Exercises consist of both pen\&paper and computer assignments. Pen\&paper questions are solved at home before exercises, while computer assignments are solved during exercise hours. The computer assignments are marked by \texttt{python} and Pen\&paper questions by \texttt{pen\&paper}.

1. \texttt{pen\&paper} \textit{Error rate confidence limits.}

 We train a classifier with a set of training examples, and test the accuracy of the resulting model with a set of $N = 100$ test samples. The classifier misclassifies $K = 5$ of those.

 a) Find the 90\% confidence interval of the result. Hint: The classification accuracy can be modeled using binomial distribution, whose confidence intervals are discussed here:

 \url{https://en.wikipedia.org/wiki/Binomial_distribution#Confidence_intervals}

 b) Another classifier misclassifies only 3 test samples. Is it better than the first one with statistical significance at 90\% confidence level?

2. \texttt{pen\&paper} \textit{Design a regularized LDA classifier.}

 Let’s revisit the LDA design of Exercise set 4, but add a regularization term. The non-regularized LDA solution is given by as

 \[w = (\Sigma_0 + \Sigma_1)^{-1} (\mu_1 - \mu_0) \]

 The regularized solution with regularization parameter $\lambda > 0$ is defined as

 \[w = (\Sigma_0 + \Sigma_1 + \lambda I)^{-1} (\mu_1 - \mu_0) \]

 However, as the scale of w is not important—only the direction—let us use an alternative definition instead:

 \[w = \lambda (\Sigma_0 + \Sigma_1 + \lambda I)^{-1} (\mu_1 - \mu_0) \]

 This definition avoids the convergence of w towards zero as $\lambda \to \infty$.

 a) Compute the regularized LDA weight vector\footnote{Remember the inversion rule for 2×2 matrices:
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \]}

 \[\mu_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mu_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

 \[\Sigma_0 = \begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix} \quad \Sigma_1 = \begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix} \]

 b) Where does w converge as $\lambda \to \infty$?
3. **python** Let us use a pretrained VGG16 model for last week’s GTSRB experiment. Instead of using the custom ConvNet of last week, initialize a VGG16 net as described on Slide 15 of the slide set at http://www.cs.tut.fi/courses/SGN-41007/slides/Lecture6b.pdf. Add dense layers after the convolutional pipeline such that `model.summary()` reports the following (top of listing omitted):

```
block5_conv3 (Conv2D) (None, 4, 4, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 2, 2, 512) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 2048) 0
_________________________________________________________________
dense_3 (Dense) (None, 100) 204900
_________________________________________________________________
dense_4 (Dense) (None, 2) 202
=================================================================
Total params: 14,919,790
Trainable params: 14,919,790
Non-trainable params: 0
```

Compile and run the net. Note that you will need a GPU (e.g., TC303 machines) for training this net.

4. **python** Apply the recursive feature elimination approach (sklearn.feature_selection.RFECV) with logistic regression classifier for the arcene dataset. The data can be downloaded in *.mat format from:

http://www.cs.tut.fi/courses/SGN-41007/exercises/arcene.zip

Use `scipy.io.loadmat` to open the file. Note that your have to ravel `y_train` and `y_test` so that sklearn will accept them.

a) Instantiate an RFECV selector (call it `rfe` from now on). To speed up computation, set `step = 50` in the constructor. Also set `verbose = 1` to see the progress.

b) Fit the RFECV to `X_train` and `y_train`.

c) Count the number of selected features from `rfe.support_`.

d) Plot the errors for different number of features:

```
plt.plot(range(0,10001,50), rfe.grid_scores_)
```

e) Compute the accuracy on `X_test` and `y_test`. You can use `rfe` as any other classifier.

5. **python** Apply L_1 penalized Logistic Regression for feature selection with the arcene dataset. Find a good value for parameter C by 10-fold cross-validating the accuracy. Study the sparseness of the solution: how many features were selected?

a) Instantiate a LogisticRegression classifier. Set `penalty = ‘l1’` in the constructor.
b) Cross validate the accuracy of a range of C values (see earlier exercises).

c) Fit the LogisticRegression to x_{train} and y_{train}.

d) Count the number of selected features from $\text{clf.coef_{}}$, where clf is your logistic regression classifier.

e) Compute the accuracy on x_{test} and y_{test}.