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Abstract
This paper proposes learning-based methods for mapping a
sparse representation of noisy speech to state likelihoods in an
automatic speech recognition system. We represent speech as a
sparse linear combination of exemplars extracted from training
data. The weights of exemplars are mapped to speech state like-
lihoods using Ordinary Least Squares (OLS) and Partial Least
Squares (PLS) regression. Recognition experiments are con-
ducted using the CHiME noisy speech database. According to
the results, both algorithms can be successfully used for train-
ing the mapping. We achieve improvements over the previous
binary labeling system, and recognition scores close to 70% at
-6 dB SNR.
Index Terms: automatic speech recognition, sparse representa-
tions, exemplar-based, regression

1. Introduction
There is a general agreement in the speech community about
the need for novel approaches for improving Automatic Speech
Recognition (ASR) in adverse conditions [1]. Recently, there
has been a renewed interest in non-parametric ASR methods
as an alternative for Gaussian Mixture Models (GMMs) [2, 3,
4]. In particular, methods that rely on representing speech as
a linear combination of a small set of dictionary atoms have
been shown to offer higher classification accuracy [2] and better
noise robustness [3].

These methods work by first finding the sparsest possible
linear combination of predefined atoms that describe the ob-
served speech spectra. With each atom associated with a speech
class [2, 4] or Hidden Markov Model (HMM) states [3], decod-
ing is done by using the weights of atoms directly as evidence
of the observed speech likelihoods. In Sivaram et al. [4], the
phone classification was done by training a neural network to
map the weights of atoms directly to phoneme classes.

In this paper, we employ the exemplar-based speech repre-
sentation described in [3], where the dictionary atoms are spec-
trograms extracted from training data. The method has the ad-
vantage that noisy speech can be represented as a linear combi-
nation of speech and noise exemplars, allowing the method to
obtain accurate sparse representations of the speech atoms even
in the presence of corrupting background noise.

The recognition in [3] was done using state labels associ-
ated to the exemplars. This canonical transcription of the ex-
emplars was obtained through forced alignment with a conven-
tional GMM-based recognizer. A downside of using the canon-
ical state association is that the sparse representation is formed
of exemplars that represent the underlying speech states of the

observed speech, i.e. the method is restricted to using exem-
plars that are realizations of speech. Furthermore, the use of
canonical state association of the exemplars is not optimal for
the recognition purpose. It may also require cumbersome han-
dling of silence states, because those are not well represented as
a linear combination of exemplars [3].

To circumvent these issues, we propose in this paper to
learn the mapping between exemplar activations and state
likelihoods using regression methods. Using Ordinary Least
Squares (OLS) and Partial Least Squares (PLS) regression mod-
els, we show that learning the mapping between exemplar acti-
vations and likelihoods can handle phonetic ambiguity and la-
beling errors of dictionary exemplars, especially when enough
training material is available.

The rest of the paper is organized as follows. In Section 2
we introduce our noisy speech representation model, describe
how we retrieve the linear combination of exemplars used to
represent speech and explain how the exemplar activations are
used for speech recognition. In Section 3 we describe the
two regression models used for mapping exemplar activations
to speech state likelihoods. The experimental setup using the
CHiME database is presented in Section 4. Results and discus-
sion follow in Section 5, and conclusions in Section 6.

2. Exemplar-based representation of speech
The framework we use for robust speech recognition is shown
in Figure 1. There are three steps to be done offline, namely
dictionary building, training of conversion matrices and HMM
training. Other phases of recognition are to be done with fixed
system parameters.

We represent noisy speech using magnitudes within Mel-
frequency bands. Magnitudes from T consecutive frames are
concatenated to form a feature vector y. This feature vector is
then modeled as a sparse linear combination of weighted exem-
plar vectors am, m = 1...M from a dictionary matrix A. As
an equation this is:

y ≈
M∑

m=1

amxm = Ax , (1)

where xm is a non-negative weight or activation of the m:th ex-
emplar, and x is a vector containing all the activations. A holds
in total M exemplars from both speech and noise, which allows
representing noisy speech. The details of the representation are
described in [3].

Activation values are obtained with a Non-negative Matrix
Factorization (NMF) algorithm as in [3]. The algorithm min-
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Figure 1: Speech recognition framework.

imizes the Kullback-Leibler divergence between the observa-
tions and the model plus L1 norm sparsity promoting penalty
using multiplicative update rules. The system processes long
utterances by applying the sparse representation in overlapping,
fixed-length segments, whose length is T frames. Shift of one
frame is used between overlapping segments.

