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ABSTRACT

In this paper, a comparison of three fundamentally differ-
ent noise robust approaches is carried out. The recognition
performances of multicondition training, Data-driven Paral-
lel Model Combination (DPMC), and cluster-based missing
data reconstruction methods implemented in a large vocab-
ulary continuous speech recognition system are evaluated
with Finnish language speech data consisting of real record-
ings in noisy environments. All three methods improve the
recognition accuracy substantially in poor signal-to-noise ra-
tio (SNR) conditions when compared to a baseline system
trained on clean speech. DPMC and missing data reconstruc-
tion systems give the best performance on high SNR condi-
tions. On low SNR conditions, the performance of multicon-
dition trained system is ranked the best, DPMC the second
best and missing data reconstruction the third.

1. INTRODUCTION

In automatic speech recognition (ASR), noise robustness
may be addressed by several fundamentally different meth-
ods. One method is to train the system directly on a specific
type of noise encountered in the recognition phase. This type
of system is called a matched system and it is likely to be su-
perior compared to any noise compensation method, but only
for that specific type of noise. Adjusting the system for new
types of noises requires a large database of new noise types
and time consuming re-training of the system. A more practi-
cal alternative to the matched training is multicondition train-
ing, in which the system is trained directly on noisy speech
encountered in the most common noise environments, thus
preventing the need for re-training the system every time the
background noise changes. Re-training of a multicondition
trained system is only required if the noise encountered is
considerably different from the noises included in the train-
ing set. A multicondition trained system is evaluated in this
study.

It is possible to overcome the requirements of massive
data collection of different acoustic environments as wellas
the requirement of re-training for each new type of noise by
using active noise compensation methods. One active com-
pensation method is to compensate for the noise in the fea-
ture extraction stage to obtain an estimate of the underly-
ing clean speech signal from the noise contaminated speech
signal. This can be achieved through pre-processing tech-
niques such as Vector Taylor Series (VTS) expansion de-
scribed in [11]. Another active compensation method is the

model compensation. The idea behind model compensation
is not to pre-process the signal but rather allow the presence
of noise in the recognition process by adapting the acous-
tic model to match the current noisy environment. Model
compensation methods include, for example, Parallel Model
Combination (PMC) [7] and Noise Adaptive Training [10].
In PMC, the parameters of speech and noise models such
as Mel-frequency cepstral coefficients (MFCCs), are trans-
formed from the cepstral domain to linear spectral domain
(where speech and noise are assumed additive), combined
using a mismatch function and transformed back to cepstral
domain. Since it is not possible to calculate the mismatch
functions in closed form, Data-driven PMC, the second ap-
plied approach in this study, can be used for accurate estima-
tions [7].

Finally, there is a class of methods based on finding re-
liable information in the observed features. Missing data
methods [14], for example, divide the noisy observations to
reliable and unreliable spectrotemporal components depend-
ing on whether the features are dominated by speech or noise
— an approach motivated by studies on auditory scene anal-
ysis (ASA) which demonstrate that the most intense sound
component in each auditory scene dominates the combined
neural response to the scene [2]. Thus, the speech dominated
components may be regarded as reliable estimates for the un-
derlying clean speech and used as such in speech recognition,
while the noise dominated components are taken to repre-
sent only noise, and the speech information carried in these
components is considered missing. The missing information
can, however, be reconstructed using e.g. cluster-based re-
construction [15].

In this paper, a comparison of three fundamentally differ-
ent noise robust ASR approaches including multicondition
training, DPMC, and cluster-based missing data reconstruc-
tion is carried out. The three noise robust approaches are im-
plemented in a large vocabulary continuous speech recogni-
tion system and evaluated on real noisy speech recordings in
car and public place environments. As far as the authors are
aware, no direct comparison between these three approaches
has been carried out previously nor has DPMC been evalu-
ated on real noisy recordings. In previous studies on DPMC
e.g. [5], [7] and PMC e.g. [12], speech is usually corrupted
with artificially added noise. Such experiments are slightly
unrealistic since there is no convolutive noise (e.g. reverber-
ation) that may affect the DPMC performance.
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2. METHODS

This section describes the baseline system (Sect. 2.1) and
the three noise robust approaches based on multicondition
training (Sect. 2.2), DPMC (Sect. 2.3.2) and cluster-based
missing data reconstruction (Sect. 2.4). A voice activity de-
tector (Sect. 2.5) used with both DPMC and missing data
reconstruction is also described.

