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ABSTRACT model compensation. The idea behind model compensation

. : = iS not to pre-process the signal but rather allow the presenc
In this paper, a comparison of three fundamentally differ f noise in the recognition process by adapting the acous-

ent noise robust approaches is carried out. The recognitiqic model to match the current noisy environment. Model
performances of multicondition training, Data-driven &ar compensation methods include, for example, Parallel Model

lel Model Combination (DPMC), and cluster-based missin s ! ! -
data reconstruction methods implemented in a large Voca%gombmatlon (PMC) [7] and Noise Adaptive Training [10].

ulary continuous speech recognition system are evaluat g PMC, the parameters of speech and noise models such

with Finnish language speech data consisting of real recor(fS Mel-frequency cepstral coefficients (MFCCs), are trans-

ings in noisy environments. All three methods improve theorrr]ned from tEe c?jpstr_al domain to Ilnsardsdpe_ctral dorr;)am d
recognition accuracy substantially in poor signal-toseaia- (where speech and noise are assumed additive), combine

sing a mismatch function and transformed back to cepstral

tio (SNR) conditions when compared to a baseline Sys'terglomain. Since it is not possible to calculate the mismatch

trained on clean speech. DPMC and missing data reconstrug- .- 30 losed form, Data-driven PMC, the second ap-

tion systems give the best performance on high SNR condi-. N ¢
tions.yOn IowgSNR conditior?s, the performancge of multicon-p“ed approach in this study, can be used for accurate estima

dition trained system is ranked the best, DPMC the seconttﬁOns [71-

best and missing data reconstruction the third. ) ) o
Finally, there is a class of methods based on finding re-

liable information in the observed features. Missing data
1 INTRODUCTION methods [14], for example, divide the noisy observations to

In automatic speech recognition (ASR), noise robustnesigliable and unreliable spectrotemporal components depen
may be addressed by several fundamentally different metting on whether the features are dominated by speech or noise
ods. One method is to train the system directly on a specific— an approach motivated by studies on auditory scene anal-
type of noise encountered in the recognition phase. This typysis (ASA) which demonstrate that the most intense sound
of system is called a matched system and it is likely to be sucomponent in each auditory scene dominates the combined
perior compared to any noise compensation method, but onljeural response to the scene [2]. Thus, the speech dominated
for that specific type of noise. Adjusting the system for newcomponents may be regarded as reliable estimates for the un-
types of noises requires a large database of new noise typ@grlying clean speech and used as such in speech recognition
and time consuming re-training of the system. A more practiwhile the noise dominated components are taken to repre-
cal alternative to the matched training is multiconditicaii- ~ Sent only noise, and the speech information carried in these
ing, in which the system is trained directly on noisy speectfomponents is considered mlssmg..The missing information
encountered in the most common noise environments, thugn, however, be reconstructed using e.g. cluster-based re
preventing the need for re-training the system every tinge thconstruction [15].
background noise changes. Re-training of a multicondition
trained system is only required if the noise encountered is In this paper, a comparison of three fundamentally differ-
considerably different from the noises included in thentrai ent noise robust ASR approaches including multicondition
ing set. A multicondition trained system is evaluated irs thi training, DPMC, and cluster-based missing data reconstruc
study. tion is carried out. The three noise robust approaches are im
It is possible to overcome the requirements of massiv@lemented in a large vocabulary continuous speech recogni-
data collection of different acoustic environments as w&sll tion system and evaluated on real noisy speech recordings in
the requirement of re-training for each new type of noise bycar and public place environments. As far as the authors are
using active noise compensation methods. One active conaware, no direct comparison between these three approaches
pensation method is to compensate for the noise in the fe&as been carried out previously nor has DPMC been evalu-
ture extraction stage to obtain an estimate of the underlyated on real noisy recordings. In previous studies on DPMC
ing clean speech signal from the noise contaminated speeetg. [5], [7] and PMC e.g. [12], speech is usually corrupted
signal. This can be achieved through pre-processing techwith artificially added noise. Such experiments are slightl
nigues such as Vector Taylor Series (VTS) expansion dadnrealistic since there is ho convolutive noise (e.g. feser
scribed in [11]. Another active compensation method is thation) that may affect the DPMC performance.
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2. METHODS recognition environment. Standard PMC assumes the fea-
ture vectors are linear transforms of the log spectrum such
8 MFCCs, and that the noise is primarily additive. First