Our system does speech recognition by using a set of states,
which are conceptually similar to the states in conventional
HMM-based recognizers. However, in our system the likeli-
hoods of the states are obtained differently. In the baseline sys-
tem [3], the activations in x are converted to word state like-
lihoods by using labeled state lists of dictionary speech exem-
plars, which are obtained by forced alignment. Element xm

from an activation vector x is copied as a likelihood value to
state likelihood vectors lτ , τ = 1...T , which account to T
frames inside the analysis segment. xm is copied into lτ for
the state that is found as the τ :th element of am:s state list.

In the end, the overlapping state likelihood vectors for each
signal frame from consecutive analysis segments are averaged
and combined to make up a state likelihood matrix L for the
whole utterance. From L, the most probable state sequence is
tracked with a Viterbi decoder.

3. Proposed mapping from activations to
state likelihoods

The goal of the proposed method is to find a mapping from
exemplar activation vector x to state likelihood vector lτ in each
frame τ = 1...T of a speech segment. For simplicity, we restrict
ourselves to linear mappings. The mapping is given as

lτ = Bτx , (2)

where Bτ is the mapping matrix for likelihoods in frame τ .
The mapping is found by using training data consisting of acti-
vations and corresponding target state likelihood vectors, which
are described in more detain in Section 3.1.

In our case the input space is very high dimensional, which
makes the use of conventional methods, such as linear discrim-
inant analysis, problematic. There are methods such as regular-
ized discriminant analysis and shrinkage discriminant analysis
that can be used with high-dimensional inputs. In this study,
however, we explored two regression algorithms for the map-
ping, namely Ordinary Least Squares (OLS) and Partial Least
Squares (PLS) [6]. PLS was chosen since it is known to produce
good results in cases where the input data has a large number of
dimensions that are highly collinear.

3.1. Training the regression matrices

In our case, the input space of regression matrices is of size
5000. It consists of truncated training data activation vectors
xS , which only have the activations that correspond to speech
exemplars of the dictionary A. The target space consists of
250 states. Each training data segment has a labeled length
T sequence of forced alignment target states obtained from its
canonical transcription. Target vectors lτ , τ = 1...T for the
training are binary, having value 1 for the state that is labeled
for the τ :th frame in the said training segment and value zero
for all the other states. All the truncated training data activa-
tion vectors are collected into columns of matrix X, and all the
training data target vectors are gathered into columns of ma-
trices Lτ , τ = 1...T . The regression matrix training with the
above explained input and output data is then performed with
OLS and PLS algorithms.

3.2. Ordinary Least Squares

The Ordinary Least Squares (OLS) method finds a linear model
for mapping the input space to the output space so that mini-
mizes the total L2 error of the model and target values. The
solution of OLS regression with our variables becomes:

Bτ = LτX
T (XXT )−1 . (3)

The problem with the OLS formula above is that the inverse
of a matrixXXT must be calculated, which may be singular or
nearly singular and thus infeasible. To avoid such a situation,
Tikhonov regularization with Γ = αI will be used to stabilize
the inverse matrix, changing the formula to

Bτ = LτX
T (XXT + αI)−1 . (4)

3.3. Partial Least Squares

The Partial Least Squares (PLS) method [6], also called Pro-
jection to Latent Structures, is a regression method designed
for input data with high number of dimensions and with high
collinearity. PLS does not use the input vectors as such, but
constructs another set of basis vectors to do the linear regres-
sion in a new space. PLS represents the input and output data
as matrix decompositions: X = VXSX and Lτ = VLτSLτ .
VX and VLτ hold the new spanning vectors for input and tar-
get data, respectively. SX and SLτ give the coordinate values,
often called scores, of the input and target data with respect to
their new coordinate axes. The number of spanning vectors used
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to construct a new space is a dimensionality parameter for PLS,
and it determines the rank of the model.

After iteratively rotating the spanning vectors of the new
bases, VX and VLτ , PLS finds such directions, that the score
matrices SX and SLτ are as identical as possible. Then the
conversion D from SX to SLτ ,and from that, the conversion
matrix Bτ for the original space can be obtained by

Dτ = SLτS
T
X(SXS

T
X)−1

and

Bτ = VLτDV
T
X(VXV

T
X)−1 .

In this work, PLS has been implemented with Statistically In-
spired Modification of PLS, namely the SIMPLS-algorithm [7].