2.1 Baseline system

The baseline system used in this work is a large vocabu-
lary continuous speech recognizer based on hidden Markov
models (HMM) with state likelihoods modeled by Gaussian
mixture models (GMM). The baseline system uses a morph-
based variable length n-gram language model [18] trained
on 145 million words of book and newspaper data. The de-
coding vocabulary is practically unlimited [8] as all words
and word forms can be represented with the unsupervised
morphs. The language model is combined to the acous-
tic model using scaling factor on the language model log-
probability. The scaling factor is optimized for noiseless
speech with respect to the letter error rate (LER). The de-
coder is a time-synchronous beam-pruned Viterbi token-pass
system and the acoustic models are state-tied tri-phones con-
structed with a decision-tree method. Each state is modeled
with a maximum of 100 Gaussians and the states are associ-
ated with gamma probability functions to model the state du-
rations [13]. The speech signal is represented with 13 MFCC
features concatenated with their first and second order differ-
entials, scaled, and mapped with maximum likelihood lin-
ear transformation (MLLT) [6] optimized in training. The
width of the dynamic parameter window is 2 frames (512
samples) and the dynamic parameters are calculated accord-
ing to DPMC requirements as simple differences over the
given window width. Finally, the covariance matrix of each
Gaussian is diagonalized.

2.2 Multicondition training

In multicondition training, the system is trained on speech
in varying noise conditions, which are ideally the ones that
are most likely encountered in the use of recognition system.
Multicondition training does not increase the computational
complexity as it does not require any changes to an existing
ASR system; only the training material is changed. Obtain-
ing a sufficient amount of training data representing the vari-
ation of noise conditions well enough is the main challenge
of multicondition training. However, multiple noise condi-
tions can also be simulated by artificially adding noise with
varying characteristics and SNR to the training speech data.

The multicondition trained system used in this work was
trained on data consisting of 50 % noiseless speech, 30 %
speech recorded in public places, and 20 % speech recorded
in moving cars. Three SNR levels (microphone positions)
and four different microphones were included in the noisy
training data. A more thorough description of the training set
is given in Section 3. The number of Gaussians in the multi-
condition system was approximately the same as the baseline
system after state tying executed during the training process.

2.3 Parallel Model Combination

PMC [7] is a model compensation technique used to adapt
the acoustic model trained on noiseless speech to the current

recognition environment. Standard PMC assumes the fea-
ture vectors are linear transforms of the log spectrum such
as MFCCs, and that the noise is primarily additive. First
the Gaussian means and covariances of the speech and noise
models are mapped from the cepstral domain to the linear
spectral domain where the noise is assumed additive. Then
the means and covariances of the combined speech and noise
distributions are computed and transformed back to the cep-
stral domain. When the distribution of the original features
is modeled with a GMM, the distributions of the resulting
transformed features do not have a simple functional form.
Despite this, they are usually approximated with a GMM.

Different mapping approximations have been developed
to the nonlinear transformation between log-spectral domain
and linear spectral domain. For example, log-normal and
log-add [7] approximations are simple and fast methods but
give rather poor mapping approximations resulting in large
recognition error rates, especially on low SNR conditions,
because they can approximate only the transformations of
static parameters. A more accurate mapping is achieved by
combining the transformed parameters using mismatch func-
tions [7]. However, it is not possible to solve the mismatch
functions in closed-form. Solution for this problem is ad-
dressed in the next section.

2.3.1 Data-driven PMC

DPMC [7] is a formulation of PMC developed to circumvent
the unsolvability of the mismatch functions. DPMC uses the
distributions of the clean speech and noise parameters to gen-
erate virtual data points in a Monte Carlo process. Data for
static and dynamic parameters (differential features, see2.1)
are generated independently. Then the virtual data points are
combined with the expectation values of mismatch functions,
the static and dynamic parameters separately, to form vir-
tual noisy speech data points. The mean and covariance are
calculated from the virtual noisy speech data points, which
yields an estimate of the noisy speech distribution. Then
the combined distribution parameters are mapped back to
cepstral domain. A more thorough description of mismatch
functions can be found in [7, pp. 38–39]. The accuracy of
noisy speech distribution estimate depends on the number of
generated data points. However, as the number of data points
increases, the computational cost grows linearly, which accu-
mulates with the increased computational intensity on large
vocabulary systems, in which large speech models are used.

2.3.2 DPMC system

DPMC system applied in this work used a standard diago-
nal covariance approximation described in [7, pp. 55–57]).
The noise model was estimated on-line separately for each
utterance from speech pauses within the corresponding utter-
ance. A voice activity detector, described in Section 2.5, was
used to find speech pauses. For the combination process, 50
data points per Gaussian were generated. The computational
complexity of DPMC implementation isO(G(M3+P∗M2))
per combination, whereG is the number of Gaussians in the
acoustic model,M is the number of Mel bands, andP is the
number of generated data points.

