scale=MINDC/AA;
%
% Form the minimum-phase FIR filter
%
hmin(1)=1;
if NZ1==1 hmin=gZ1;end
if NZU > 0
for k=1:NZU
hu=gZU(k,1:3);hmin=conv(hmin,hu);
end
end
if NIN1==1 hmin=conv(hmin,gIN1);end
if NIN2 >0
for k=1:NIN2
hu=gIN2(k,1:3);hmin=conv(hmin,hu);
end
end
hmin=scale*hmin;
%
% Find the passband edge, that is, the frequency point
% where the value 1-dp is achieved
Y%
xc=(cut(2)+cut(1))/2;
xd=cut(2)-xc;
amdes=1-dp;
%o
% the edge is dsired to be determined with accuracy
% less than or equal to 10/\(-12)*pi
%
kk=ceil(log10((107M2/(cut(2)-cut(1))/1000))/2);
for k=1:kk
[AA,ww]=fircasam(scale,NZ1,NZU,NIN1,NIN2,gZ1,gZU,...
gIN1,gIN2,xc-xd,xc+xd,1000);
[Y,l]=sort(abs(AA-amdes));
ww=ww(l);xc=ww(1)/pi;xd=xd/1000;
end
cutl=xc;
Y%
% Find the passband edge, that is, the frequency point
% where the value 1-dp is achieved
%
xc=(cut(2)+cut(1))/2;



xd=cut(2)-xc;
amdes=ds;
for k=1:kk
[AA,ww]=fircasam(scale,NZ1,NZU,NIN1,NIN2,gZ1,gZU,...
gIN1,gIN2,xc-xd,xc+xd, 1000);
[Y,l]=sort(abs(AA-amdes));
ww=ww(l};xc=ww(1)/pi;xd=xd/1000;
end
cut2=xc;
figure(1)
[AA,ww]=fircasam(scale,NZ1,NZU,NIN1,NIN2,gZ1,gZU....
giN1,gIN2,0,1,10000);
As=30*log10(ds);
plot(ww/pi,20*log10(AA));grid;axis([0 1 As -.1*As]);
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
title('Extraripple minimum-phase filter')
text(0.05, .1*As, ['Filter order ="', num2str(N)]);
text(0.05, .18*As, ...
['Zeros inside the unit circle = ', num2str(IP-1)]);
text(0.05, .28*As, [[Omega_p ="', num2str(cut1,6),'pi]);
text(0.05, .36*As, ['Omega_s ="', num2str(cut2,6),'pi']);
text(.05,.5*As,'For the amplitude of the');
text(.05,.58*As, 'parallel connection:');
hde1=1-cos(pi*cut1/2);hde2=cos(pi*cut2/2);
text(0.05, .7*As,'Passband: deviation');
text(0.05, .78*As,['from unity ="', num2str(hde1,7)]);
text(0.05, .88As,'Stopband: deviation');
text(0.05, .96*As,['from zero = ', num2str(hde2,7)]);
figure(2)
subplot(211)
[AA,ww]=fircasam(scale,NZ1,NZU,NIN1,NIN2,gZ1,gZU,...
giN1,gIN2,0,cut1,10000);
plot(ww/pi,abs(AA));grid;axis([0 cut1 1-1.1*dp 1+1.1*dp]);
ylabel('Amplitude');xlabel('Angular frequency omega/pi');
title('Passband details')
subplot(212)
[AA,ww]=fircasam(scale,NZ1,NZU,NIN1,NIN2,gZ1,9ZU,...
giN1,gIN2,cut2,1,10000);
plot(ww/pi,abs(AA));grid;axis([cut2 1 0 1.1*ds]);
ylabel('Amplitude');xlabel('Angular frequency omega/pi');
title('Stopband details')



