3D tracking systems
(device properties and tracking methods)

SGN-5406 Virtual Reality 2012
Atanas Boev

based on material by
Stanislav Stankovic and Ismo Rakkolainen
Outline

3D tracking overview → Device properties → Tracking methods → Motion capture

- Accuracy
- Jitter
- Latency
- Sensor drift
- Update rate

- Mechanical
- Electromagnetic
- AC
- DC
- Time of flight
- Phase
- Inside-out
- Outside-in
- Gyro
- Accelerometer

- Acoustic
- Optical
- Inertial
- Hybrid

Body pose → Facial expression
Overview

WHAT IS 3D TRACKING?
3D tracking

- Tracker - a device which measures position and orientation of an object in 3D space
 - Dedicated hardware device
 - Continuously measures position of tracked objects
 - Works in real time

Mechanical head tracker (1993)

http://hdl.handle.net/2429/2633
Applications of 3D tracking

- Used in some VR systems
 - Used in CAVEs
 - Not needed for VR training environments (e.g. flight simulators)
- Essential for AR systems
- Beneficial for geo-location
 - Positioning (e.g. “you are here”)
 - Tracking (e.g. “where is my iPhone?”)
 - Navigation (e.g. how to get from A to B)
 - Geo-fencing (e.g. turn off alarms in cinema)
VR tracking

• **Target:**
 • Head
 • Hand (e.g. 3D controller)
 • Limbs
 • Body (entire body)

• **Purpose**
 • Viewpoint direction control (field of regard)
 • Viewpoint position control (virtual locomotion)
 • Object manipulation
 • Gesture-based input
 • Avatar control (e.g. VR world, cinema, animation)
AR tracking

- **Registration** – coordinate alignment between real and synthetic objects
 - Virtual objects superimposed over real images (e.g. games, AR maps)
 - Computer generated 3D graphics superimposed on live video stream

- **Real time tracking is critical for AR**
 - Head turn 50 deg/s + system delay <10ms = angular error <0.5 deg
Market considerations

- **Product**
 - Cost (how much people are willing to pay)
 - Social acceptance

- **Performance**
 - Accuracy (tracking precision)
 - Speed (tracking rate)

- **Ease of use**
 - Encumbrance – discomfort for the users, limiting their natural movement
 - Ease of disengagement (how easy is to put on/take off)
 - Interference with the environment (how easy is to install in a given environment)
Degrees of freedom (reminder)

- DoF – Degrees of Freedom.
- Rotation or translation along the axes.
 1. Moving up and down
 2. Moving left and right
 3. Moving forward and backward
 4. Tilting forward and backward (pitching);
 5. Turning left and right (yawing);
 6. Tilting side to side (rolling).
Tracking DoF

- **3D tracking of a point**
 - 3 DoF – Translation along (X,Y,Z)

- **3D tracking of an object**
 - 3 DoF – Translation along (X,Y,Z)
 - 3 DoF – Rotation along (X,Y,Z)
 - 6DoF total

- **More DoF**
 - Tracking of multiple points
 - Tracking of multiple objects
 - Multiple objects in reference to each others
 - 20+ DoF for human body and limbs

- **Motion Capturing**
 - Body posture and position
 - Facial expression
Device properties

ACCURACY, JITTER, LATENCY, DRIFT, UPDATE RATE
Tracker Accuracy

- **Accuracy** - the difference between the object’s actual position and the position reported by tracker measurements
 - Different accuracy for position and rotation.
- **Resolution** - the minimum change that the sensor can detect.
 - Not equal to accuracy
 - Static and dynamic resolution might differ (e.g. sensor drift)
- **Operating range** – the range where the sensor operated with “acceptable” accuracy
 - Expressed as distance from the origin of the reference system of coordinates.
 - Accuracy drops with the distance
- **Repeatability** – expectation for same input to give the same output
 - Same sensor movement to give the same measurements
 - Can be considered as “sensor noise”
 - “Low” sensor noise allows for dynamic sensor calibration
Tracker Jitter

- Jitter - the change in tracker output when the tracked object is stationary
 - Can also be regarded as “tracker noise”
 - A tracker with no jitter gives constant value as output if the object is stationary.
 - Can be minimized using thresholding

Unwanted effects in graphics

- Tremor
- Jumpy virtual objects
- Can be filtered but that increases latency
Tracker Latency

- Latency - the time delay between action and result.