2.4 Missing data approach

When speech is corrupted with additive noise, the log-Mel-
representation of the noisy speech signal is divided into reli-
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able i.e. speech dominated regions and unreliable i.e. noise
dominated regions where speech information is effectively
missing. Thus, the missing feature approaches used for noise
compensation in ASR need first to identify the unreliable
feature components and then handle speech recognition with
partially observed data. Motivation for the missing data ap-
proach originally comes from human speech perception and
auditory scene analysis (ASA) [1].

2.4.1 Noise mask estimation

In this work, the unreliable feature components are identified
based on local SNR estimates in the Mel-spectral domain.
These are derived using a stationary noise estimate which is
calculated from non-speech frames identified using the voice
activity detector described in Section 2.5. Noisy observations
are then considered reliable if the observed value exceeds the
estimated noise power with a predefined thresholdγ = 3 dB
and unreliable otherwise. This provides an initial noise mask
estimate. Based on the glimpse model proposed in [3], the
mask is then processed to contain only connected regions of
reliable speech features that are larger than a certain mini-
mum size, i.e. glimpses of speech. The decision to include
only glimpses larger than a minimum size five and to use
threshold valueγ = 3 dB in the mask estimation is based on
experiments with the noisy development data (see Section 3
for dataset description).

2.4.2 Missing data reconstruction

The missing data methods used in ASR may be divided into
classifier modification and data reconstruction approaches.
In classifier modification, the speech recognition system is
modified to handle the unreliable features using e.g. bounded
marginalization [4], while reconstruction is based on replac-
ing the missing values with clean speech estimates in the
log-compressed Mel-spectral domain. The reconstructed fea-
tures can be transformed to an arbitrary feature domain and
subjected to normalization and adaptation, which makes this
a practical approach also for large vocabulary continuous
speech recognition systems that typically use such transfor-
mations.

In this work, the missing values are reconstructed us-
ing the cluster-based missing data reconstruction method
proposed in [15]. The method calculates a bounded max-
imum likelihood (BMAP) estimate for the missing values
based on the observed features and a priori information on
the statistical dependencies between spectral componentsin
clean speech. The features are reconstructed in the log-Mel-
spectral domain and mapped to the acoustic model feature
domain described in Section 2.1 after reconstruction. The
clean speech model used in this work is a 5-component
GMM trained with a 52-minute dataset of read sentences
randomly extracted from the SPEECON training data (Sec-
tion 3). The clusters and model parameters were jointly es-
timated using the expectation-maximization (EM) algorithm
in GMMBAYES Matlab toolbox. For a detailed description
on solving the BMAP estimates in cluster-based reconstruc-
tion, see [14]. The computational complexity of the missing
data reconstruction implementation isO(F ∗C∗M4) per ut-
terance, whereF is the number of frames in the utterance,
C is the number of components in the reconstruction model,
andM is the number of Mel-frequency bands.

2.5 Voice Activity Detector

The voice activity detector used in DPMC and missing data
systems was based on an HMM/GMM speech/non-speech
classifier which is presented and examined in more detail
in [16]. The current version differs from the previous only
by newly trained speech and non-speech models. To en-
sure classification of speech and noise together as speech,
the training material in the current version contained broad-
cast news with artificially added noise instead of plain TV
news material. This lead to improved frame classification
accuracy of 98 % for close microphone and 94 % for far mi-
crophone on public place data (93 % and 92 % in previous
version, respectively) in the same test described fully in [16].

3. DATA

All data used in this work was taken from SPEECON [9]
Finnish language corpus which contains both spontaneous
and read speech. Two equally sized training sets were con-
structed both comprising of 293 speakers and containing ap-
proximately 19.5 hours of speech. The first training set, re-
ferred to as the clean training set, was used to train the base-
line system and contained speech recorded in sufficiently
noiseless environments (estimated average SNR of 26 dB ac-
cording to SPEECON database specifications). The second
training set was used in multicondition training and it con-
sisted of half noiseless speech and half noisy recordings from
the public place and car environments. Only the training sets
contained spontaneous speech. A development set was also
constructed from SPEECON database and it consisted of 1.2
hours of noiseless speech from 39 speakers. The develop-
ment set was used for language model scaling optimizations.