- e Gaussian means and covariances of the speech and noise
training (Sect. 2.2), DPMC (Sect. 2.3.2) and cluster-base},,je|s are mapped from the cepstral domain to the linear
missing data reconstruction (Sect. 2.4). A voice activity d ghoctra) domain where the noise is assumed additive. Then
tector (Sect. 2.5) used with both DPMC and missing datghe means and covariances of the combined speech and noise
reconstruction is also described. distributions are computed and transformed back to the cep-
. stral domain. When the distribution of the original features
2.1 Basdlinesystem is modeled with a GMM, the distributions of the resulting
The baseline system used in this work is a large vocaburansformed features do not have a simple functional form.
lary continuous speech recognizer based on hidden Markdvespite this, they are usually approximated with a GMM.
models (HMM) with state likelihoods modeled by Gaussian ~ Different mapping approximations have been developed
mixture models (GMM). The baseline system uses a morpHo the nonlinear transformation between log-spectral doma
based variable length n-gram language model [18] traine@nd linear spectral domain. For example, log-normal and
on 145 million words of book and newspaper data. The delog-add [7] approximations are simple and fast methods but
coding vocabulary is practically unlimited [8] as all words give rather poor mapping approximations resulting in large
and word forms can be represented with the unsupervisggcognition error rates, especially on low SNR conditions,
morphs. The language model is combined to the acoudecause they can approximate only the transformations of
tic model using scaling factor on the language model logstatic parameters. A more accurate mapping is achieved by
probability. The scaling factor is optimized for noiselesscombining the transformed parameters using mismatch func-
speech with respect to the letter error rate (LER). The detions [7]. However, it is not possible to solve the mismatch
coder is a time-synchronous beam-pruned Viterbi tokes-pagunctions in closed-form. Solution for this problem is ad-
system and the acoustic models are state-tied tri-phomes codressed in the next section.

structed with a decision-tree method. Each state is modeled

with a maximum of 100 Gaussians and the states are assoé&-3.1 Data-driven PMC

ated with gamma probability functions to model the state duppwc [7] is a formulation of PMC developed to circumvent
rations [13]. The speech signal is represented with 13 MFCGhe ynsolvability of the mismatch functions. DPMC uses the
features concatenated with their first and second ordediff gistriputions of the clean speech and noise parametersito ge
entials, scaled, and mapped with maximum likelihood lin-grate virtual data points in a Monte Carlo process. Data for
ear transformation (MLLT) [6] optimized in training. The static and dynamic parameters (differential features2sBe
width of the dynamic parameter window is 2 frames (5125 generated independently. Then the virtual data poiats a
samples) and the dynamic parameters are calculated accogdmpined with the expectation values of mismatch functions
ing to DPMC requirements as simple differences over thgne static and dynamic parameters separately, to form vir-
given window width. Finally, the covariance matrix of eachy g noisy speech data points. The mean and covariance are

This section describes the baseline system (Sect. 2.1) a
the three noise robust approaches based on multiconditi

Gaussian is diagonalized. calculated from the virtual noisy speech data points, which
) o o yields an estimate of the noisy speech distribution. Then
2.2 Multicondition training the combined distribution parameters are mapped back to

In multicondition training, the system is trained on speectf€pstral domain. A more thorough description of mismatch
in varying noise conditions, which are ideally the ones thafunctions can be found in [7, pp. 38-39]. The accuracy of
are most likely encountered in the use of recognition systenf!0iSy speech distribution estimate depends on the number of
Multicondition training does not increase the computation 9enerated data points. However, as the number of data points
complexity as it does not require any changes to an existinjcreases, the computational cost grows linearly, whicliac
ASR system; only the training material is changed. Obtainmulates with the increased computational intensity onelarg
ing a sufficient amount of training data representing the var Vocabulary systems, in which large speech models are used.
ation of noise conditions well enough is the main challenge
of multicondition training. However, multiple noise condi 2-3-2 DPMC system
tion; can also be.simulated by artificially {ad_ding noise WithpPMC system applied in this work used a standard diago-
varying characteristics and SNR to the training speech datenal covariance approximation described in [7, pp. 55-57]).
The multicondition trained system used in this work wasThe noise model was estimated on-line separately for each
trained on data consisting of 50 % noiseless speech, 30 Ytterance from speech pauses within the corresponding utte
speech recorded in public places, and 20 % speech recordgflce. A voice activity detector, described in Section 2 &5 w
in moving cars. Three SNR levels (microphone positionslused to find speech pauses. For the combination process, 50
and four different microphones were included in the noisydata points per Gaussian were generated. The computational
training data. A more thorough description of the trainiay s complexity of DPMC implementation i9(G(M3 + P« M?))
is given in Section 3. The number of Gaussians in the multiper combination, wher6 is the number of Gaussians in the
condition system was approximately the same as the baseliggoustic modelM is the number of Mel bands, amlis the
system after state tying executed during the training @®ce number of generated data points.