figure(3)
z1(1)=0;z2(1)=0;
plot(z1,z2);axis([-100 0 -100 0]);
M1=NZ1+NIN1;M2=NZU+NIN2;step=-100"2/(2*(M1+M2+3)+1);
title('Unscaled Additional Tap Coefficients');
text(-90, step, [num2str(M2), ' second-order sections']);
text(-90, 2*step, [num2str(M1), ' first-order sections'));
text(-90, 3*step, ['C ="', num2str(scale,7)]);
if NZU > 0
for k=1:NZU
b1=gZU(k,1);
b2=gZU(k,2);
b3=gZU(k,3);
[=3+k
text(-90,*step,...
['b',num2str(k),'(',numz2str(0),")
', b',num2str(k),'(',num2str(1),"
', b',num2str(k),'(',num2str(2),"
D
end
end
if NIN2 > 0
for k=1:NIN2
b1=gIN2(k,1);
b2=gIN2(k,2);
b3=gIN2(k,3);
[=3+k+NZU;m=k+NZU;
text(-90,I*step,...
['b',num2str(m),'(',num2str(0),") = ',num2str(b1,7),...
', b',num2str(m),'(',num2str(1),’) = ',num2str(b2,7),...
', b',num2str(m),'(',num2str(2),") = ',num2str(b3,7),...
D
end
end
if NZ1==1;
b1=gZ1(1);
b2=gZ1(2);
|=3+NIN2+NZU+1;m=1;
text(-90,I*step,...
['c’,num2str(m),'(',num2str(0),") = ,num2str(b1,7),...
', ¢',num2str(m),'(',num2str(1),") = ,num2str(b2,7),...

D;

= ",num2str(b1,7),...
= ",num2str(b2,7),...
= ",num2str(b3,7),...



end
if NIN1==1
b1=gIN1(1);
b2=gIN1(2);
[=3+NIN2+NZU+NZ1+1:m=1+NZ1;
text(-90,*step,...
['c',num2str(m),'(',num2str(0),") = ',num2str(b1,7),...
', ¢',)num2str(m),'(',num2str(1),") = ,num2str(b2,7),...
D);
end
bb(1)=scale;bb(2)=NZ1;bb(3)=NZU;bb(4)=NIN1;bb(5)=NIN2;
bb(6)=cut1;bb(7)=cut2;
if NZ1==1;
bb(length(bb)+1)=9gZ1(1);
bb(length(bb)+1)=gZ1(2);
end
if NZU > 0
for k=1:NZU
bb(length(bb)+1)=gZU(k,1);
bb(length(bb)+1)=gZU(k,2);
bb(length(bb)+1)=gZU(k,3);
end
end
if NIN1==1
bb(length(bb)+1)=gIN1(1);
bb(length(bb)+1)=gIN1(2);
end
if NIN2 >0
for k=1:NIN2
bb(length(bb)+1)=gIN2(k,1);
bb(length(bb)+1)=gIN2(k,2);
bb(length(bb)+1)=gIN2(k,3);
end
end
hui=rot90(rot90(rot90(bb)));
save minfir hui -ascii -double
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Example 1: Lowpass filter: w, = 037, w, =

0.301, 6, < 0.01, &, < 0.001

It 1s desired to use N = 4 subfilters and meet the
given criteria as well as possible such that J,/d, =

10.
For 9, = 0.01 and 9, = 0.001, in the L +1 = 2

case F'(z) meets the given criteria with the min-
imum odd order equal to 7 (the orders of A(z)
and B(z) are 4 and 3, respectively).

F(z) meets just the given criteria for ¢, = 0.0076
and 0y = 0.00076.

The introductory lowpass example corresponds to
this case.
Furthermore, the example illustrating the design

of G(w) corresponds to this case.
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Example 2: Lowpass filter: w, = 0.4m, w; = 0.42,
6, < 0.001, 4, < 0.00001

It is desired to design an overall filter meeting

these criteria without general multipliers.

In order to achieve easily implementable tap coef-

ficients for the second structure of page 5, we use
first d, = 0.0009 and 6, = 0.000009.

In this case, a good selection is N =4 and L+1 =

2 in the file extramin.m.

The following three transparencies give the re-

sults.

In this case, G(w) is expressible as

G(w) = [272(1 +w ) +do][27 (1 +w™H)][dy + dyw™],

(39)
where dy = 0.49949677, d; = 1.5377355, and dy =
—0.53813250.

Here, the blocks of the second structure of page 5
are scaled properly and the scaling constant C' is
included in the last term (dy = b1(1)/4, di = 8C,
dy = 8C x c3(1)).
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Example 2: Quantized tap coefficients

e G(w) meets still the ripple requirements after quan-

tizing do, di, and dy in Eq. (39) to values

dg=2"1 — 2711

e The following three transparencies show the charac-
teristics of this G(w). These results are obtained by

using extramex.m

e For F(z) = [A(2) + B(2)]/2, the maximum allowable
deviation of the amplitude response from unity in

AN

the passband is 0, = 0.021882428. The maximum
stopband deviation is gg = 0.025979878. The pass-
band and stopband ripples are thus 0.19217878 dB

and 31.707258 dB, respectively.

e The remaining problem is to find A(z) and B(z) in
such a way that they require no general multipliers.