The systems were evaluated with noisy data selected
from public and car environments. The noisy car test set
consisted of 57 minutes of speech from 20 speakers, and pub-
lic place test set consisted of 94 minutes of speech from 30
speakers. The corresponding development set lengths were
29 and 60 minutes. The training, development, and evalua-
tion sets were exclusive i.e. they do not share speakers. Three
microphone position recordings are used in the evaluation
set. The closest microphone was a headset which had an esti-
mated average SNR of 13 dB in car and 24 dB in public place
recordings. The second closest microphone was attached to
the chest level and had an estimated average SNR of 5 dB in
the car and 14 dB in public place recordings. The farthest mi-
crophone in the car recordings was located in the rear-view
mirror approximately one meter away from the speaker and
had an estimated average SNR of 8 dB. The farthest micro-
phone in the public place recordings was placed 0.5–1 meter
away from the speaker and had an estimated average SNR of
9 dB.

The inconsistency between the SNRs of the mid and far
distance microphones in the car recordings is caused by the
different characteristics of the microphones. The far micro-
phone in the car recordings (AKG Q400 Mk3T) has been
designed to be a part of a hands-free system and therefore
it has a limited frequency response in order to make the mi-
crophone robust to e.g. engine and turbulence noises. The
estimated average SNR for this microphone is higher relative
to the mid distance microphone as it does not pick the high
intensity low frequency components of the engine noise due
to its restricted bandwidth.
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Table 1: Public place noise evaluation set error rates
(LER/WER %).

Mic Baseline DPMC Multi- Missing

condition data

Close 5.7/20.2 4.3/16.2 7.5/26.8 4.5/16.6

Mid 38.4/63.9 15.7/32.5 9.4/25.1 24.9/54.1

Far 54.6/76.5 28.3/44.6 17.7/35.1 38.0/66.3

Table 2: Car noise evaluation set error rates (LER/WER %).

Mic Baseline DPMC Multi- Missing

condition data

Close 6.7/21.8 5.2/17.1 5.9/19.6 4.9/16.9

Mid 64.3/86.3 29.2/48.1 13.0/33.3 32.6/54.4

Far 87.6/99.5 79.3/94.3 42.5/72.0 75.7/97.5

4. RESULTS

Letter (LER) and word error rates (WER) on the public place
noise evaluation set are collected in Table 1. LER is the com-
mon measurement unit used in Finnish speech recognition.
The baseline system performance shows the largest degrada-
tion with decreasing SNR, from the close recordings (5.7 %)
to mid (38.4 %) and far (54.6 %) recordings. DPMC system
is the most accurate system on close recordings (4.3 %) and
the second most accurate on mid (15.7 %) and far record-
ings (28.3 %). Multicondition trained system gives the best
performance on mid (9.4 %) and far (17.7 %) recordings by
a large margin but performs worse than the baseline system
on close recordings (7.5 %). Missing data system performs
better than the baseline system in all conditions (4.5 %, 24.9
%, and 38.0 %) but is poorer than multicondition trained or
DPMC systems in noisier mid and far recordings.

Letter and word error rates on car noise evaluation set
are collected in Table 2. Again the baseline system shows
the largest degradation in recognition performance with de-
creasing SNR from close recordings (6.7 %) to mid (64.3 %)
and far (87.6 %) recordings. DPMC (5.2 %) and multicondi-
tion systems (5.9 %) perform better than the baseline system
on close recordings but the lowest error rate is achieved by
the missing data system (4.9 %). DPMC has the worst per-
formance on far (79.3 %) recordings and the second worst on
mid (29.2 %) recordings. The multicondition system has the
best performance on mid (13.0 %) and far (42.5 %) record-
ings. The missing data system performance on mid (32.6 %)
recordings is slightly lower than the respective DPMC per-
formance and on far (75.7 %) recordings, it is slightly higher
than the respective DPMC performance.

Wilcoxon signed rank test was used for pairwise statisti-
cal comparisons between the letter error rates of each system
on combined public place and car noise. The Z-scores are
collected in Table 3. Based on a 95 % confidence interval,
the Z-score greater than 1.96 or less than -1.96 indicates a
statistically significant difference in the comparison. Statisti-
cally significant difference was reached in all other pairwise
comparisons except in between the baseline-multicondition
and DPMC-missing data systems on close recordings.

Table 3: Z-scores of pairwise comparisons and the respective
relative LER improvements (left relative to right) on com-
bined public place and car noises (z-score/relative LER im-
provement %). Bold numbers indicate a statistical difference
between the systems.