2.3 Parallel Model Combination 2.4 Missing data approach

PMC [7] is a model compensation technique used to adapi/hen speech is corrupted with additive noise, the log-Mel-
the acoustic model trained on noiseless speech to the turraepresentation of the noisy speech signal is divided irto re
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able i.e. speech dominated regions and unreliable i.eenoi®.5 Voice Activity Detector

dominated regions where speech information is effectivel h . ity d di d missina d
missing. Thus, the missing feature approaches used fag noid N€ Voice activity detector used in DPMC and missing data
systems was based on an HMM/GMM speech/non-speech

compensation in ASR need first to identify the unreliable i hich i d and ined | detal
feature components and then handle speech recognition wiffgSsifier which is presented and examined in more detai
n [16]. The current version differs from the previous only

artially observed data. Motivation for the missing data ap' )
P Y 9 : newly trained speech and non-speech models. To en-

proach originally comes from human speech perception an Y ;
auditory scene analysis (ASA) [1]. sure classification of speech and noise together as speech,

the training material in the current version contained broa

) ) ) cast news with artificially added noise instead of plain TV
2.4.1 Noise mask estimation news material. This lead to improved frame classification
accuracy of 98 % for close microphone and 94 % for far mi-

based on local SNR estimates in the Mel-spectral domairf’OPhone on public place data (93 % and 92 % in previous
These are derived using a stationary noise estimate which ygrsion, respectively) in the same test described fullyL6][

