RANDOM FOREST
(and other ensemble methods)
Random Forest

- Random forest (RF) is a popular tree-based classifier, proposed by Breiman in 1993.
- The RF is based on a collection of *decision trees*.
- A decision tree is a straightforward if-then-else-like diagram that combines individual attributes into a decision.
- Decision trees are easily trained to learn the data.
- For example, the tree on the right predicts the time of year from the following measured attributes: {Temperature, Snow, Rain, Sunny}.
Random Forest

- The problem of decision trees is that they overlearn the data, i.e., the training data is memorized with a poor ability to generalize.
- With no restrictions, the DT will have one root-leaf-path per sample, which is essentially same as nearest neighbor.
- RF avoids this by training many "imperfect" trees.
- Each tree is trained with a subset of samples and a subset of features, i.e., some of the attributes are hidden from the training.
Random Forest

- The RF extracts values at randomly selected coordinates.
- For example, if we have a data matrix $X \in \mathbb{R}^{10 \times 4}$ (i.e., 10 samples with 4 features each), we might train trees with the following subsets of the data:
 - **Tree 1:** Train using rows $\{6,4,7,2,6,3\}$ and columns $\{1,2,4\}$
 - **Tree 2:** Train using rows $\{1,10,2,1,7,9\}$ and columns $\{1,3\}$
 - **Tree 3:** Train using rows $\{7,2,7,3,9,3\}$ and columns $\{2\}$
 - ...
- Note that rows (samples) are sampled *with replacement*, i.e., rows may appear more than once.
- Columns are sampled *without replacement* (it does not make sense to repeat the same data).
Random Forest

- After training many trees each with different samples and features, the RF predicts the class by taking the majority vote: what is the most frequent label.
- The number of trees varies from a few dozen to few thousand—default in Python is 10.
- The attached picture is produced by a 10-tree random forest.
Random Forest

- The collection of trees gives a natural way of estimating class probabilities: Just use the proportion of trees voting for each class.
- RF's also includes a method for assessing feature importances: randomly shuffle each feature at a time and test how much the accuracy drops.
- Loosing an important feature drops the accuracy a lot.
- Shuffling a non-important feature will not change the result much.
Random Forest in Scikit-Learn

```python
# Training code:
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
clf.fit(X, y)

# Testing code:
>>> clf.predict([0, -4])
array([ 0.])
>>> clf.predict([0, -2])
array([ 1.])
>>> clf.predict_proba([[0, -4], [0, -2]])
array([[ 0.9, 0.1],
       [ 0.4, 0.6]])
>>> len(clf.estimators_)
10
>>> type(clf.estimators_[0])
sklearn.tree.tree.DecisionTreeClassifier
```

- The RandomForestClassifier class is used via the normal interface (.fit() and .predict()).
- Individual trees can be accessed, as well: clf.estimators_ is a list of DecisionTreeClassifier objects.
- One of the 10 trained trees is visualized on the next slide (plot created using sklearn.tree.export_graphviz).
Since the introduction of Random Forest by Breiman in 1993, several extensions have been proposed. As a group, these are called ensemble methods, because they all consist of an ensemble of weak classifiers. Most important ones are briefly summarized in the following slides.
AdaBoost Paradigm

- The **AdaBoost** paradigm was proposed by Freund and Schapire in 1995.
- Also in this case, the classifier consists of a collection of weak classifiers (most often decision trees).
- The difference to other ensemble methods is that trees are grown sequentially:
 1. Assign each sample a weight w_1, \ldots, w_N.
 2. Grow a tree minimizing the classification error weighted by w_n. That is, we emphasize the samples with large w_n.
 3. Append the new tree to our ensemble \mathcal{E}.
 4. Increase the weights for those samples that were incorrectly classified by \mathcal{E}.
 5. If not enough trees, then return to step 2.
- Implemented as sklearn.ensemble.AdaBoostClassifier.
Gradient Boosted Regression Trees

- **Gradient Boosted Regression Trees** were proposed by Friedman in 1999.
- Another boosting algorithm similar to AdaBoost.
- In this case, the training sequence is the following.
 1. Initialize the ensemble E by a single decision tree fit to the data.
 2. Train another tree for correcting the errors made by E, i.e., attempt to predict $y - F_E(X)$.
 3. Append the new tree to our ensemble E.
 4. If not enough trees, then return to step 2.
- Implemented as `sklearn.ensemble.GradientBoostingClassifier`.
Extremely Randomized Trees were proposed by Geurts et al. in 2006.

The idea is to make the trees even weaker, but to compensate that with the large number of estimators in the ensemble.

More specifically, not only the features and samples shown to the tree are randomized, but also the growing of individual trees is random.

In particular the *split point i.e.*, the thresholds of comparisons like $X[1] \leq -2.7025$ is randomized (see the graph of a decision tree at an earlier slide.

Implemented as `sklearn.ensemble.ExtraTreesClassifier`.
Comparison of Methods

- The four ensemble methods were compared with the **arcene dataset**: https://archive.ics.uci.edu/ml/datasets/Arcene.
- For randomized algorithms, we iterate the experiment 100 times.

```python
# Load Arcene data; 100+100 samples with dimension 10000:
# Mass spectrometer measurements from ovarian cancer patients and healthy controls.
X_train, y_train, X_test, y_test = load_arcene()

classifiers = [(RandomForestClassifier(), "Random Forest"),
              (ExtraTreesClassifier(), "Extra-Trees"),
              (AdaBoostClassifier(), "AdaBoost"),
              (GradientBoostingClassifier(), "GB-Trees")]

for clf, name in classifiers:
    clf.n_estimators = 100
    accuracies = []
    for iteration in range(100):
        clf.fit(X_train, y_train)
        y_hat = clf.predict(X_test)
        accuracy = accuracy_score(y_test, y_hat)
        accuracies.append(accuracy)
```

Random Forest: accuracy = 0.73 ± 0.02

Extra-Trees: accuracy = 0.77 ± 0.04

AdaBoost: accuracy = 0.62 ± 0.00

GB-Trees: accuracy = 0.71 ± 0.01
Comparison of Methods

- Let’s add a bunch of other classifiers into our for loop.
 - 1-Nearest Neighbor: 0.88
 - Logistic Regression: 0.84
 - Linear SVM: 0.83
 - 5-Nearest Neighbor: 0.82
 - LDA: 0.79
 - Extra-Trees: 0.77 ± 0.04
 - 9-Nearest Neighbor: 0.73
 - Random Forest: 0.73 ± 0.02
 - GB-Trees: 0.71 ± 0.01
 - AdaBoost: 0.62
 - SVM with RBF kernel: 0.56
- It seems that linear models and NN excel with this data.