4. Experiments
4.1. Experimental setup

To compare the recognition quality of our previous state label
based mapping and the mapping with learned regression ma-
trices, we used the CHiME challenge database [8]. CHiME
is based on the GRID corpus, where 34 speakers read aloud
simple command sentences, consisting of linear grammar and
a vocabulary of 51 words [9]. The GRID sentence structure is
verb-color-preposition-letter-digit-adverb. There are 25 differ-
ent letters and 10 digits. Other classes have four word options
each. In CHiME database, the utterances are reverberated with
a room response, and then mixed into stereo background noise
sampled from a real living room. The task is to recognize words
from ’letter’ and ’digit’ classes in 600 test utterances at six SNR
levels: +9, +6, +3, 0, -3 and -6 dB. Test score is the number of
correctly recognized keywords in the 1200 word instances at
each SNR.

In our test setup, we used features consisting of 26 Mel-
scale spectral magnitudes for each stereo channel, sampled at 16
kHz. Frame length was 25 ms and frame shift 10 ms. Segment
lengths of T = 10, 20 and 30 consecutive frames were used,
thus the total length of a concatenated segment vector was 2 ∗
26 ∗ T (520–1560).

4.2. Dictionaries and factorization

Two different speech dictionary types were generated. For
speaker-dependent dictionaries, 60% of the noiseless training
set of each speaker was converted into partially overlapping
exemplar-segments by going through the set with a random shift
of 4–8 frames. The full dictionaries of approximately 10000-
17000 exemplars were reduced to 5000 exemplars for each
speaker / segment length combination, while maximising the
flatness of included word distribution. In addition, a speaker-
independent speech dictionary of 5000 exemplars was gener-
ated similarly for each segment length by combining 147–148
exemplars from each speaker, again with an attempt for maxi-
mally flat coverage of words and speakers. The remaining 40%
of training utterances were used for learning the regression ma-
trices. Speaker-dependent dictionaries were trained with utter-
ances of the same speaker. Independent training used the com-
bined utterances of all speakers.

In the factorization phase, we extracted a noise dictionary
of 5000 exemplars for each utterance by picking partially over-
lapping pure noise segments from the immediate neighborhood
of the utterance to be recognized. Speech and noise dictionar-
ies were combined, and then re-weighted together to equal Eu-
clidean norms over Mel bands and exemplars. The same band
weights were applied to the utterance features. Factorization

was performed with 300 NMF iterations, either in double pre-
cision CPU or single precision GPU computing. The difference
between these was found negligible.

4.3. Decoding

The activations were converted into state likelihoods by using
the label- and regression-based methods explained in sections
3.2 and 3.3. For the Tichonov regularization in OLS we used
values 10−2, 10−7 and 10−12. PLS-regression was tested with
dimensionalities 500, 650 and 800.

Finally, the likelihood matrices were decoded using a mod-
ified HVite binary from the HTK toolkit. Apart from the exter-
nally calculated state likelihoods, the original CHiME models
were used ’as is’ in decoding. Scoring of letter and digit key-
words was performed with the standard CHiME scripts.

5. Results and discussion
The results of our recognition experiments are summarized in
Table 1. Pane (a) shows the results for speaker-independent
recognition, and pane (b) for speaker-dependent dictionaries.
For each segment length T we show recognition rates for the
previous binary label system, OLS regression and PLS regres-
sion. In addition, the baseline rates from CHiME documenta-
tion are shown on the topmost row [8]. The baseline system
is standard HMM-based recognition using speaker-dependent
GMMs. Similar speaker-independent baseline results were not
available. For regression results, OLS regularization parame-
ter 10−2 and PLS dimension 800 were selected. In OLS, the
differences between parameters were minimal. In PLS, 800 di-
mensions yielded the best results with very few exceptions. The
rate increased approximately by 0–1% (absolute) for each 150-
dimension step. Especially for segment lengths 20 and 30, it is
possible that even higher values could improve the results fur-
ther.

In speaker-independent recognition, we notice that regres-
sion provides improvements of 4.3–14.1% (absolute) in results
over binary label. In general, a relative reduction of approx-
imately 20% is present in the error rates. The likely reasons
for this are twofold. First, the speaker-independent dictionaries
are fairly small for this task. 5000 exemplars could suffice for
covering the phonetic variation within the set. However, in the
word-based labelling system, some speaker-state combinations
may be underrepresented, thus similar phonetic features with
different word labels may get activated. Trained regression ma-
trices manage to overcome this problem by activating several
potential states at once. The second reason for the success of re-
gression in this case is that the matrices have been trained from
combined utterances of all speakers. In other words, there is
34 times more training data than in the speaker-dependent case.
Possibly due to this abundance of training data, OLS yields the
highest recognition rate of the tested methods.

Overall, speaker-independent recognition does not seem to
perform very well. It should be noted, though, that the baseline
scores were obtained using speaker-dependent acoustic models.
In CHiME data, a lot of the background noise consists of people
speaking in the living room, or speech coming from television.
Therefore a speaker-independent model will easily pick up in-
accurate speech segments from these external sources.