calculated from non-speech frames identified using theevoic
activity detector described in Section 2.5. Noisy obséowet 3. DATA
are then considered reliable if the observed value exceeds t
estimated noise power with a predefined threshotd3 dB  All data used in this work was taken from SPEECON [9]
and unreliable otherwise. This provides an initial noisskna Finnish language corpus which contains both spontaneous
estimate. Based on the glimpse model proposed in [3], thend read speech. Two equally sized training sets were con-
mask is then processed to contain only connected regions efructed both comprising of 293 speakers and containing ap-
reliable speech features that are larger than a certain minproximately 19.5 hours of speech. The first training set, re-
mum size, i.e. glimpses of speech. The decision to includéerred to as the clean training set, was used to train the base
only glimpses larger than a minimum size five and to usdine system and contained speech recorded in sufficiently
threshold valug/ = 3 dB in the mask estimation is based on noiseless environments (estimated average SNR of 26 dB ac-
experiments with the noisy development data (see Section®rding to SPEECON database specifications). The second
for dataset description). training set was used in multicondition training and it con-
sisted of half noiseless speech and half noisy recordiogs fr
the public place and car environments. Only the training set
contained spontaneous speech. A development set was also
The missing data methods used in ASR may be divided intéonstructed from SPEECON database and it consisted of 1.2
classifier modification and data reconstruction approache§ours of noiseless speech from 39 speakers. The develop-
In classifier modification, the speech recognition system ignent set was used for language model scaling optimizations.
modified to handle the unreliable features using e.g. badinde The systems were evaluated with noisy data selected
marginalization [4], while reconstruction is based onaepl from public and car environments. The noisy car test set
ing the missing values with clean speech estimates in theonsisted of 57 minutes of speech from 20 speakers, and pub-
log-compressed Mel-spectral domain. The reconstructed felic place test set consisted of 94 minutes of speech from 30
tures can be transformed to an arbitrary feature domain argpeakers. The corresponding development set lengths were
subjected to normalization and adaptation, which makes thi29 and 60 minutes. The training, development, and evalua-
a practical approach also for large vocabulary continuousion sets were exclusive i.e. they do not share speakerseThr
speech recognition systems that typically use such transfomicrophone position recordings are used in the evaluation
mations. set. The closest microphone was a headset which had an esti-
In this work, the missing values are reconstructed usmated average SNR of 13 dB in car and 24 dB in public place
ing the cluster-based missing data reconstruction metho@cordings. The second closest microphone was attached to
proposed in [15]. The method calculates a bounded maxhe chest level and had an estimated average SNR of 5 dB in
imum likelihood (BMAP) estimate for the missing values the car and 14 dB in public place recordings. The farthest mi-
based on the observed features and a priori information ogfophone in the car recordings was located in the rear-view
the statistical dependencies between spectral compoimentsmirror approximately one meter away from the speaker and
clean speech. The features are reconstructed in the log-Mélad an estimated average SNR of 8 dB. The farthest micro-
spectral domain and mapped to the acoustic model featug@one in the public place recordings was placed 0.5-1 meter
domain described in Section 2.1 after reconstruction. Thaway from the speaker and had an estimated average SNR of
clean speech model used in this work is a 5-componerfl dB.
GMM trained with a 52-minute dataset of read sentences The inconsistency between the SNRs of the mid and far
randomly extracted from the SPEECON training data (Secdistance microphones in the car recordings is caused by the
tion 3). The clusters and model parameters were jointly esdifferent characteristics of the microphones. The far odicr
timated using the expectation-maximization (EM) algarith phone in the car recordings (AKG Q400 Mk3T) has been
in GMMBAYES Matlab toolbox. For a detailed description designed to be a part of a hands-free system and therefore
on solving the BMAP estimates in cluster-based reconstrudt has a limited frequency response in order to make the mi-
tion, see [14]. The computational complexity of the missingcrophone robust to e.g. engine and turbulence noises. The
data reconstruction implementation@$F = C « M*#) per ut-  estimated average SNR for this microphone is higher reativ
terance, wheré& is the number of frames in the utterance,to the mid distance microphone as it does not pick the high
C is the number of components in the reconstruction modeintensity low frequency components of the engine noise due
andM is the number of Mel-frequency bands. to its restricted bandwidth.

In this work, the unreliable feature components are idextifi

2.4.2 Missing data reconstruction
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Table 1: Public place noise
(LER/WER %).

evaluation set error rateJable 3: Z-scores of pairwise comparisons and the resgectiv
relative LER improvements (left relative to right) on com-
bined public place and car noises (z-score/relative LER im-

Mic Baseline | DPMC Multi- Missing provement %). Bold numbers indicate a statistical diffeeen
condition data between the systems.
Cl_ose 5.7/20.2| 4.3/16.2| 7.5/26.8| 4.5/16.6 Pair* Close Mid Far
Mid | 38.4/63.9| 15.7/32.5| 9.4/25.1| 24.9/54.1 BL-DPMC | -3.68/246 | -6.15/56.9 5.67/28.4
Far 54.6/76.5| 28.3/44.6| 17.7/35.1| 38.0/66.3 BL-MC -1.95/-13.1| -6.10/77.8 -6.50/59.4
BL-MD -5.60/24.6 | -6.15/42.5 -6.15/21.9
Table 2: Car noise evaluation set error rates (LER/WER %). | ppMC-MC | -4.95/-50.0 | -5.84/48.6 | -5.32/43.3
Mic Baseline | DPMC Multi- Missing DPMC-MD | -0.94/0.0 | -5.24/-33.3 | -2.15/-9.1
condition data MC-MD -5.04/33.3 | -6.13/-159.3 | -6.06/-92.4
Close| 6.7/21.8| 52/17.1| 59/19.6| 4.9/16.9 *BL=Baseline, MC=Multicondition, MD=Missing data
Mid 64.3/86.3| 29.2/48.1| 13.0/33.3| 32.6/54.4
Far | 87.6/99.5| 79.3/94.3| 42.5/72.0| 75.7/97.5 5. DISCUSSION
In this study, we carried out a comparison of three noise ro-
bust approaches in a large vocabulary ASR task using real
4. RESULTS

noisy speech recordings from car and public place record-

lean speech. However, the DPMC and missing data sys-

The baseline system performance shows the largest degradgz,q give the best performance on high SNR conditions but