Pair* Close Mid Far

BL-DPMC -3.68/24.6 -6.15/56.9 -5.67/28.4
BL-MC -1.95/-13.1 -6.10/77.8 -6.50/59.4
BL-MD -5.60/24.6 -6.15/42.5 -6.15/21.9
DPMC-MC -4.95/-50.0 -5.84/48.6 -5.32/43.3
DPMC-MD -0.94/0.0 -5.24/-33.3 -2.15/-9.1
MC-MD -5.04/33.3 -6.13/-159.3 -6.06/-92.4

*BL=Baseline, MC=Multicondition, MD=Missing data

5. DISCUSSION

In this study, we carried out a comparison of three noise ro-
bust approaches in a large vocabulary ASR task using real
noisy speech recordings from car and public place record-
ings. The main observations were that all the three methods
improve the recognition accuracy substantially in poor SNR
conditions when compared to a baseline system trained on
clean speech. However, the DPMC and missing data sys-
tems give the best performance on high SNR conditions but
the multicondition trained system outperforms the other sys-
tems on low SNR conditions where DPMC system performs
the second best and missing data system the third best. In
this study, multicondition training and the active model com-
pensation method (DPMC) are evaluated separately whereas
an approach called Noise Adaptive Training (NAT) makes it
possible to combine effectively multicondition training with
a VTS based model compensation technique. NAT yielded
results that were superior both over standard multicondition
training and VTS in the Aurora 2 digit recognition task [10].

The challenge in the recognition of the far recordings is
not only due to the relative increase in noise level but also
the convolutive channel effect on the speech signal. This
is caused by the different types of microphones used in the
recordings and the increasing effect of reverberation relative
to direct sound as the microphone distance is increased. The
multicondition trained system performs considerably better
on mid and far recordings because it has a clear advantage
of learning the respective channel distortions during train-
ing. DPMC and missing data systems are, on the other hand,
only capable of compensating the additive noise, not the con-
volutional channel distortion. Had any convolutional noise
robust method also been used such as cepstral mean subtrac-
tion (CMS), the baseline, DPMC and missing data systems
would have shown significant performance improvements on
mid and far recordings. CMS would have also improved
the multicondition system performance but not on the same
scale as the other systems. However, the standard version of
CMS does not cope with the parameter reversibility demand
of DPMC, thus a modified CMS has been introduced to be
used with DPMC [19]. We intend to test the modified CMS
in the future studies.

In the present study, the multicondition training set con-
tained clean and noisy data from the same SPEECON corpus
that was used to construct the evaluation sets. This has given
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some advantage for the multicondition trained system over
the more flexible PMC and missing data approaches relying
on adaptive compensation. While the settings in the collec-
tion of SPEECON are realistic and represent everyday use of
speech technology in common environments with commonly
used microphone settings, they are, however, standardized
and do not represent all the variables that may be encoun-
tered in real use of ASR devices. It is noteworthy that due to
the restricted corpus, we did not have noise types with con-
siderable mismatch to the multicondition trained models.

The performance differences between the public place
and car noises on each system is noteworthy. The car noise
is more difficult for the baseline system to recognize which
is also reflected to the performance of noise robust methods.
This can be explained through the SNR differences since the
car noise has significantly lower SNR on each microphone
distance. Due to the limited frequency response of the far
microphone on car noise recordings (see Section 3 for de-
tails), the respective SNR is effectively lower than measured.

But why is the multicondition system performance worse
than the baseline on public place noise but better on car
noise? Even though the training sets of multicondition and
baseline systems are approximately the same, the multicon-
dition training set includes considerably less clean data.The
close recordings on car noise have such a low SNR which
already affects considerably the clean trained baseline per-
formance. Therefore the multicondition system has a per-
formance advantage over the baseline. However, the close
recordings on public place noise have higher SNR which,
based on our experience, corresponds almost to the clean
training condition and does not considerably degrade the
baseline recognizer performance; rather the baseline recog-
nizer has an advantage of having more clean data in the train-
ing set that matches well to the public place close recordings.

Missing data reconstruction performance was lower than
the DPMC performance in most test conditions, but the dif-
ferences were larger in public than in car environments. This
is likely because the reconstruction performance is sensitive
to mask estimation errors as discussed in [14]. The mask
estimation method used in this work assumes the noise in-
terference is stationary, which approximately holds for the
car engine noise, but does not hold in public environments
where the noise is often time-varying (e.g. speech, music,
clatter). It is therefore reasonable to assume the missing data
reconstruction performance would improve with better noise
mask estimation methods. Moreover, methods based on e.g.
perceptual criteria [1] or using a Bayes classifier [17] would
remove the need for noise estimation in missing data meth-
ods altogether.
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