This will be considered next.
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Example 2: Allpass filters with quantized co-

efficient values

The criteria for F(z) are met by an elliptic filter
of order 7. Hence, A(z) is of order 4 and B(z) is

of order 3.

Using wave lattice filters and a simple quantiza-
tion scheme to be described later on in these lec-
ture notes, the given criteria are met by the fol-
lowing A(z) and B(z):

A(z) contains two second-order sections with adap-

tor coeflicients

m=—21427 4276 qp=2"1_270_277

and

= =20 4254107 =224 975 96
respectively.
B(z) consists of one first-order section with the

adaptor coeflicient
y=2"2423 49277

and one second-order section with adaptor coeffi-

cients
m=-2"1-27-27%
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vy =272 42714270 4 277,

e The following four transparencies show the ampli-
tude responses of F(z) = [A(z) + B(z)]/2 and the

overall filter.

e These plots can be generated by first using ex-

tramex.m and then suballe.m. Please try.

e The plots for our introductory examples can be
generated by first using extramin.m with ¢, =
0.0076, 0, = 0.00076, number of passband extrema
= 2, and number of subfilters = 4. Then use files

suballl.m, suball2.m, suball3.m, and suball4.m.
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Example 2: Comparison with the direct par-

allel connection of two allpass filters

If a direct parallel connection of two allpass filters
is used, then the minimum odd order of an ellip-

tic filter to meet the overall criteria is 17.

In this case, A(z) is of order 9 and B(z) is of or-
der 8.

The first disadvantage of this direct design com-
pared to the proposed design is that it requires
18 bits for the coefficient representation (including
the sign bit).

The second disadvantage is that for the direct de-
sign the radius of the outermost pole is approx-
imately 0.9948, whereas that of the subfilter is
0.9802.

This means that the multiplication roundoff noise
generated by the pure elliptic filter is significantly
higher and it requires a significantly longer inter-

nal data wordlength.

Furthermore, the proposed design requires only 7
distinct multipliers, whereas the elliptic design has

17 multipliers.
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This fact can be exploited by using multiplexing

and implementing A(z) and B(z) only once.

The overall order (number of delays in the overall
implementation) of the proposed design is higher
than that of the direct allpass connection (4-7 =
28 compared to 17).

For more examples, see the enclosed article.

OK, it seems that you like to see one more exam-

ple!
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Example 3: Lowpass filter: w, = 0.17, w, = 0.2,
6, < 0.05, 0, < 0.0001

In this case, G(w) with quantized coeflicients can

be written in the following simple form:

G(w) = C27 (14w 272 (1w ™)+ (27 =2 )w ],
where

C=204+2"*-27"
The following three transparencies show the char-

acteristics of this G(w). These results are ob-
tained by using extramexx.m
For F(z) = [A(z) + B(2)]/2, the maximum al-

lowable deviation of the amplitude response from

)

unity in the passband is 6, = 0.030504468. The
maximum stopband deviation is 5\3 = 0.077800720.
The passband and stopband ripples are thus

0.26908376 dB and 22.180327 dB, respectively.

These criteria are met by A(z) of order 2 and
B(z) of order 1 (the order of F(z) is 3). The

number of bits for the coefficient representation is
6.

For the direct parallel connection the minimum
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odd order is 7 and 14 bits are required for the co-

efficient representation.
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BACKGROUND

Realization of digital filters as a parallel con-
nection of two allpass filters (Lattice WDEF’s)

--oA(Z)‘
Shals

> B(Z) l

— Good finite wordlength properties

— Stopband sensitivity may be a problem
when high stopband attenuation is re-

quired.

Better stopband sensitivity can be achieved
by using
— a cascade of lower order filters or

— tapped cascaded structure:

h(O)Y‘ h(1) n2)\/ hik- 1 h(K)Z
B(z) B(z) e B(z)

OuT




Advantages:
— Better finite wordlength performance

— Implementation using multiplexed hard-

ware
Earlier work:
Sharpening the response of FIR filters
— Kaiser and Hamming [1977]
— Nakamura and Mitra [1982]
— Saramaki [1984]

IIR filters
— Claasen and Mecklenbrauker [1979]



DERIVING THE FILTER STRUCTURE

Prototype nonlinear phase FIR filter

N K
H(w) = }: h(n)w™

Substitution

gives

where A(z) and B(z) are stable allpass fil-

ters.