The overall results of speaker-dependent recognition are
substantially better. In high SNRs, approximately 90% of all
keywords are recognised correctly. This is impressive, because
especially the letters are easily confused even by human listen-
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Table 1: CHiME test results using exemplar-based factorization and three likelihood generation methods. For each SNR and segment
length T , keyword recognition percentages are shown using binary labels, OLS (10−2 regularization) and PLS (800 dimensions). The
baseline system is CHiME reference decoder, which uses mono MFCC features and speaker-dependent GMMs.

(a) Speaker-independent results

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T=10
labels 69.9 66.0 58.7 52.4 42.9 37.8
OLS 84.3 77.8 71.4 65.3 56.4 48.6
PLS 82.1 77.1 71.0 64.0 57.0 49.3

T=20
labels 77.3 72.8 68.2 62.7 51.1 44.0
OLS 85.2 80.5 78.7 71.1 60.2 51.5
PLS 82.9 78.8 74.8 70.1 59.5 50.6

T=30
labels 76.0 73.5 68.2 61.8 52.7 44.7
OLS 82.8 80.5 76.3 70.7 62.1 54.4
PLS 81.1 77.8 74.3 68.8 61.1 52.4

(b) Speaker-dependent results

SNR (dB) 9 6 3 0 -3 -6

CHiME baseline 82.4 75.0 62.9 49.5 35.4 30.3

T=10
labels 91.3 88.3 85.8 80.8 71.4 62.3
OLS 89.8 86.8 85.0 79.7 70.1 62.7
PLS 90.5 87.8 84.5 80.2 71.3 63.7

T=20
labels 91.6 89.2 87.6 84.2 74.7 68.0
OLS 91.1 90.0 88.5 85.2 77.6 69.2
PLS 91.9 89.3 88.2 85.0 78.6 69.6

T=30
labels 88.8 88.1 86.3 82.9 75.1 68.3
OLS 88.8 86.0 86.4 83.3 76.1 69.2
PLS 89.1 85.7 84.8 82.4 77.2 68.8

ers [9]. Noisy results are also convincing, with an increase of
≈ 30–40% (absolute) over the baseline at lower SNRs. Segment
length 20 appears optimal in its combination of initial recogni-
tion rate and noise robustness.

In this scenario, the results of regression-based likelihood
conversion are mixed. For this test set size, the differences be-
tween binary labels, OLS and PLS cannot be considered signif-
icant with sufficient confidence. The original labeling system
performs well, because the speech dictionary only covers one
speaker at a time and thus can contain a close approximation of
almost every speech pattern of the current speaker. After suffi-
ciently many NMF iterations, a reliable estimate of the under-
lying word is usually discovered, regardless of partial phonetic
ambiguity. As the conversion errors are few to begin with, there
is little to gain with regression. Still, we notice that both algo-
rithms appear to produce slight improvements in the noisy end.
The performance of OLS and PLS is mostly similar. It should
be noted that OLS results were generally identical for all pa-
rameter sizes, while PLS performance depended on the dimen-
sion parameter. More careful tuning of it for different segment
lengths would probably make it superior to OLS.

The training data set available for regression matrix learn-
ing was notably small in speaker-dependent recognition. After
dictionary generation, only 200 training utterances were avail-
able per speaker. Therefore especially letter likelihoods had to
be learned from only a few word instances. Comparing the re-
sults to the speaker-independent case, we can theorize that the
advantages of PLS are higher, when training data is scarce. If
this is not the case, OLS may be a better choice due to its lower
computational cost for similar or higher quality.

6. Conclusions
A new, learning-based method was proposed for mapping
speech exemplar activations into state likelihoods in automatic
speech recognition. By training the conversion matrices with re-
gression algorithms, it is possible to automatically handle pho-
netic ambiguity and resulting labeling problems of dictionary
exemplars. Furthermore, the algorithms allow use of learned
or synthetic exemplars without previous knowledge of their lin-
guistic content.

The methods were tested using noisy speech utterances
from the CHiME challenge corpus. In speaker-independent
recognition, where the original state labeling was unreliable
while regression training data was plentiful, all results improved

by 4.3–14.1% in comparison to the previous labeling system.
In speaker-dependent recognition, no significant increase or de-
crease was present. We conclude that automatically learned
mapping can match or surpass the recognition quality of explic-
itly assigned state labels. Ordinary Least Squares regression
was found straightforward and reliable for the purpose. Partial
Least Squares requires careful parameter selection, but it may
yield higher results especially for limited training data.
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