- The time between the change in position/orientation of the object and the time the sensor detects the change.

- Several negative effects on the simulation:
 - Spoils the experience, >50 ms: no immersion
 - Introduces discomfort, >10 ms: potential simulator sickness.
Tracker Drift

- **Drift** – increase of the tracker error with time
 - Related to the dynamic sensitivity of the tracker
 - Accumulated (additive) error over time

- **Tracker accuracy decreases with time**
 - Needs (periodic) recalibration
Tracker Update Rate

- **Update rate** - the number of measurements that the tracker reports in an unit of time
 - Larger update rate, better dynamic response of the simulation.
 - Typically 30-240 datasets/s.

- **Multiplexing effect** - If the tracker measures several objects, sampling rate may drop
 - total transfer rate is limited, needs to be shared for multiple objects. With addition of each new object bandwidth per individual object decreases.

![Graph](image)
Tracking technologies

HOW THE OBJECT IS TRACKED?
Tracking technologies

- Mechanical
- Electromagnetic
- Acoustic
 - Ultrasonic
- Optical
 - Videometric
- Inertial
 - Accelerometers, MEMS
- Hybrid
Non-contact trackers

- Non-contact trackers have largely replaced mechanical ones
- 3D measurement technology should not be intrusive and hinder the user’s freedom of motion in the process of tracking

Technologies:
- Electromagnetic trackers
- Ultrasound trackers
- Optical trackers
- Accelerometers
- Gyroscopes
Tracking technologies

(ELECTRO-) MECHANICAL TRACKERS
Electromechanical Trackers

- **Contact based tracking**
 - Consists of a serial or parallel kinematic structures interconnected using joints with sensors
- **Accuracy fairly constant over the work envelope of the tracker**
 - Immune to electromagnetic interferences
 - Very low jitter
 - Very low latency
 - Relatively low-cost
- **Tracking of the end of the arm in reference to the coordinate system tied to root of the arm.**
BOOM

- **BOOM (Binocular Omni-Orientation Monitor)**
 - The display is attached to a mechanical arm with a counterbalance.
 - Allows stereoscopic visualization
 - Counterbalanced, highly accurate, motion-tracking support structure for practically weightless viewing

- **Resolution is unsurpassed by any alternative technology**
 - 6 DoF
 - Translation movement accuracy up to 0.16”.
 - Angle resolution 0.1 deg.
Desktop BOOM

- Pushbuttons
- Stereo display
- Graphics signal
- Gimbal sensors
- Tracker signal
- Compliant support
Mechanical motion capture

- **Mechanical trackers in a motion capture suit**
 - High precision
 - Limited comfort

- **Animazoo – Gypsy 7**
 - 14 joint sensors
 - Accuracy (0.125 degrees resolution)
 - Independent digital processing at every joint
 - Low data noise
 - Low data disruption and dropped frames
 - Factory calibrated joint sensors
Mechanical trackers - pros and cons

Pros:
- Quite simple and easy to use,
- Accuracy fairly constant over the work envelope of the tracker,
- Immune to electromagnetic interferences,
- Very low jitter,
- Very low latency,
- Relatively low-cost.

Cons:
- Limited range - due to dimensions of mechanical arms.
- Restrict the user to a fixed location.
- Long arms increase weight, inertia and mechanical oscillations.
- Reduction in the user’s freedom of motion due to the motion interference from the tracker arm itself.
- Weight of the mechanical tracker.
Tracking technologies

ELECTROMAGNETIC (EM) TRACKERS
Electromagnetic trackers

- A non-contact position measurement device.

- Two components:
 - Transmitter
 - 3 antennas: orthogonal coils wound on a ferromagnetic cube
 - 3 orthogonal electromagnetic fields
 - Receiver – EM Fields generate current in receivers.