tion with decreasing SNR, from the close recordings (5.7 %}e myticondition trained system outperforms the other s

to mid (38.4 %) and far (54.6 %) recordings. DPMC systeme g on jow SNR conditionﬁ where DpPMC system perforr)llws
is the most accurate system on close recordings (4.3 %) ag e second best and missing data system the third best. In
the second most accurate on mid (15.7 %) and far recorgy;q g4,y multicondition training and the active modeteo
ings (28.3 %). Multicondition trained system gives the bestonsation method (DPMC) are evaluated separately whereas
performance on mid (9.4 %) and far (17.7 %) recordings by, 5nnrgach called Noise Adaptive Training (NAT) makes it
a large margin but performs worse than the baseline systefhsgjpie to combine effectively multicondition trainingthv

on close recordings (7.5 %). Missing data system performg \/ g hased model compensation technique. NAT yielded
better than the baseline system in all conditions (4.5 98 24. ¢ s that were superior both over standard multicooiti
%, and 38.0 %) but is poorer than multicondition trained Ofy5ining and VTS in the Aurora 2 digit recognition task [10].
DPMC systems in noisier mid and far reco_rdmgs. . The challenge in the recognition of the far recordings is
Letter and word error rates on car noise evaluation sejot only due to the relative increase in noise level but also
are collected in Table 2. Again the baseline system showge convolutive channel effect on the speech signal. This
the largest degradation in recognition performance with deis caused by the different types of microphones used in the
creasing SNR from close recordings (6.7 %) to mid (64.3 %}ecordings and the increasing effect of reverberatiortivela
and far (87.6 %) recordings. DPMC (5.2 %) and multicondi-to direct sound as the microphone distance is increased. The
tion systems (5.9 %) perform better than the baseline systefulticondition trained system performs considerably drett
on close recordings but the lowest error rate is achieved byn mid and far recordings because it has a clear advantage
the missing data system (4.9 %). DPMC has the worst pelpf learning the respective channel distortions duringntrai
formance on far (79.3 %) recordings and the second worst Giag. DPMC and missing data systems are, on the other hand,
mid (29.2 %) recordings. The multicondition system has theynly capable of compensating the additive noise, not the con
best performance on mid (13.0 %) and far (42.5 %) recordyolutional channel distortion. Had any convolutional mois
ings. The missing data system performance on mid (32.6 %bbust method also been used such as cepstral mean subtrac-
recordings is slightly lower than the respective DPMC per+ion (CMS), the baseline, DPMC and missing data systems
formance and on far (75.7 %) recordings, itis slightly highe would have shown significant performance improvements on
than the respective DPMC performance. mid and far recordings. CMS would have also improved
Wilcoxon signed rank test was used for pairwise statistithe multicondition system performance but not on the same
cal comparisons between the letter error rates of eachrsystescale as the other systems. However, the standard version of
on combined public place and car noise. The Z-scores at@MS does not cope with the parameter reversibility demand
collected in Table 3. Based on a 95 % confidence intervalpf DPMC, thus a modified CMS has been introduced to be
the Z-score greater than 1.96 or less than -1.96 indicatesused with DPMC [19]. We intend to test the modified CMS
statistically significant difference in the comparisoratti-  in the future studies.
cally significant difference was reached in all other pasevi In the present study, the multicondition training set con-
comparisons except in between the baseline-multicomditiotained clean and noisy data from the same SPEECON corpus
and DPMC-missing data systems on close recordings. that was used to construct the evaluation sets. This has give

mon measurement unit used in Finnish speech recognitio(;
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some advantage for the multicondition trained system oveli3] M. Cooke, “A glimpsing model of speech perception in
the more flexible PMC and missing data approaches relying noise,” inJASAvol. 119, pp. 1562-1573, 2006.

on adaptive compensation. While the settings in the collegg] M. P. Cooke, P. D. Green, L. Josifovski, and A. Viz-
tion of SPEECON are realistic and represent everyday use of" jnno, “Robust automatic speech recognition with miss-

speech technology in common environments with commonly  jng and unreliable acoustic data,” #peech Comnwol.
used microphone settings, they are, however, standardized 34 267-285, 2001.
and do not represent all the variables that may be encou(rfs]
tered in real use of ASR devices. Itis noteworthy that due t ling for noise-robust hor nition” Inter-
the restricted corpus, we did not have noise types with con- elling CZ) olse-robust speech recognition,” Inte
siderable mismatch to the multicondition trained models. speech2008. o ] ) ]