The proposed filter

K
H(z) = [BE)H(#) = 3_ kAR BE

IN

A(2) A(z) .- JA(z)
h(0) h(1) h(Z)EE h(K1§; h(K)Z;
| B(z) B(z) -t B(2)




FREQUENCY RESPONSE OF THE
PROPOSED FILTER

K n
H() = Y hmlg)
H'(e) = ih(n)e—jn(fza(w)—f,a(w))

where

fa(w) = arg[A(e™)]  fp(w) = arg[B(e")]

|H(e’*)] is obtained from

K
H(@M] = 1) hln)e |
n=0
through the frequency transformation

Q= fp(w) — fa(w)



SIMULTANEOUS FREQUENCY-DO:
CONDITIONS FOR THE ALLPASS
SECTIONS AND PROTOTYPE FILTER

Overall specifications:

1-6, < |H(e™)| <146 for wel,
H(¥)| < & for wel;
Specifications for the lowpass nonlinear phase

FIR filter: |
1—-6, < H(EED < 1+6, for 0<0<Q,
HEeY| < 6, for Q, <Q< 7

The parameters {1, and (), can be chosen

freely
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Specifications for the allpass filters:

f(w)—fa(w) € [2rm={1y, 2rr+Q,] for wel,

fB(w)—fa(w) € [2rmdfls 2rm+(2r—0Q;)] for w € I,

Equivalent specifications using the amplitude
response of the parallel connection of the all-

pass filters:
F(e)| =2|lA(*) + B
| cos{(f() — Fa()}/2}

where

5, =1—cos(,/2), 55 = cos(€,/2)



DESIGN OF THE ALLPASS SECTIONS

— Odd-order elliptic lowpass and highpass
filters

— Bandpass and bandstop filters using fre-

quency transformations

DESIGN OF THE TAP COEFFICIENTS

Design of a nonlinear phase FIR filter of or
der K

— Can be converted into the design of a

linear phase filter of order 2K

— Factorizing the non-negative zero-phase
transfer function into minimum phase

and maximum phase transfer functions



FILTER DESIGN

(1) Given the number of subfilters, find
the minimum subfilter order such that

it is implementable using allpass filters

Single-variable optimization problem where (1,

is the primary unknown

5112 =
a e
Q-
ol1o =
s pd
5;8 o
—
i —
'“—‘? 0.8 (99
%3’ 6 i E
o o
! —
g‘ 0.67 &
oD
E} TRANSITION WIDTH — P
E‘ —40.41 =
l 1 ] 1 | i | =

0 0.2mw 0.4 0.6
PASSBAND EDGE ggP

— The local minima of the order estimate
correspond to extraripple solutions for

the prototype FIR filter

— These extraripple solutions can be found

directly using the algorithm of Hofstet-

ter et al.



FILTER DESIGN

(2) Finding the optimum overall solu-

tion

Using the specified values for 6, and &

leaves no margin for coefficient quantization.

The optimum solution minimizes the pass-

band ripple of the overall filter for the given

ripple ratio.

It is found by reducing the passband and
stopband ripples of the best extraripple pro-
totype FIR filter until the minimum-order el-
liptic subfilter still meets the specifications.
This is a single-variable optimization problem

with respect to 6,.



DESIGN EXAMPLE

wp = 0.37 ws = 0.3017
6, = 0.01 5, = 0.001 (60 dB)

wp = 0.37 ws = 0.3017

§,=001 & =0.001

Number of subfilters = 4

Required Subfilter crder = 7.



DESIGN EXAMPLE

IN dB
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EXAMPLE 1

wp = 047 ws = 0427
6, = 0.001 8s = 0.00001 (100 dB)

Order for elliptic filter = 15.3

i Subfilter Number of subﬁlter; _
order Optimized . Cascade
17 1 1
Q 2 3
7 4 6
5 6 Not possibleﬁ

Coefficient wordlengths:
— 18 bits for direct elliptic design

— 8 bits for the 7th-order elliptic subfilter
with K =4



EXAMPLE 2

w, = 0.17 ws, = 0.27

6, = 0.05 §s = 0.0001 (80 dB)

Elliptic filter of order 7 requires 14 bit coeffi-

cient wordlength.

Design with 3 subfilters

Prototype FIR filter:
H(w) =27'(1+w )]
[272(1 +w™ ) + (27 = 27%)w ]
Elliptic subfilter:
— Minimum order =3

— Parallel connection of a first-order

and a second-order allpass filter

— Coeflicient wordlength = 6 bits