- Two basic types:
 - AC – alternating EM field (coils)
 - DC – static EM filed (static magnets)
General information

• **Common properties**
 - Widely used
 - Sensors are triads of orthogonal magnetic transducers.
 - AC or DC are about the same size.
 - Computer calculates position and orientation from the sensory information

• **Pros**
 - Relatively accurate
 - Allows wireless operation
 - No need for line-of-sight

• **Cons**
 - Limited range (1-5 meters)
 - Accuracy drops fast
 - Latency from the calculation and filtering
Accuracy

- **Calibration is a constant concern:**
 - Component drift due to temperature and age while measuring very small signals must be calibrated out continuously while the trackers operate.
 - Moving metallic/magnetic objects in the environment induce magnetic fields.
 - Wooden structures are often used in CAVEs.

- **Accuracy range of millimeters in position, and milliradians in orientation.**

- **Depending on e.g., speed and accuracy, current prices range from:**
 - low at about $2,000 - $3,000
 - moderate at $6,000 - $10,000
 - with some special purpose systems of high sensor count and greater range running more expensive at $15,000 -$50,000 and higher
AC EM Trackers

- Alternating magnetic fields, 7-14 kHz
- 3 orthogonal coils in the receiver, one for each axis.
- Two approaches – Time multiplexed and Frequency multiplexes

- **Time multiplexed:**
 - Three windings are driven at different times
 - A single frequency is used on all three (X,Y,Z) of its axes.
 - Only one at a time can be energized in order to know precisely where the field originates.

- **Frequency multiplexed:**
 - Three frequencies are used.
 - All three can be driven simultaneously.
 - Has many advantages but also increases complexity and cost.
Case study: Polhemus Fastrek

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees-of-Freedom</td>
<td>6DOF</td>
</tr>
<tr>
<td>Number of Sensors</td>
<td>1-4</td>
</tr>
<tr>
<td>Update Rate</td>
<td>120 Hz (divided by number of sensors)</td>
</tr>
<tr>
<td>Static Accuracy Position</td>
<td>0.03in RMS</td>
</tr>
<tr>
<td>Static Accuracy Orientation</td>
<td>0.15° RMS</td>
</tr>
<tr>
<td>Latency</td>
<td>4ms</td>
</tr>
<tr>
<td>Resolution Position at 30cm range</td>
<td>Resolution Position per inch of source and sensor separation</td>
</tr>
<tr>
<td>Resolution Orientation</td>
<td>0.025°</td>
</tr>
<tr>
<td>Range from Standard TX2 Source</td>
<td>Up to 5 feet or 1.52 meters</td>
</tr>
<tr>
<td>Extended Range Source</td>
<td>Up to 15 feet or 4.6 meters</td>
</tr>
<tr>
<td>Interface</td>
<td>RS-232 or USB (both included)</td>
</tr>
<tr>
<td>Host OS compatibility</td>
<td>GUI/API Toolkit 2000/XP</td>
</tr>
</tbody>
</table>

Image Description:
- A photograph of the Polhemus Fastrek device showing its physical form factor and design details.
- The device appears to be a compact piece of equipment, likely designed for ease of use and integration into various applications.
Case study: Polhemus Liberty

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees-of-Freedom</td>
<td>6DOF</td>
</tr>
<tr>
<td>Number of Sensors</td>
<td>1-16</td>
</tr>
<tr>
<td>Update Rate</td>
<td>240 Hz per sensor</td>
</tr>
<tr>
<td>Static Accuracy Position</td>
<td>0.03in</td>
</tr>
<tr>
<td>Static Accuracy Orientation</td>
<td>0.15° RMS</td>
</tr>
<tr>
<td>Latency</td>
<td>3.5ms</td>
</tr>
<tr>
<td>Resolution Position at 30cm range</td>
<td>0.00015in 0.0004cm</td>
</tr>
<tr>
<td>Resolution Orientation</td>
<td>0.0012°</td>
</tr>
<tr>
<td>Range from Standard TX2 Source</td>
<td>Up to 5 feet or 1.52 meters</td>
</tr>
<tr>
<td>Extended Range Source</td>
<td>Up to 15 feet or 4.6 meters</td>
</tr>
<tr>
<td>Interface</td>
<td>RS-232 or USB (both included)</td>
</tr>
<tr>
<td>Host OS compatibility</td>
<td>GUI/SDK 2000/XP</td>
</tr>
</tbody>
</table>
Case study: Polhemus Patriot