The performance differences between the public p|acgs] M. J. Gales, “Seml—tled covariance matrices for hidden
and car noises on each system is noteworthy. The car noise Markov models,” inlEEE Trans. SAPvol. 7 pp. 272—
is more difficult for the baseline system to recognize which 281, 1999.
is also reflected to the performance of noise robust methodfr] M. J. Gales,Model-based techniques for noise robust
This can be explained through the SNR differences since the speech recognitianPh.D thesis, Univ. of Cambridge,
car noise has significantly lower SNR on each microphone 1995,

di;tance. Due to the I.imited frequency response of the faérs] T. Hirsimaki, M. Creutz, V. Siivola, M. Kurimo, S. Vir-
microphone on car noise recordings (see Section 3 for de- pioja, and J. Pylkénen, “Unlimited vocabulary speech
tails), the respective SNR is effectively lower than meadur recognition with morph language models applied to

But why is the multicondition system performance worse  Einnish” in Computer Speech and Languagel. 20
than the baseline on public place noise but better on car pp. 515’_541, 2006. ’

noise? Even though the training sets of multicondition an
baseline systems are approximately the same, the multico )]
dition training set includes considerably less clean dBte

R. C. van Dalen, and M. J. Gales, “Covariance mod-

D. Iskra, B. Grosskopf, K. Marasek, H. van den Heuvel,
and A. Kiessling, “SPEECON - speech databases for

close recordings on car noise have such a low SNR which ~ ¢ONSumer devices: Database specification and valida-
already affects considerably the clean trained baseline pe on." in Proc. LREG pp. 329-333, 2002. _
formance. Therefore the multicondition system has a pef10] O. Kalinli, M. Seltzer, and A. Acero. “Noise adaptive
formance advantage over the baseline. However, the close training using a vector Taylor series approach for noise
recordings on public place noise have higher SNR which, robust automatic speech recognition,” lI@ASSP pp.
based on our experience, corresponds almost to the clean 3825-3828, 2009.

training condition and does not considerably degrade thg11] P. J. Moreno, B. Raj, and R. M. Stern, “A Vector Tay-
baseline recognizer performance; rather the baselinggfeco |or Series approach for environment-independent speech
nizer has an advantage of having more clean data in the train- recognition,” inlICASSRvol. 2, pp. 733-736, 1996.

ing set that matches well to the public place close recoedmgllllz] R. W. Morris, and M. E. Deisher, “Efficient second-

Missing data reconstruction performance was lower than " qer adaptation for large vocabulary distributed speech
the DPMC performance in most test conditions, but the dif- recognition,” iNlCASSPvol. 1, pp. 205-208, 2002.

ferences were larger in public than in car environmentss Thi . . j . .
is likely because the reconstruction performance is seesit [13] J- Pylkionen, and M. Kurimo, “Duration modeling
to mask estimation errors as discussed in [14]. The mask techniques for continuous speech recognition/riter-
estimation method used in this work assumes the noise in- SPeechpp. 385-388, 2004.

terference is stationary, which approximately holds fa th [14] B. Rajand R. M. Stern, “Missing-feature approaches in
car engine noise, but does not hold in public environments  speech recognition,” iIlEEE Signal Processing Maga-
where the noise is often time-varying (e.g. speech, music, zing vol. 22, pp. 101-116, 2005.

clatter). Itis therefore reasonable to assume the missitay d [15] B. Raj, M. L. Seltzer, and R. M. Stern, “Reconstruc-
reconstruction performance would improve with better @ois tion of missing features for robust speech recognition,”
mask estimation methods. Moreover, methods based on e.g. in Speech Comnwol. 43, pp. 275-296, 2004.

perceptual criteria [1] or using a Bayes classifier [17] wbulr{_m] U. Remes, K. J. Paloaki, and M. Kurimo, “Miss-

re:ij\I/f th?hneed for noise estimation in missing data metf-" i fo 4t re reconstruction and acoustic model adaptation
ods altogether. combined for large vocabulary continuous speech recog-
nition,” in EUSIPCQ 2008.
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