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees-of-Freedom</td>
<td>6DOF</td>
</tr>
<tr>
<td>Number of Sensors</td>
<td>1-2</td>
</tr>
<tr>
<td>Update Rate</td>
<td>60Hz per sensor</td>
</tr>
<tr>
<td>Static Accuracy Position</td>
<td>0.06in RMS</td>
</tr>
<tr>
<td>Static Accuracy Orientation</td>
<td>0.40° RMS</td>
</tr>
<tr>
<td>Latency</td>
<td>Less than 18.5ms</td>
</tr>
<tr>
<td>Resolution Position at 12in range</td>
<td>0.00046in</td>
</tr>
<tr>
<td></td>
<td>0.00117cm</td>
</tr>
<tr>
<td>Resolution Orientation at 12in range</td>
<td>0.00381°</td>
</tr>
<tr>
<td>Range from Standard TX2 Source</td>
<td>Up to 5 feet (1.52 meters)</td>
</tr>
<tr>
<td>Extended Range Source</td>
<td>n/a</td>
</tr>
<tr>
<td>Interface</td>
<td>RS-232 or USB (both included)</td>
</tr>
<tr>
<td>Host OS compatibility</td>
<td>GUI/SDK XP/Vista/Win7 (32-bit and 64-bit) Linux: Open-source application available</td>
</tr>
</tbody>
</table>
DC Magnetic Trackers

- Pulsed DC magnetic fields
- Always time multiplexed
- Affected by Earth’s magnetic field
 - DC signals such as the earth’s field must be measured and subtracted from the sensor outputs.

Fig. 2.10 DC magnetic tracker block diagram. Adapted from Blood [1989]. © Ascension Technology Co. Reprinted by permission.
Environmental Magnetic Issues

- Interference from metallic materials and magnetic fields.
- CRT, Speakers, sources of magnetic fields.
- Magnetic fields induced in ferromagnetic materials.
- Steel and iron reinforcement in architectural structures, concrete.
Case study: Ascension MotionStar

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees of freedom</td>
<td>6 (Position and Orientation)</td>
</tr>
<tr>
<td>Translation range</td>
<td>±3.05m in any direction with one transmitter; ±4.88m with dual transmitters</td>
</tr>
<tr>
<td>Angular range</td>
<td>All Attitude: ±180° Azimuth & Roll, ±90° Elevation</td>
</tr>
<tr>
<td>Static Accuracy Position</td>
<td>0.76cm RMS at 1.52m range, 1.5cm RMS at 3.05m range</td>
</tr>
<tr>
<td>Static Accuracy Orientation</td>
<td>0.5° RMS at 1.52m range, 1.0° RMS at 3.05m range</td>
</tr>
<tr>
<td>Static Resolution Position</td>
<td>0.08cm at 1.52m range, 0.25cm at 3.05m range</td>
</tr>
<tr>
<td>Static Resolution Orientation</td>
<td>0.1° RMS at 1.52m range, 0.2° RMS at 3.05m range</td>
</tr>
<tr>
<td>Measurement rate</td>
<td>Up to 144 measurements/second</td>
</tr>
<tr>
<td>Outputs</td>
<td>X, Y, Z positional coordinates and orientation angles, rotation matrix, or quaternions</td>
</tr>
<tr>
<td>Interface</td>
<td>Ethernet, RS-232C</td>
</tr>
</tbody>
</table>
AC trackers vs. DC trackers

<table>
<thead>
<tr>
<th></th>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>very high</td>
<td>medium high</td>
</tr>
<tr>
<td>Resolution</td>
<td>very high</td>
<td>medium</td>
</tr>
<tr>
<td>Speed</td>
<td>very high</td>
<td>low</td>
</tr>
<tr>
<td>Latency</td>
<td>low</td>
<td>medium</td>
</tr>
<tr>
<td>Range</td>
<td>short, medium</td>
<td>short</td>
</tr>
<tr>
<td>Noise</td>
<td>in-bands, signal</td>
<td>power lines, earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic field</td>
</tr>
<tr>
<td>Cost</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>System size</td>
<td>small</td>
<td>medium</td>
</tr>
<tr>
<td>Environment distortions</td>
<td>good conductors</td>
<td>ferromagnetics</td>
</tr>
<tr>
<td>Multiple systems</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Tracking technologies
ACOUSTIC TRACKERS
Acoustic Trackers

- Ultrasonic signal produced by a stationary transmitter to determine the real-time position of the sensor.
 - Transmitter + several microphones
 - Brief ultrasonic pulses.

- Pros
 - Low-cost – a cheaper alternative to magnetic trackers
 - Error-prone - environment, noise, reflections.

- Cons
 - Not very accurate.
 - Requires line-of-sight
 - Not suitable for tracking hands due to frequent occlusions.
Acoustic tracking methods

- **Two approaches:**
 - Time difference,
 - Phase difference

- **Time-of-flight (TOF):**
 - All current commercial systems
 - Time that sound pulse travels is proportional to the distance from the receiver.
 - Problem: differentiating the pulse from noise.
 - Each transmitter works sequentially – increased latency.

- **Phase coherent approach (Sutherland 1968):**
 - No pulse, but continuous signal (~50 kHz)
 - Many transmitters on different frequencies
 - Sent and received signal phase differences give continuously the change in distance, no latency,
 - Only relative distance, cumulative & multi-path errors possible.
Acoustic tracking principles

- Measurements are based on triangulation
 - Minimum distances at transmitter and receiver required.
 - Can be a problem if trying to make the receiver very small.

- Each speaker is activated in cycle and 3 distances from it to the 3 microphones are calculated.
 - 9 distances total.

- Tracking performance can degrade when operating in a noisy environment.

- Update rate about 50 datasets/s
 - Time multiplexing is possible
 - With 4 receivers, update rate drops to 12 datasets/s
Extending the range

- Certain applications require larger user motion volume than a transmitter can cover.
 - Several transmitters multiplexed with one receiver.
 - Only one transmitter works at a time.
 - The computer switches the transmitters.
Case study: Logitech Head Tracker

- Transmitter is a set of three ultrasonic speakers - 30cm from each other
 - Rigid and fixed triangular frame

- Receiver is a set of three microphones Placed at the top of the HMD
 - May be part of 3D mice, stereo glasses, or other interface devices

- Range typically about 1.5 m
 - Direct line of sight required
Tracking technologies

OPTICAL TRACKERS
Optical Trackers

- **Optical tracker** - A non-contact measurement device that uses optical sensing to determine the real-time position/orientation of an object
 - CCD or CMOS camera
 - Photodiode
 - Photo-sensor

Pros
- Immune to metal interference
- Update rates much higher and latency smaller than in ultrasonic trackers
- Larger working environment

Cons
- Requires direct line of sight
- Requires “visible” optical markers
Tracker configurations

a) Outside-in: Static sensors, markers on objects.

b) Inside-out: Static markers, mobile sensors.
Outside-in

- Light sensors or cameras surrounding the tracked object observe it.
- Position of the sensor is fixed.

- Markers or light beacons are typically placed on the object:
 - Passive reflectors or fiduciary markers.
 - Active IR-transmitters.
Vision-based tracking

- In the general case should work with no "special" markers
 - Analysis of Video signal
 - Ultimate Computer Vision goal
 - Computationally expensive
 - Image filtering, segmentation, contour finding
 - Feature extraction, object recognition

- Easier task if optical markers are present
 - Specific color (green room, blue room)
 - Specific time (flashes “between frames”)
 - Infrared light (not to interfere with image)
Video tracking

- A single camera can be used for 2D tracking
- Usually multiple cameras needed for 3D tracking
- Several dots are needed to acquire the orientation
- The positions of the light dots in the image give the directions of the objects as seen from the camera
- The operation range can be very large
Case study: Sony Move

- Video Tracking.

- RGB LCD Light Ball as a marker.

- Optical ball tracking.

- 3 Axis linear accelerometer.
- 3 Axis angular rate sensor.
- Magnetometer for calibration.

- Requires constant calibration.
Case study: Microsoft Kinect

Developed by PrimeSense for Microsoft

- **Components:**
 - RGB camera
 - Range camera
 - IR light source
 - Multi-array microphone

- **Range Camera extracts depth information and combines it with a video signal**
Case study: Microsoft Kinect

- IR light source continuously projects infrared structured light pattern.
- Range camera captures IR image.
- Depth information is calculated based on the geometric deformations of projected light pattern.
- If human shape is detected, this information is used to articulate a virtual skeleton.
- Motion Capturing.
Inside-out

- Video sensor on the tracked object
- System analyzes images and trying to detect markers
 - Does not work with flat or defocused surfaces (e.g. optical mouse)
 - Multiple reference points needed
- Often used in augmented reality systems
- Single camera can give 6 DoF
 - Optical mouse – 2 DoF
Case study: Wiimote

- Primary input device for Nintendo Wii console.
- Introduced in Nov. 2006.
- "Motion Sensing":
 - Position – relative to screen.
 - Orientation – relative to screen.
 - Motion – relative to previous position.
- Detailed specs:
 http://wiibrew.org/wiki/Wiimote
1. Motion (relative to previous position of device) – acceleration along X, Y, Z-axes – using ADXL 330 Accelerometer (Analog Devices).

2. Orientation – using ”sensor bar”.

Wiimote Sensors
Wiimote: Sensors bar

- Not a sensor at all.
- Source of IR light – any source of IR light will suffice.
- Detection – CMOS Optical sensor on Wiimote (PixArt).
- Essentially the same like in a webcam.
- Accurate up to 5m.
- Distance from ends of sensor bar calculated by triangulation.
Optical markers

- Location and mutual positions of markers must be known in advance:
 - e.g. length of Wiimote sensor bar for example.

- Landmark color and shape different from surroundings:
 - e.g. adjustable color of Sony Move ball.

- Special easily distinguishable patterns:
 - e.g. IR pattern used by Kinect.
Case study: Optical markers for camera tracking

Camera pose tracking

http://youtu.be/0L34HsXXU00
Tracking technologies

INERTIAL TRACKERS
Inertial trackers

- Self-contained sensors that measure the rate of change in an object orientation, object translation velocity or acceleration
- Measures relative values
 - Only changes from previous noticed, not the absolute value.
- Solid-state structures that use microelectro-mechanical systems (MEMS) technology.

- **Pros:**
 - Self-contained units that require no complementary components.
 - Integrated into most mobile phones.
 - No range limitations.
 - Fairly inexpensive.

- **Cons:**
 - Noise
 - Sensor drift (especially large)
MEMS

- MEMS = MicroElectroMechanical Systems
- Spring-supported load
- Created using semiconductor device fabrication process
- Reacts to gravity and inertia
- Changes its electrical parameters (e.g. capacity)
Measurement principles

- The rate of change in object orientation or angular velocity is measured by Coriolis type gyroscopes.

- **Three gyroscopes on orthogonal axes**
 - Measure yaw, pitch and roll angular velocities.
 - Orientation angle determined by integration over time.

- **Three accelerometers machined coaxially with the gyroscopes.** Needed to measure body-referenced accelerations.
Specifics

- Rapidly accumulating errors.

- Error in position increases with the square of time.
 - Cheap units can get position drift of 4 cm in 2 seconds.
 - Expensive units have same error in 200 seconds.

- Not good for measuring location.

- Inertial trackers are often used together with other types of trackers.

- Periodically reset the output of inertial ones.
Types of inertial trackers

Gyroscopes
- The rate of change in object orientation or angular velocity is measured.

Accelerometers
- Measure acceleration.
- Can be used to determine object position, if the starting point is known.

Inclinometer
- Measures inclination, "level" position.
- Like carpenter’s level, but giving electrical signal.
Case study: iPhone orientation sensors

- **Three-axis accelerometer**
 - Gives direction acceleration – affected by gravity and movement

- **Three-axis gyroscope**
 - Measures translation and rotation moment – affected by movement

- **Three axis magnetometer**
 - Gives (approximate) direction of magnetic north

- **GPS**
 - Gives geolocation - multiple samples over time can be used to detect direction and speed

iPhone app: sensor monitor
Tracking technologies

HYBRID TRACKERS
A hybrid tracker is a system that utilizes two or more position/orientation measurement technologies.

Tracks objects better than any single technology alone would allow.

One solution: adding solid-state magnetometers with gyroscopes to determine the local magnetic north.
- Used to compensate the drift
- Common in mobile phones

Methods needed for compensating the error in location:
- GPS + WiFi triangulation
Motion capture

BODY POSE
Motion Capture

- Technique of digitally recording the movements of real things
- Human movements most often
- Tracks position of several points at the same time
- A tool for creating realistic animation
- Can be based on any tracking method
- Optical tracking used quite often
- Sometimes not real time – post processing of prerecorded video
Case study: movie industry

The Matrix

http://youtu.be/-6fa_lyOKVk
Case study: Ascension ReActor 2

- Ascension ReActor 2
- IR based Optical tracking
- 42 active IR markers on the special suit
- 544 IR detectors in bars of the framework
- http://www.inition.co.uk/3D-Technologies/ascension-reactor-2-0
Case study: OptiTrack

- IR based Optical tracking.
- Suite with active IR markers.
- Special wide field of view IR cameras.
- http://www.naturalpoint.com/optitrack/
Case study: Animazoo Gypsy-7

- Mechanical motion capture system.
- Exoskeleton based.
- 15 joint sensors.
- Accuracy (0.36 degrees resolution).
- Low data noise.
- Factory calibrated.
- Limitless capture area.
Case study: Ascension MotionStar

- Electromagnetic motion capturing system.
- DC based tracking system.
- Ferrous metal in floors, walls and ceilings as well as noise sources in the motion-capture area can adversely affect measurements.
- Electromagnetic transmitters placed on strategic points on special suit.
Case study: Quma Motion Capture Figure

- A puppet which can be manipulated to control the position of virtual character.
- Type of mechanical tracker.
- Sensors in joints.
- 1DoF at each joint.
Motion capture

FACIAL EXPRESSION
Face tracking

- **Face Tracking - Real Time detection of a human face in video signal.**
 - Face tracking = face recognition + object tracking
 - Face recognition – distinguish human face in images
 - Object tracking – follow object (e.g. face) movement over time

- **2D face tracking:**
 - Detects and follows faces (more or less) perpendicular to the line of sight of camera.
 - Can’t detect the orientation of the face.
 - Robust solutions exist.

- **3D face tracking:**
 - Fits a 3D facial model
 - Detects facial orientation
 - Used in iPhoto, Picasa

http://www.lysator.liu.se/~eru/research/
Viola-Jones Face Tracker

- The classical face detection algorithm
 - Used in most cases (e.g. Facebook)
 - Part of OpenCV library
 - Real Time.
 - Very Robust.

- A pyramid of weak Haar-like detection filters.
 - Can’t detect orientation of the face.
 - Needs to be executed for separate facial orientations
 - Check the demo at http://vimeo.com/12774628
How to confuse Viola-Jones

If you don’t want your face to be automatically tagged on Facebook…

Images from cvdazzle.com
Case study: Polar Rose Recognizer

- Allows attaching profile information to face

http://youtu.be/0QBLKBYrgvk
Facial Motion Capture

- Facial Motion Capture - the process of electronically converting the movements of a person's face into digital form.

- A facial motion capture describes the coordinates or relative positions of reference points on the actor's face.
 - Most often optically

- 2D or 3D based methods.
 - 2D methods with single camera. Can't detect head rotation.
 - 3D methods with multiple cameras.

- Applications in film and animation.
- Potential future use as a computer input. If we manage to make computers recognize human facial expressions.
Facial Motion Capture

- Early methods included markers.
 - Up to 350 passive markers, placed on actors face.
 - Markerless solutions are common now.

- Cartoons require exaggerated expressions.
- Problem with capturing eye motion.
- Danger of uncanny valley.
Case study: movie industry

Avatar – using markers

http://youtu.be/1wK1Ixr-UmM

LOTR - markerless

http://youtu.be/_vMqSP-00Rg
Case study: Zign Creations' Zign Track

- Cheap 2D tracking system -160$.
- Single webcam or DV camera.
- No markers.
Case study: Faceware

Image Metrics:
- http://www.image-metrics.com/Faceware-Software/Overview

- Markerless facial motion capture.
- Image analysis based 3D method.
- Employed by major video game companies.